Inflation and misallocation in New Keynesian models

Alberto Cavallo Francesco Lippi Ken Miyahara
Harvard Business School Luiss University and EIEF Luiss University and EIEF

July 17, 2023

Abstract

The New Keynesian framework implies that sluggish price adjustment results in a distorted allocation of resources. We use a tractable model to identify these unobservable distortions, using granular data that depict the price-setting behavior of firms. We propose a method to estimate welfare costs for the period preceding 2022, and during the subsequent high inflation period. Using granular data from PriceStats, as well as data from the ECB PRISMA project, we find that these welfare costs are sizeable. In the low inflation environment prevalent before 2022 in the Euro Area the efficiency cost is quantified in about 2 percentage points of GDP. Moreover, we estimate that the recent inflationary shock has temporarily increased these costs, in the order of an 3 additional percentage points of GDP.

PRELIMINARY AND INCOMPLETE

JEL Classification Numbers: E5

Key Words: sticky prices, misallocation, price dispersion, cost of inflation.

*First draft, May 2023. We thank, without implicating, several colleagues and coauthors who generously provided feedback on the ideas at the core of this paper. In particular we wish to thank Fernando Alvarez, Andres Blanco, Xavier Gabaix, Anil Kashyap, Hugo Hopenhayn, Claudio Michelacci, Luigi Paciello.
1 Introduction

The inflation surge that followed the sizeable increases of energy prices in Europe, pictured in Figure 1, has revived interest on inflation and its welfare costs. After more than three decades of stable prices, in 2022 inflation peaked at about 10% in the Euro area and the US. The inflation spike was associated with an unusually large increase in the frequency of price revisions. In the food-and-beverage sector, where the average number of regular price adjustments per year hovered between 1 to 3 before 2022, the number of price changes almost doubled in 2022 and 2023 (see Figure 2). These facts raise several questions about mechanism by which cost shocks transmit to consumer prices, questions on the welfare costs of inflation, on the future evolution of inflation, and on the appropriate policy actions.

Figure 1: The 2019-2023 dynamics of energy prices

In this paper we address two narrow and well-defined questions. The first one concerns the mechanism: understanding inflation dynamics requires a model of the price setting decisions of a large number of individual firms, and their aggregation. We will use a simple model, validated against a large granular dataset, to argue that the workhorse New Keynesian model of monetary policy in use at most central banks, built around the assumption of a constant
average frequency of repricing by firms, misses important aspects of the inflation dynamics. In particular, we will show that such model fails to capture the sizeable different speed of passthrough of large versus small aggregate shocks. We show that a simple tractable model improves upon the benchmark and yields to smaller inflation forecast errors.

Figure 2: Frequency of Price Changes (Food and Beverages)

Time series of Frequency

Binned Scatterplot - Frequency & inflation

Note: The left graph shows the frequency of price changes for regular prices (excluding sales) for six countries. The right graph is a binned scatterplot of the frequency and annual inflation rates for nine countries: France, Germany, Greece, Ireland, Italy, Netherlands, Spain, Poland, and the UK. Frequency computed using micro data. Annual inflation rates computed by PriceStats.

The second question concerns the welfare costs of inflation. A classic approach in macroeconomics studies the welfare cost of inflation using a powerful public finance idea, namely that inflation acts as a distortionary tax on the demand of real balances, see e.g., Bailey (1956); Friedman (1968). A microfounded money demand model can then be used to quantify these welfare costs, as in e.g. Lucas (2000). In this paper we focus instead on the welfare costs that arise in New Keynesian (NK) models, by far the dominant framework employed by academics and central bank researchers in the recent decades, see e.g., Woodford (2003); Gali (2008); Walsh (2010). In the NK framework the welfare costs are made of two elements, both related to the assumption of sticky prices. First, since prices deviate from their efficient level, such wedges impose a welfare costs to consumers and workers. This is what the literature refers
to as “misallocation”, which we will denote by the variable χ. Second, the costs associated to the price-management activities are a waste, much like the resources that agents waste to protect themselves from inflation in the money demand models cited above. We denote this welfare cost by the variable ϕ. Both χ and ϕ will be measured as a proportion of total consumption, so that their magnitude has a straightforward interpretation.

As neither measure of welfare cost, nor χ nor ϕ, is directly observable to researchers, measuring them requires a model, providing us with an explicit mapping between these objects and the observable data moments.\(^1\) In the first part of the paper we set up such a model, drawing on Caballero and Engel (2007), and parametrize it using a granular data set for the food and beverages sector for several European countries (see Cavallo (2018)). A founding principle of our analysis is to identify a model that is broadly consistent with the recent observed price setting behavior. There are two reasons why this is important. First, the credibility of the analysis on retail price inflation requires that the model is consistent with the facts about price-setting behavior by retailers. Second, the welfare costs of inflation vary substantially across models, in spite of the fact that these models reproduce the same mean frequency and size of price changes. For instance, the welfare costs of misallocation in the well known Calvo model, at the core of most NK analyses, are two times larger than the misallocation produced by a staggered-price adjustment model a la Taylor (1980), and six times larger than the misallocation produced by a menu cost model a la Golosov and Lucas (2007). Matching the model fundamentals to the price setting patterns observed in the granular data will lead us to reject the Calvo model, because of its impossibility to account for the significant increase in the frequency of price setting observed in the data, shown in Figure 2, and because of its failure to fit other features of price setting behavior, such as the size distribution of the price changes depicted in Figure 3. This result yields an important policy lesson: large shocks travel faster than small shocks. Failure to acknowledge this fact will lead the policy maker to a wrong inference about inflation dynamics.

\(^1\)See Zbaracki et al. (2004) for an attempt at measuring such costs directly. We relate to their findings with ours in Section 4.
In the second part of the paper we use the calibrated model to infer the magnitude of the welfare costs caused by the presence of sticky prices, and analyze how these costs change following a large inflationary shock such as the recent one. We supplement the granular data for the food and beverages industry with some descriptive statistics for the Euro Area, taken from the Price-setting Microdata Analysis (PRISMA) network, see e.g. Gautier et al. (2022), and descriptive statistics for supermarket data of the Euro Area drawn from Karadi et al. (2023). We develop two conceptually distinct measurement exercises. First we measure the welfare costs χ and ϕ in a steady state. In particular, we measure these costs using data from the low inflation period prevalent before 2022. The results suggest that the welfare cost in this low inflation environment range at about 2 percentage points of GDP in the Euro Area. This suggests that the resources lost every year due to the sticky price frictions are not negligible. Second, we analyze the dynamics of these welfare costs following the large energy price increases recorded in 2022. This exercise is a canonical impulse-response analysis, studying how inflation and the welfare costs evolve from their steady state levels following a large cost shock. The exercise allows us to quantify the welfare costs that arise above and beyond the steady state costs. Our preliminary estimates suggest that the recent
inflationary shock triggered a temporary increase of the welfare costs, in the order of an additional 3 percent of GDP.

Structure and overview of contents. The paper is organized as follows. Section 2 presents the New Keynesian setup that guides our analysis of the price-setting activity of firms and will (later) be used to quantify the welfare costs. The model is inspired by the seminal work of Caballero and Engel (1993a,b) and nests several well-known cases such as the Calvo (1983) model or the menu cost model of Golosov and Lucas (2007).

Section 3 describes the model’s predictions for the frequency and the size-distribution of price changes and compares them with cross-sectional facts observed from the low inflation period before 2022. This part of the analysis relies on a granular dataset for European countries provided by PriceStats. The data contain detailed information on the frequency and size of daily price changes for a large number of firms, and provide the necessary information to solve the inverse inference problem mentioned above. For our purposes, the dataset offers two key advantages over traditional data sources such as Consumer Price Index (CPI) and Scanner Data. Firstly, the daily price data collection with uncensored spells allows for an accurate identification of sales and price changes (Cavallo, 2018). Second, the data is available without any lags, allowing us to study the recent period of high inflation in real-time.²

Mapping the model to the observables allows us to select a data-consistent structural model of price setting. We show that a main feature of the selected price setting model is a sizeable component of state-dependent decisions. This means that the firms’ responsiveness to the shocks depends on the size of the shocks.³ Following a large shock, such as the recent energy shock, firms react faster than in normal times. This is important to understand

²Our data was provided by PriceStats, a private company related to the The Billion Prices Project (see Cavallo and Rigobon (2016)). This dataset is a comprehensive collection of retail prices obtained from the websites of large, multichannel retailers. It is generated using a technology known as web scraping, which automatically scans the code of publicly available webpages daily to gather and store relevant data.

³See Gagnon (2009); Alvarez et al. (2019a); Karadi et al. (2023) for an extensive documentation of the importance of state dependent pricing in several countries including the US and Europe. The idea of using large shocks to discuss model selection has been used by other authors, such as Gopinath and Itskhoki (2010); Alvarez, Lippi, and Paciello (2016); Bonadio, Fischer, and Sauré (2019).
the dynamics of inflation, as also noted by Alvarez and Neumeyer (2019); Karadi and Reiff (2019). This finding also differs markedly from the time-dependent models widely used at central banks, such as the workhorse model of Calvo (1983). We show that the selected model can qualitatively replicate the response of the frequency of price changes after a large cost shock, such as the ones recently observed, as in e.g. Figure 2. This result is also important to quantify the deadweight losses triggered by the shock, as firms must engage in above-normal price management activities that are costly to them (as captured by ϕ).

Section 4 discusses the welfare cost of misallocation in NK models. We derive a mapping between the theory-based measure of misallocation, χ and ϕ, and a set of observable moments from the size distribution of price changes. For instance, we show that the welfare cost of misallocation, χ, are proportional to the product of the variance times the kurtosis of price changes. This provides a very direct mapping to quantify the welfare costs of inflation, that we implement using three different granular datasets. As noted above, this result also highlights that different models can lead to estimates of misallocation that differ by an order of magnitude (e.g. the welfare costs in the Calvo model are six times larger than in the canonical menu cost model) as captured by the kurtosis of price changes.

In particular, we use PriceStats data, as well as data provided from the ECB PRISMA project (Gautier et al. (2022)), to estimate the welfare cost of inflation in the low inflation environment before 2022 to be about 2 percentage points of GDP in the Euro Area. The bulk of this welfare costs originates from the sizeable misallocation that is estimated in the data (the cost component χ). A smaller part, about 50 basis points of GDP, relates to the resources that are used for the price-management activity (the cost component ϕ). We also estimate that the recent inflationary shock has triggered a temporary increase of the welfare costs, in the order of an additional 3 percent of GDP. This temporary increase is due to both cost components in the same magnitude, by roughly 1.5 percentage points of GDP. Provided no new large shocks arrive, this additional cost component is expected to vanish.
1.1 Related literature.

As mentioned, several classic contributions on the welfare cost of anticipated inflation consider that inflation acts as a distortionary tax on the demand of real balances (Bailey, 1956; Friedman, 1968). Several papers have taken those ideas seriously and developed carefully designed models to quantify the deadweight losses caused by a stationary inflation rate, as in e.g., Aiyagari, Braun, and Eckstein (1998); Lucas (2000); Lagos and Wright (2005). A common finding is that the welfare costs of moderate steady inflation are not negligible. The results differ, depending on the specifics of the money demand aggregates that are used and other details of the modeling strategy, but the estimates are aligned in placing the order of magnitudes of the deadweight losses caused by a moderate inflation between 1 to 3% of annual consumption.\footnote{For instance, Aiyagari et al. (1998) model the costs of inflation as the resources that the households use to protect themselves from the inflation tax. They use a simple model and several empirical datasets to quantify the steady state costs of moderate inflation. An inflation rate of about 10 percent causes welfare losses that are estimated to be between 1% to 2% of total consumption. A similar conclusion is reached by Lucas (2000) who uses a money demand model and quantifies the benefits of reducing inflation from 10 percent to zero at about 1% to be equivalent to an increase in real income of about 1%. A higher value, between 3 to 5% of consumption, is estimated by the paper of Lagos and Wright (2005) based on a search-theoretic model.}

Our paper is not the first one to quantify the misallocation caused by sticky prices. As mentioned, measuring misallocation is involved because it requires the identification of the gap between the actual prices and the efficient ones, where the latter is not directly observable from the data. The literature has followed different routes to address this problem. Nakamura, Steinsson, Sun, and Villar (2018) and Sheremirov (2020) use US price data and proxy misallocation using observations on the degree of price level dispersion, and the size of price changes. Relatedly, a paper by Adam, Alexandrov, and Weber (2023) assumes that efficient prices follow (product-specific) trend inflation, and uses this assumption to identify changes of the inefficient price dispersion in the UK data. A common feature of these papers is to estimate how observed changes of inflation map into an increased cost of misallocation. But the level of the misallocation cost itself cannot be measured. In this paper we use an alternative approach. We use recent results by Baley and Blanco (2021) and Alvarez, Lippi,
and Oskolkov (2022) to construct a mapping that allows us to infer the price gaps using observable moments on the size and timing of price changes. This allows us to estimate the level of the cost of misallocation, as well as its evolution following a large inflationary shock. A similar approach is used by Blanco, Boar, Jones, and Midrigan (2022) using data underlying the CPI in the UK.

Finally, other papers focus on the effects of inflation surprises and their distributional effects, namely identifying winners and losers after an inflation surprise, see e.g. Bach and Stephenson (1974); Doepke and Schneider (2006). Other interesting related analyses of the distributional effects of inflation can be found in Argente and Lee (2020), who focus on the dynamics of prices for rich and poor households during the great recession of 2008. While such distributional effects are important for several questions, such measurements do not offer a direct measure of welfare costs, as the deadweight loss of a redistributive policy are not easy to measure. We focus here on the deadweight losses associated to both anticipated and unanticipated inflation but our paper has nothing to say about distributional effects.

2 A generalized setup for NK models

This section presents a New Keynesian setup that describes the firm’s price setting decisions. The motivation for introducing a formal model is that it will allow us to relate the observed price setting behavior to the fundamental costs and benefits of the price-management activity. We follow a flexible framework proposed by Caballero and Engel (2007) that describes the firm’s key decision in terms of the probability of price adjustment. The economics is simple: the more a firm is willing to adjust its price, the more resources must be assigned to that task. If no resources are used, then the prices stays constant. This view is aligned with empirical studies that measure the amount of resources dedicated to the price management activity, such as Zbaracki et al. (2004). The firm’s behavior is related to its price deviation from the profit maximising one, denoted by the variable x. The firm’s choice variable will
be described by a function, \(\Lambda(x) \), giving the probability (per unit of time) that the price will be adjusted. Intuitively, it will be shown that larger deviations of \(x \) from its ideal value increase the probability that a price change is observed. The setup embeds a broad class of sticky-price models, including well known cases such as the canonical Golosov and Lucas (2007), the pure Calvo (1983) model and the hybrid Calvo-Plus model by Nakamura and Steinsson (2010).

Next we summarize the key model ingredients.\(^5\) We consider a setting where firms are hit by idiosyncratic productivity shocks, so that firm’s \(i \) profit maximizing price, \(P_i^* \), is given by a constant markup over marginal costs, \(mc_i \):

\[
P_i^*(t) = \frac{\eta}{\eta - 1} mc_i(t)
\]

where \(\eta > 1 \) is the price-elasticity of demand, assumed to be constant. Note that \(P_i^*(t) \) depends on time because the marginal costs can change over time due to the productivity shocks. Marginal costs are also affected by aggregate shocks, such as a generalized increase in energy prices.

The assumption of sticky prices, the hallmark of the New Keynesian economics, creates a wedge between the actual price \(P(t) \) and the desired price \(P_i^*(t) \). We refer to this gap as the “price gap” and denote it by \(x_i(t) \) for firm \(i \) at time \(t \). It is given by

\[
x_i(t) = \log P_i(t) - \log P_i^*(t)
\]

Absent pricing frictions the gap is identically zero, i.e. each firm charges the optimal price \(P_i(t) = P_i^*(t) \). If the price is not adjusted, the price gap changes due to trend inflation, given by \(\mu \), and the idiosyncratic productivity shocks which are assumed to follow a driftless brownian motion \(\sigma B(t) \), where \(\sigma \) is the standard deviation of the productivity innovations.

\(^5\)For a detailed illustration of the underlying theoretical setup see Caballero and Engel (1999) and Caballero and Engel (2007), and Alvarez et al. (2022) for a simplified version.
per unit of time.\(^6\)

We describe the firm’s price setting decision as the solution to a minimization problem: the firm chooses its price to minimize the expected present value of the non-zero price gaps, discounted at the rate \(\rho\). The solution of this problem involves balancing two costs: on the one hand, a price gap \(x(t)\) implies that the firm’s profits are below the maximum level by the amount: \(\frac{\eta(\eta - 1)}{2} x(t)^2\), where for notation convenience we drop the \(i\) index. The quadratic term is obtained from a second order expansion of the profit function around the profit-maximizing price. The firm would like to “keep \(x\) small”, i.e. to adjust the own price \(P\) to track \(P^*\), but since price setting is costly this cannot be done in every period. We assume that at each point in time the firm can choose the probability of price resetting per unit of time, \(\ell(t)\), by spending resources \((\kappa \ell(t))^{\gamma}\) with \(\kappa > 0, \gamma > 1\). At all times \(t = \tau_j\) where the effort is successful the price is reset, i.e. \(x\) is reset at the ideal level \(x^*\) by a price change of size \(\Delta x_{\tau_j} = x^* - x(t)\).\(^7\) This means that the price gap obeys the law of motion \(x(t) = x(0) + \sigma \int_0^t dB(s) + \sum_{\tau_j < t} \Delta x_{\tau_j}\). Formally, the firm solves:

\[
v(x) = \mathbb{E}\left[\int_0^\infty e^{-\rho s} \min_{x^*, \ell \geq 0} \left(\frac{\eta(\eta - 1)}{2} x(s)^2 + (\kappa \ell(s))^{\gamma}\right) ds \mid x(0) = x\right]
\]

(3)

The key element of this problem is the effort rate \(\ell\) for price resetting that each firm chooses at each point of time. As highlighted by Caballero and Engel (1999), this allows us to describe the optimal firm policy through a generalized hazard function: \(\ell^*(t) = \Lambda(x(t))\). This function gives the probability that the price will be adjusted given the firm’s current price gap \(x(t)\).\(^8\)

Figure 4 illustrates the main properties of the firms’ optimal price setting decisions as

\(^6\)Formally, \(x\) follows the diffusion \(dx = -\mu dt + \sigma dB\).

\(^7\)The optimal return point \(x^*\) is the profit maximising reset price-gap that satisfies \(v'(x^*) = 0\). See Appendix A of Alvarez and Lippi (2014). We note that the units of the cost function are expressed as a fraction of forgone (steady state) profits. Given the CES demand system, to express these units in terms of the revenues (and output) they must be divided by \(\eta - 1\).

\(^8\)The notion of a generalized hazard function was developed in seminal papers by Caballero and Engel (1993a,b), a derivation from first principles based on random adjustment costs was provided in Caballero and Engel (1999) and Dotsey et al. (1999), and later revisited using information theoretical foundations by Woodford (2009) and Costain and Nakov (2011b).
summarized by the generalized hazard function $\Lambda(x)$. First, the function $\Lambda(x)$ has a minimum at x^*, where it is equal to zero. This is intuitive: when $x = x^*$ the firm is perfectly happy with current price gap and there are no incentives to adjust prices. Second, the probability of adjustment is increasing in the distance between and x and the optimal reset gap, $x^* \approx 0.9$. This is intuitive: a larger value of x increases the benefit of adjusting the price, leading the firm to pay more attention to this task.

Figure 4: The firm decision rule for price changes: $\Lambda(x)$

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively.

It is interesting to compare the generalized hazard function $\Lambda(x)$ with the workhorse Calvo (1983) model, where the adjustment probability is assumed to be constant, depicted by the horizontal line in Figure 4. The key difference is that price setting decisions in our model depend on the firm’s desired adjustment, x. Such state dependence is appealing theoretically, see e.g. Barro (1972); Sheshinski and Weiss (1977); Dixit (1991); Golosov and Lucas (2007), and has been found to be relevant empirically, see e.g. Fougere et al. (2007); Dias et al. (2007); Eichenbaum et al. (2011); Gautier and Le Saout (2015). We will show below that

9The optimal value of x^* depends on the inflation rate. At zero inflation is is zero, and remains constant at around zero until inflation enters the two digit region. See Alvarez et al. (2019b) for the theory and empirical illustration.

10Several authors have employed the generalized hazard function in applications and empirical work. For
a key implication of this framework is that state dependence is important to understand
the propagation of large aggregate shocks. Intuitively, after a large shock many firms find
themselves with a price that is far away from where it should be. This leads the firms to
dedicate more resources to resetting their prices, leading to an increased frequency of price
changes, akin to what was shown in Figure 2. This increased activity will be important to
understand the consequences of the large inflationary shock for misallocation, as measured
by the dispersion of the price gaps, as well as to measure the amount of resources that are
used to “keep prices right”, a useless activity that is reminiscent of the shoe-leather cost of
inflation.

Figure 5: The cross section distribution of price gaps: $f(x)$

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2.
The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of
price changes of 2.4 and 15% respectively.

The distribution of the price gaps, described by the density $f(x)$, is important for several
recent applications see e.g. Costain and Nakov (2011a); Carvalho and Kryvtsov (2018); Sheremirov (2020);
for empirical work see e.g. Berger and Vavra (2018); Petrella et al. (2018), and for related theoretical work
Baley and Blanco (2021). A large number of models are nested by this framework, including the canonical
Calvo model with a constant hazard $\Lambda(x) = 1/\kappa$ as $\gamma \uparrow \infty$, the Golosov and Lucas (2007) model with x
bounded by the adjustment thresholds where the hazard is flat (almost zero) over a range of x and then
spikes up. Intermediate cases cover the so called Calvo-Plus model by Nakamura and Steinsson (2010) and
the random menu cost problem of Dotsey and Wolman (2020).
questions. In a steady state, \(f(x) \) is uniquely determined by the hazard function \(\Lambda(x) \) and the law of motion of price gaps.\(^{11}\) The distribution contains information on the amount of inefficiencies that are present at the steady state. For instance, as showed by Gali (2008), the consumer’s welfare losses triggered by the presence of the non-zero price gaps are proportional to the variance of the price gaps, \(\text{Var}(x) \). Intuitively, an economy where the firms have small values of \(x \) is preferable to one where the variance of \(x \) is large.

Figure 5 illustrates two density functions produced in a steady state with a 2 percent inflation by two models, both featuring a standard deviation of the size of price changes equal to 11%, as in the Euro area data discussed below. The blue density is the one generated by the hazard function \(\Lambda(x) \) displayed in Figure 4. The red dashed function is the density generated by the corresponding Calvo model. In spite of the fact that both distributions give rise to price setting behavior that look alike in the steady state (similar frequency and size of price changes), there are important difference. First, it is apparent that the Calvo model has “fatter tails”. This observation, confirmed by a rigorous analysis of the model, implies that the welfare costs of misallocation are larger in the Calvo model compared to a state dependent model fitting the same price setting behavior. Second, we will show that in spite of the steady state similarities these models do imply very behavior in response to a large aggregate shock.

These considerations suggest that it is of interest for several policy questions to estimate \(f(x) \) as precisely as possible. Unfortunately, since price gaps are unobservable, the density \(f \) cannot be directly measured in the data. To address this challenge, we calibrate the model and identify \(f \) using the observed distribution of the sizes of price changes.

\(^{11}\)Formally, the density density \(f(x) \) solves the Kolmogorov forward equation \(\Lambda(x) \cdot f(x) = \mu f'(x) + \frac{\sigma^2}{2} f''(x) \), for each \(x \neq x^* \), with boundary conditions \(\lim_{x \downarrow x^*} f(x) = \lim_{x \uparrow x^*} f(x) \); \(1 = \int_{-\infty}^{\infty} f(x) dx \), and \(\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = 0. \)
3 Price setting behavior: data vs theory

This section presents statistics of price setting behavior that allow to calibrate the model’s steady state to match the empirical evidence. The current section uses data from the years 2019-2021, before the large energy shocks hit Europe, to infer behavior in steady state. We then present a few key predictions of the model about the frequency and the size distribution of the price changes. We argue that the GHF model is able to account for several key patterns observed in the data. In Section 3.1 we use the model to study the response of prices to a large energy shock. This exercise serves two purposes. First, it provides a validation of the model by comparison of the predictions for e.g. the frequency of price changes with the actual data for 2022 and 2023. Second, it allows us to quantify the welfare costs following the large shocks, an issue that we will inspect in Section 4.2.

To summarize, the main point of this section is to highlight that a data-consistent model of price setting implies that the economy’s response to a large shock differs markedly from the response to a small shock. In particular, a large shock will give rise to a much faster pass-through from costs to prices, and hence face policymakers with a temporarily high inflation.

A brief description of the dataset. We base our analysis on granular data on price setting behavior, as in Cavallo (2018). These data contain detailed information on the frequency and size of daily price changes for a large number of firms, and provide the necessary information to solve the inverse inference problem of unobservable price gaps mentioned above. Our data was provided by PriceStats, a private company related to the The Billion Prices Project (see Cavallo and Rigobon (2016)). It is generated using a technology known as web scraping, which automatically scans the code of publicly available webpages daily to gather and store relevant data. The dataset consists of product details, such as price, category, and sale status, collected on a daily basis from various retailers’ websites. The data is uncensored and detailed, covering the entire lifespan of all products sold by these retailers, and provides
prices that are similar to those obtained in offline stores (Cavallo et al., 2018). We use a subset of data from retailers in 9 European countries: France, Germany, Greece, Ireland, Italy, the Netherlands, Spain, Poland and the UK. The period ranges from January 1st 2019 to May 1st 2023. We focus on the “Food and Beverages” category, which has experienced one of the highest rates of inflation during this period in many countries.

This dataset offers several advantages over traditional data sources such as Consumer Price Index (CPI) and Scanner Data. Firstly, it provides daily price updates, free from unit values, time-averaging, and imputations, which are common issues in CPI and Scanner Data. This high-frequency data collection allows for a more accurate identification of sales and price changes (Cavallo, 2018). Another major advantage of this dataset is the uncensored price spells. Unlike other data, prices here are continuously recorded from the day they are first offered to consumers until they are discontinued, offering a complete and unaltered view of the product’s price life cycle. Furthermore, the data is comparable across countries, collected using identical techniques for similar categories of goods over the same time period. Finally, it offers real-time availability, providing up-to-date information without any processing delay. This makes it a potentially valuable tool for central banks and policymakers in real-time estimation of price stickiness and related statistics.

In Table 1 we present summary statistics of price setting behavior for several Euro area countries using data provided by PriceStats. Additionally, we present aggregate statistics from related studies to complement our analysis. In particular, we use the statistic for the frequency of price changes from Gautier et al. (2022) who use data underlying the CPI. They report many statistics using data from the large scale Price-Setting Microdata Analysis (PRISMA) network led by the ECB. The statistics of mean, standard deviation and kurtosis of price changes were kindly provided by the authors upon request. We also use statistics from supermarket scanner data in 4 Euro Area countries from Karadi et al. (2023). The source of those data is IRi. To compute the standard deviation of the size of price changes for the supermarket scanner data we use their reported measure for the mean absolute deviation
Table 1: Price Setting Behavior before 2022

<table>
<thead>
<tr>
<th>Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022)</th>
<th>Mean (Δx)</th>
<th>STD (Δx)</th>
<th>Kurtosis (Δx)</th>
<th>Frequency (N)</th>
<th>Drift $\hat{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.019</td>
<td>0.10</td>
<td>4.1</td>
<td>1</td>
<td>0.019</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Euro area supermarket data (IRi data, period 2013-17, Karadi et al. 2023)</th>
<th>Mean (Δx)</th>
<th>STD (Δx)</th>
<th>Kurtosis (Δx)</th>
<th>Frequency (N)</th>
<th>Drift $\hat{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>0.13</td>
<td>3.2</td>
<td>1.1</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Euro area Food and Beverages data (PriceStats data, period 2019-21)</th>
<th>Mean (Δx)</th>
<th>STD (Δx)</th>
<th>Kurtosis (Δx)</th>
<th>Frequency (N)</th>
<th>Drift $\hat{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>France</td>
<td>-0.001</td>
<td>0.13</td>
<td>2.3</td>
<td>3.6</td>
<td>-0.002</td>
</tr>
<tr>
<td>Germany</td>
<td>0.008</td>
<td>0.13</td>
<td>2.5</td>
<td>1.4</td>
<td>0.017</td>
</tr>
<tr>
<td>Greece</td>
<td>0.003</td>
<td>0.10</td>
<td>2.7</td>
<td>2.0</td>
<td>0.005</td>
</tr>
<tr>
<td>Ireland</td>
<td>0.001</td>
<td>0.32</td>
<td>1.6</td>
<td>1.6</td>
<td>0.001</td>
</tr>
<tr>
<td>Italy</td>
<td>-0.002</td>
<td>0.23</td>
<td>2.1</td>
<td>2.1</td>
<td>-0.003</td>
</tr>
<tr>
<td>Netherlands</td>
<td>0.009</td>
<td>0.11</td>
<td>2.3</td>
<td>2.8</td>
<td>0.022</td>
</tr>
<tr>
<td>Spain</td>
<td>0.008</td>
<td>0.16</td>
<td>2.5</td>
<td>2.9</td>
<td>0.016</td>
</tr>
<tr>
<td>EA Average</td>
<td>0.004</td>
<td>0.15</td>
<td>2.4</td>
<td>2.4</td>
<td>0.007</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Other countries Food and Beverages data (PriceStats data, period 2019-21)</th>
<th>Mean (Δx)</th>
<th>STD (Δx)</th>
<th>Kurtosis (Δx)</th>
<th>Frequency (N)</th>
<th>Drift $\hat{\mu}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Poland</td>
<td>0.013</td>
<td>0.21</td>
<td>2.2</td>
<td>2.8</td>
<td>0.023</td>
</tr>
<tr>
<td>UK</td>
<td>0.002</td>
<td>0.29</td>
<td>1.9</td>
<td>0.7</td>
<td>0.002</td>
</tr>
</tbody>
</table>

Notes: The PriceStats data uses a sample of changes in regular prices (excluding sales). The statistics are computed after dropping price changes larger than 1.50 log points in absolute value and products with less than 3 price spells for the period 2019-2021. Kurtosis is computed using a correction for unobserved heterogeneity proposed by Alvarez et al. (2022). The statistic for the frequency of price changes from the Price-setting Microdata Analysis (PRISMA) network is obtained from Table 7 in Gautier et al. (2022). The other statistics were kindly provided by the authors. We report the statistics after dropping outliers corresponding to the bottom and top 2.5% of the distribution of price changes. These data covers the period from 2005 to 2019. The statistics from Karadi et al. (2023) are taken from their Table 2 and correspond to the average of 4 euro area countries; Germany, France, Italy and the Netherlands between 2013 and 2017. Standard deviation is obtained assuming that the distribution of price changes is close to normal so that $\text{STD} = \sqrt{2} \cdot \text{MAD}$ where MAD refers to mean absolute deviation.
Figure 6: The Size of Price Adjustments, $q(\Delta x)$, in France - Food and Beverages sector

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{distribution.pdf}
\caption{Distribution of Δx in 2019}
\end{figure}

Note: The right panel shows the distribution for regular price changes with absolute value less of than one standard deviation which in this case is 13\%.

Our choice of reported statistics is guided by theoretical insights. The frequency of price changes gives information about the cost of price management. Moreover, when analyzed together with the standard deviation of price changes, they allow to infer the size of idiosyncratic productivity shocks affecting firms. In turn, kurtosis has been shown to reveal important information about the response of an economy to aggregate shocks. In Alvarez et al. (2016), the authors remark that kurtosis encodes information about the “selection” of price changes: the idea that the observed price changes come from firms who need it the most and not from a random sample. A large kurtosis is an indicator that there is a relatively large mass of late price-adjusters which implies a more persistent effect of a cost shock. The Calvo model, with a kurtosis of 6, does not feature “selection” of price changes since the adjusters are a random sample each period.

From Table 1 we notice that the standard deviation of the size of price changes is similar across countries with the exception of Italy and Ireland. The kurtosis measure is also similar.
across Euro area countries and ranges between 2.1 and 2.7 with the exception of Ireland with a kurtosis of 1.6. The frequency of price changes in the food and beverages sector is larger than the aggregate data and is different across countries. For instance, the UK displays a frequency of 0.7 price changes a year whereas France one of 3.6 price changes a year.

Calibration. We calibrate the model to match the standard deviation and the kurtosis of price changes as well as the frequency of price changes. We use the identity $\sigma^2 = N \cdot \text{Var}(\Delta x)$ since this relationship holds for a wide variety of models when $\mu \approx 0$, see Alvarez et al. (2022). We use standard values for the additional parameters of elasticity of substitution and intertemporal preference: $\eta = 6$ (which implies a markup of 20%) and a time discount $\rho = 0.05$. We choose an inflation rate of $\mu = 2\%$ consistent with inflation at steady state. The selection of a kurtosis value of 2.8 for the PRISMA data stems from the acknowledgement that the value of 4.1 does not account for unobserved heterogeneity. In a comparable investigation employing French CPI data, Alvarez et al. (2021) control for heterogeneity through an appropriate filter. As a result, their analysis yields a reduced kurtosis estimate that is 32% lower, providing a basis for deriving the value of 2.8 mentioned above.

Next we use a GMM estimator to calibrate the parameters of the effort cost function κ, γ to match the standard deviation and kurtosis of price changes. With the described estimation method the model is exactly identified and there is a one-to-one mapping between the mentioned moments and the parameters of the cost function. The calibrated parameters are shown in Table 2. Recall that the kurtosis of a Calvo model is equal to 6, while the kurtosis of a canonical menu cost model is 1. The data suggest a somewhat intermediate situation. Next we present a few key predictions of the model about the frequency and the size distribution of the price changes.

Frequency of price changes. The cross sectional distribution of firms’ price gaps $f(x)$ and the generalized hazard function $\Lambda(x)$ can be used to compute several objects that are
Table 2: Calibration for Price-Setting Behavior in the Euro Area before 2022

<table>
<thead>
<tr>
<th>Parameters</th>
<th>CPI data (PRISMA data)</th>
<th>Supermarket data (IRi data)</th>
<th>Food and Beverages data (PriceStats data)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gautier et al. 2022</td>
<td>Karadi et al. 2023</td>
<td></td>
</tr>
<tr>
<td>$\sigma = \sqrt{N} \cdot \text{STD}(\Delta x)$</td>
<td>0.10</td>
<td>0.14</td>
<td>0.23</td>
</tr>
<tr>
<td>γ</td>
<td>3.30</td>
<td>4.19</td>
<td>2.61</td>
</tr>
<tr>
<td>κ</td>
<td>0.21</td>
<td>0.28</td>
<td>0.09</td>
</tr>
<tr>
<td>Matched moments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STD(Δx)</td>
<td>0.10</td>
<td>0.13</td>
<td>0.15</td>
</tr>
<tr>
<td>Kurt(Δx)</td>
<td>$2.8^{(a)}$</td>
<td>3.2</td>
<td>2.4</td>
</tr>
<tr>
<td>Frequency (N)</td>
<td>1</td>
<td>1.1</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Notes: (a): The matched value of kurtosis for the PRISMA data is corrected for heterogeneity using a multiple from Alvarez et al. (2021) who perform the correction for French CPI data. Parameters γ, κ are calibrated using a GMM estimator to match the standard deviation and kurtosis of price changes in data (Table 1). The drift of price gaps is $\mu = 2\%$. The additional parameters are set to standard values: $\eta = 6$, $\rho = 0.05$.

observable in the data. The steady state frequency of price adjustments N is given by

$$N = \int_{-\infty}^{\infty} f(x)\Lambda(x) \, dx \quad (4)$$

The equation has a simple interpretation: it counts the total number of firms with a given price gap, f, and their probability of adjustment in a time period (say a year), Λ. These price adjustments originate from the firm’s effort ℓ to control the price gaps.

Distribution of the size of price changes. Recall that upon any price change the firm resets its gap from x to the optimally chosen x^*, i.e. the size of the adjustment is $\Delta x = x^* - x$. This occurs with probability $\Lambda(x)$ per unit of time. Then the distribution of the size of price changes has the following density $q(\Delta x)$:

$$q(\Delta x) \equiv \frac{\Lambda(x)f(x)}{N}.$$ \quad (5)

The left panel of Figure 7 shows that the calibrated model is able to capture some key features of the data in Figure 6: the fact that the distribution of price changes is bimodal,
Figure 7: Distribution of the size of price adjustments, $q(\Delta x)$, in two models

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, a kurtosis and standard deviation of price changes of 2.4 and 15% respectively.

with a dip at zero. The latter is a major difference compared to the prediction of the Calvo model where the constant hazard implies a mode at zero, i.e., that the most frequently observed price change has a tiny size. This prediction is counterfactual and it is a telltale of the fact that price setting behavior displays state dependence: price are adjusted only when necessary.

3.1 The propagation of an aggregate cost shock

In Figure 2 we reported that inflation and the frequency of price adjustments rose quickly after a large energy shock. In this subsection, we provide a thought experiment that rationalizes these facts. Namely, it takes an economy at steady state and hits it with a marginal cost shock as will be made precise below. We take calibrations of the price-setting model presented in Table 2 to study the propagation of large and small shocks. We will illustrate that, under a GHF model, large and small shocks have different implications for passthrough and the frequency of price adjustments.

Take an economy characterized by a steady state cross-sectional distribution of price gaps
Figure 8: Displacement of price gaps: Large vs Small Cost shock

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, a kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The GHF is plotted relative to the right vertical axis.

f and a policy rule Λ. The economy is then hit by an unexpected once-and-for-all shock to marginal cost that displaces the distribution of price gaps δ percentage points to the left as in Figure 8. Firms then would like to increase their prices to close their gaps. This incentive shapes the dynamic response of the price level and the frequency of price changes after the shock. We will describe the transition of these variables back to steady state for small and large shocks.

To understand the mechanism behind the propagation of the shock, notice that in Figure 8 the distribution after the shock places most firms’ prices in a region far from their desired prices (at a price gap of around -20%). In this region the probability of adjustment $\Lambda(x)$, plotted in dotted black, is higher. This means that a large shock triggers an increase in number of price adjustments whereas for a small shock this effect is much weaker.

Figure 9 plots the response of the frequency and the price level after the shock. From the left panel we can see that the frequency of price changes increases sharply after a large shock. This is due to many firms lying in a region far from their desired gap x^*, i.e. a region where the hazard, $\Lambda(x)$, is relatively high. This yields a persistent increase in the frequency of price
Figure 9: Size-dependent propagation of shocks

Frequency of price changes: $N(t)$

Passthrough from cost to CPI: $P(t)/\delta$

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively.

adjustments. Notice that this effect is not present in the constant hazard Calvo model.

From the right panel we see that, normalizing by the shock size, the propagation of a large shock features a much faster passthrough than the small shock counterpart. On the other hand, right after the shock, inflation (i.e. the slope of the curves) is higher and remains higher for some periods for the large shock, again normalizing by the shock size. These dynamics are evidently connected to those of the frequency of price adjustments and together show that a large shock changes incentives to adjust prices much more than small shocks even normalizing for the size of the shock.

The left panel of Figure 10 presents the passthrough of a 20% shock to marginal costs in an economy characterized by the Euro Area food and beverages sector data. Namely, for the state dependent model calibrated with the PriceStats data in Table 2. The figure further depicts, indicated in dotted red, a Calvo model with an identical frequency of price adjustments. Notably, the figure illustrates a swifter response to the large shock in comparison to the corresponding reaction implied by the Calvo model. The right panel of Figure 10 conveys similar information and presents the inflation forecast error associated with the Calvo
Figure 10: Passthrough and Inflation Forecast errors by the Calvo model

Passthrough $P(t)$ from a 20% shock

Inflation Forecast Error in the Calvo model

Note: The model displays the passthrough of a cost shock with $\delta = 20\%$. The state-dependent model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively. The time-dependent model is a Calvo model with $N = 2.4$.

Figure 11: The distribution of price changes after a large shock

France (Food and beverages, 2022)

Dynamics in the model

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively.
Figure 11 presents an additional validation of the model, showcasing the dynamics of the price change distribution in response to a large shock. The right panel illustrates the distribution of price changes following the shock, while the left panel displays the distribution of price changes for France in 2023. Notably, the model successfully reproduces the qualitative characteristics observed in the French data, namely an asymmetric distribution with a greater mass of positive price adjustments.

In summary, the state-dependent model suggested by the empirical evidence features dynamic responses to large cost shocks that resemble the data on inflation and the increase in the frequency of adjustments for the recent surge in inflation in Europe. Furthermore, as we have shown, the forecast of the frequency of price changes and the path of inflation can be markedly different depending on the model the analyst is using. For this episode, the implications of a purely time-dependent model are counterfactual.

4 Quantifying the welfare cost of inflation

In this section we analyze the welfare costs in NK models. We focus on two inefficiencies that arise in the new Keynesian framework due to the sticky-price friction. First, inefficiencies arise due to price gaps dispersion: sticky prices introduce a wedge between the marginal rate of substitution and the marginal rate of transformation for consumers and workers. These wedges give rise to an inefficient allocation of resources. We call this the welfare cost of “misallocation” and denote it by χ. Second, some resources are wasted by the firms to keep prices close to their optimal levels. This corresponds to a deadweight loss, something akin to the shoe-leather cost of inflation in textbook models of money demand. We call this the welfare cost of the “price-management” and denote it by ϕ. Since the welfare costs depend on the distribution of price gaps, which is unobservable, we derive a mapping between the welfare costs (χ and ϕ) and a set of observable moments from the distribution of the size of price changes and the frequency of price changes.
We develop two main exercises in this section. First we measure both welfare costs, \(\chi \) and \(\phi \), in a steady state. In particular, we measure these costs using data from the low inflation period that prevailed before 2022. Second, we analyze the dynamics of these welfare costs following a large shock to the firms’ marginal costs. In particular, we analyze the dynamics of the welfare costs that follow the large energy price increases recorded in 2022. The second exercise allows us to quantify the welfare costs that arise above and beyond the steady state costs.

We use three different data sets to inform our analysis. First a set of granular data for the food and beverages sector of several European countries taken from PriceStats (Cavallo, 2018). In spite of the fact that these data cover only a fraction of the CPI, the high quality of the measurement, based on daily observations, is important to identify key features of price-setting behavior. Second, we use some descriptive statistics for the Euro Area taken from the Price-setting Microdata Analysis (PRISMA) network (Gautier et al., 2022) that use data underlying the CPI in several Euro area countries. Thirdly, we use some descriptive statistics from Karadi et al. (2023) who use supermarket data for some Euro Area countries.

4.1 Measuring the welfare costs in NK models in a steady state.

The measurement of misallocation. As explained above, the first component of the welfare costs is due to wedges introduced by price gaps. Namely, it is related to price gap dispersion. These welfare costs also scale with the parameter of elasticity of demand. Intuitively, this is due to a larger resource-shifting reaction caused by a more sensitive demand i.e. more misallocation. It can be shown that the welfare cost of misallocation denoted by \(\chi \) is given by

\[
\chi(t) \equiv \frac{U - \bar{U}}{U_c \cdot C} \approx \frac{\eta}{2} \operatorname{Var}_t(x),
\]

(6)
where the index t emphasizes that this expression can be used in steady state as well as along a transition after a shock. The cost χ is expressed in terms of GDP percentage loss relative to the efficient GDP level. Notice that the expression above, up to first order, is the one used in traditional monetary policy analyses presented by Gali (2008) (pp. 63) and Woodford (2003) (pp. 396).12

The expression in equation (6) gives us a direct map from the distribution of price gaps to welfare losses due to misallocation. However, price gaps are unobservable, see equation (2), since they require observing firms productivity. To address this issue we use the model calibration informed by the data to infer f, the cross sectional distribution of price gaps.

We are not the first ones to attempt a measurement of the costs of misallocation. In related work, Nakamura et al. (2018) investigate the effect of inflation on misallocation. They argue that misallocation correlates with the size of price changes. They aim to shed light on the effects of inflation using the observations on the absolute size of price changes. Intuitively, an increase in the size of the price changes suggests an increase of misallocation. While such an approach provides information on the change of the welfare costs, it is silent about their level.

We emphasize the limited informativeness of measuring price level dispersion, even within a narrowly defined category, with regards to assessing misallocation. It is crucial to recognize that variations in prices can be attributed to differences in productivity, which do not necessarily indicate inefficiency.

The examination of two key statistics proves to be an appropriate approach in this context. Firstly, placing emphasis on the magnitude of price changes yields valuable insights into inefficiency wedges, given that such changes reveal the pre-adjustment price gap x (Nakamura et al., 2018). However, relying solely on this statistic may be insufficient, as various models can exhibit identical standard deviations of price changes while displaying distinct levels of misallocation.

12Recall that we analyze a steady state problem so second order effects (risk) are not present.
The kurtosis of price changes, which encodes the “selection” effect, is the second key statistic to measure misallocation. A large kurtosis is an indicator that there is a relatively large mass of late price-adjusters which implies larger misallocation (Alvarez et al., 2016). For example, fixing the standard deviation of price changes, the Calvo model, with a kurtosis of 6, does not feature “selection” of price changes since the adjusters are a random sample each period. In contrast, a canonical menu cost model has a kurtosis of 1.

More specifically we have shown that the variance of price gaps in a low inflation steady state satisfies

\[
\text{Var}(x) = \frac{\text{Var}(\Delta x) \cdot \text{Kurt}(\Delta x)}{6}
\]

In a related study, Blanco et al. (2022) have estimated the extent of misallocation and menu costs leveraging data underlying the CPI in the UK. Their estimations share a similar order of magnitude when compared to our favored calibration for the Euro Area, with a misallocation cost accounting for 2 percentage points of GDP and menu costs amounting to 2.4 percentage points of firms’ revenues for the UK.\(^{13}\)

The measurement of price-management activities. The second source of inefficiency is due to the forgone resources used to perform price-management activities by firms.

Zbaracki et al. (2004) present an interpretation based in empirical findings from managerial reports in the United States. The authors posit that pricing activities require managers to spend resources on processes such as information acquisition, decision-making, and communication costs. Additionally, they claim that the magnitude of these allocated resources increases in a convex manner with the absolute size of the price change. They estimate the costs of price-management to be around 1 percentage point of GDP.

We can see that the price-management technology of the model presented in Section 2 shares the qualitative features described in Zbaracki et al. (2004). Recall that firms face

\(^{13}\)Their model includes some features absent in ours e.g. strategic complementarity in pricing decisions.
a convex cost \((\kappa \ell)^\gamma\) corresponding to the effort \(\ell\) of managing prices. Since the optimal effort rate \(\ell^* = \Lambda(x)\) increases with the absolute size of the price change \(|x^* - x|\) then the price-management cost is convex in the absolute size of adjustment.

The expression giving the cost of price-management in the GHF model is

\[
\phi(t) \equiv \frac{1}{\eta} \cdot \mathbb{E}_t [(\kappa \Lambda(x))^\gamma].
\] (7)

This equation has the following interpretation: it counts the total effort cost (resources) used to affect the probability of price adjustment. Since these costs are expressed as a percentage of forgone firm’s profits, the expression is then divided by \(\eta\), the share of profits in GDP, to obtain a measure as a percentage of GDP.

Application to data. We next analyze the data through the lenses of the results just established. Table 3 reports the estimated steady state welfare costs, measured over the low inflation period before 2022, using the datasets described before.

For the sake of clarity, we used the granular European countries data on food and beverages to illustrate the application of our main findings. But the results can be applied to measure the welfare costs in a wide variety of sectors and countries for which there are micro-data available. The requirements for this measurement are the frequency, standard deviation and kurtosis of the distribution of the sizes of price changes and an estimate for the elasticity of demand. We attempt a preliminary extension of our exercise using the pricing statistics collected by the Price-setting Microdata Analysis (PRISMA) in Gautier et al. (2022) and supermarket data for four Euro area countries taken from Karadi et al. (2023). As described in Table 1 we take the statistic of frequency of price changes from Table 7 of Gautier et al. (2022) whereas the other observables were kindly provided by the authors upon request. The choice of 2.8 as a value for the kurtosis of price changes is discussed in Table 2. The model calibrated to the Euro Area using the PRISMA data (Gautier et al., 2022) suggests that the costs of misallocation are in the order of 2% of GDP (fifth column of the table). The model
<table>
<thead>
<tr>
<th>Observables</th>
<th>Estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro area CPI data (PRISMA data, period 2005-19, Gautier et al. 2022)</td>
<td></td>
</tr>
<tr>
<td>Frequency</td>
<td>STD (Δx)</td>
</tr>
<tr>
<td>1</td>
<td>0.10</td>
</tr>
</tbody>
</table>

Euro area supermarket data (IRi data, period 2013-17, Karadi et al. 2023)					
Frequency	STD (Δx)	Kurtosis (Δx)	\(\hat{Var}(x)\)	\(\hat{\chi}\)	\(\hat{\phi}\)
1.1	0.13	3.2	0.009	0.027	0.005

Euro area Food and Beverages data (PriceStats data, period 2019-21)						
Frequency	STD (Δx)	Kurtosis (Δx)	\(\hat{Var}(x)\)	\(\hat{\chi}\)	\(\hat{\phi}\)	
France	3.6	0.13	2.3	0.006	0.019	0.007
Germany	1.4	0.13	2.5	0.007	0.020	0.007
Greece	2.0	0.10	2.7	0.005	0.014	0.003
Ireland	1.6	0.32	1.6	0.027	0.080	0.042
Italy	2.1	0.23	2.1	0.019	0.057	0.021
Netherlands	2.8	0.11	2.3	0.004	0.013	0.005
Spain	2.9	0.16	2.5	0.010	0.031	0.009
EA Average	2.4	0.15	2.4	0.009	0.027	0.008

Other countries Food and Beverages data (PriceStats data, period 2019-21)						
Frequency	STD (Δx)	Kurtosis (Δx)	\(\hat{Var}(x)\)	\(\hat{\chi}\)	\(\hat{\phi}\)	
Poland	2.8	0.21	2.2	0.015	0.046	0.017
UK	0.7	0.29	1.9	0.027	0.080	0.033

Notes: Data sources for observables are discussed in Table 1. \((a)\): We use a value of kurtosis of 2.8 for the PRISMA data in an attempt to correct for heterogeneity, see the discussion in Table 2. The estimate for the welfare costs are obtained from the model calibrations in Table 2 and assume an price elasticity of demand equal to 6 which implies a markup equal to 20%. The calibration matches the frequency of price changes per year, the kurtosis and standard deviation of price changes.
also allows us to gauge the welfare costs due to the price-management, which turn out to be smaller, in the order of 60 basis points of GDP (last column of the table). This magnitude is close to the direct estimates of 1% in the literature (Zbaracki et al., 2004).

The findings derived from the analysis presented in Table 3 are contingent upon accurate estimation of three key values: the price elasticity of demand, the standard deviation of price changes, and the kurtosis of price changes. Based on our observations, the estimated values for kurtosis generally lie within the range of 2 to 3.5, while standard deviation values typically range from 10% to 20%. Consequently, while it is prudent to approach point estimates with caution, we can reasonably assert that the estimated magnitudes fall within a range of 1 to 10 percentage points of GDP depending on the particular price-setting behavior in the economy.

Next we will briefly discuss the effects of steady state inflation and its associated welfare costs. We argue that this is not the suitable approach to study the welfare implications for the recent inflation surge. As a result, we then turn into the study of a large cost shock which we interpret as the recent energy shock experience in Europe during 2022.

Steady state inflation. One viable approach to analyze the costs associated with inflation incorporates large inflation levels within the model’s steady state. Nonetheless, this approach yields limited implications for the costs studied. This limitation arises due to the fact that, when inflation is at a low level, the costs of misallocation, in equation (6), are closely related to the size of price changes, which aligns with the firms’ desire to minimize such gaps. Stated differently, the firms’ optimal response to a high steady state inflationary environment serves to mitigate the costs of misallocation.

In particular, Alvarez and Lippi (2022) show that all even moments of the distribution of price changes feature a low sensitivity to steady state inflation. Figure 12 illustrates that both the cost of misallocation and of price-management activities increase by 50 basis points of GDP as steady-state inflation goes from 0% to 20%. As a matter of fact, the Calvo model allows us to obtain a closed-form solution of the price gap dispersion that arises under steady
state inflation. The cost χ in the Calvo model is proportional to $\text{Var}(x)$ following equation (6) where the latter is given by

$$(\text{Var } x)(\mu) = \left(\frac{\mu}{N}\right)^2 + \frac{\sigma^2}{N}.$$

We observe that the variance of price gaps is flat at $\mu = 0$ meaning that for small changes in steady state inflation the costs of misallocation remain essentially unchanged. The observations above need not be true for high inflation environments in steady state, as in e.g. Argentina or Turkey.\(^{14}\)

Figure 12: Steady-state inflation vs welfare cost (in % of GDP)

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 2.4$ price changes a year, the kurtosis and standard deviation of price changes of 2.4 and 15% respectively.

4.2 The welfare cost of a large cost shock

This section analyzes the welfare costs using a calibrated economy’s reaction to a large cost shock. We argue that a large portion of the recent inflation surge can be attributed to

\(^{14}\)Recent results by Baley and Blanco (2021) allow us to still obtain an inverse mapping between observables and the variance of price gaps under high inflation.
the large shock in energy prices that hit Europe in 2022. Additionally, we posit that this particular shock has not substantively affected expectations regarding the steady state level of inflation, which we maintain to be approximately 2% across our exercises.

As documented above, a large shock triggers a sizeable increase of the price setting activity. A proper assessment of the welfare costs must account for the fact that since firms are more active (more price changes are observed) both the degree of misallocation χ and the resources used for price setting activity ϕ are likely to change. The cumulative welfare cost of misallocation and of price-management activities are given by

$$CIR[\chi(t)] = \int_0^t (\chi(s) - \chi) ds, \quad CIR[\phi(t)] = \int_0^t (\phi(s) - \phi) ds,$$

where $\chi(t)$ and $\phi(t)$, are defined in equation (6) and equation (7), respectively, and their steady state values χ and ϕ are computed using the steady state cross-sectional distribution of price gaps f. The cumulative response $CIR[\chi(t)]$, in equation (8), measures the welfare costs of misallocation in excess of the steady state cost. Likewise, the cumulative response $CIR[\phi(t)]$ gives the total excess welfare cost of price-management after time t has elapsed from the large shock.

The left panel Figure 13 plots the cost of misallocation for the three shock sizes studied using the calibration to the Euro Area with data from the PRISMA network (Gautier et al., 2022). The cumulative costs of misallocation after a 20% shock are around 1.5 percentage points of GDP, reported on Table 4. At the instant of the shock the variance of price gaps is the same as in steady-state. However, the mass of firms that were displaced very far from their desired price are very likely to adjust to x^* right after the shock and this increases the variance of price gaps. More precisely, we can see in Figure 8 that x^* is far from the mean price gap so the distribution displays more variance than at steady state.

The right panel of Figure 13 plots the cost of price-management for three shock sizes. The dynamics of this variable have no counterpart in our data but we can use the model
to infer about these aggregate losses. Table 4 shows that the cumulative costs of price-management after a 20% shock are around 1.4 percentage points of GDP. As mentioned before, the magnitude of the shock renders different levels and dynamics for the responses. For a large shock, the price-management costs are larger. First, this is because on average firms’ price gaps x are further away from x^* which renders a high incentive to engage in costly price-management efforts. Second, the cost of price-management increases in a convex manner with the absolute size of the price change.

Figure 13: Impulse response to the energy shock (Euro Area)

Table 4: Estimates of misallocation for the Euro Area for a 20% cost shock

<table>
<thead>
<tr>
<th>Model calibration $\delta = 20%$</th>
<th>$CIR[\tilde{\chi}]$</th>
<th>$CIR[\tilde{\phi}]$</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPI data (PRISMA data, Gautier et al. 2022)</td>
<td>0.015</td>
<td>0.012</td>
</tr>
<tr>
<td>Supermarket data (Karadi et al. 2023)</td>
<td>0.019</td>
<td>0.011</td>
</tr>
<tr>
<td>Food and Beverages data</td>
<td>0.004</td>
<td>0.005</td>
</tr>
</tbody>
</table>

Notes: The estimates for the cumulative welfare costs are obtained from model calibrations described in Table 2.

Table 4 reports estimates of the welfare costs of an inflationary 20% shock using the
As described in Figure 13, the estimated welfare costs for our preferred Euro Area calibration are 2.9 percentage points of GDP. Moreover, the estimated costs implied by the supermarket data by Karadi et al. (2023) are 3.2 percentage points of GDP whereas the costs implied by the Food and beverages sector is an additional 1 percentage point of GDP. The stark difference between these welfare costs is attributed mainly to differences on the frequency and the kurtosis of price changes. Namely, the food and beverages data has a higher degree of price flexibility showcased by more frequent adjustments and a relatively lower mass of late adjusters.

Although unreported, we measured a lower standard deviation of price changes for the period of 2022-2023. One might be tempted to think that this standard deviation of price changes translates into lower misallocation but this intuition is not accurate. In fact, a lower standard deviation of price changes after a shock can be consistent with the model. In the left panel of Figure 14 we can see that the standard deviation of price changes is below the steady state but the cost of misallocation are higher as depicted in Figure 13. In the right panel of Figure 14 we also show the evolution of the mean absolute size of price changes after a shock. This statistic has been used to gauge changes in the costs of misallocation (Nakamura et al., 2018) and we can see that it is a good proxy for this model. However, as noted before, this measure is silent about the level of the associated welfare costs.

Economies with different frequency of price changes. We presented a welfare analysis for a model calibrated to a frequency of 1 price change per year for the Euro Area. However, it is important to understand how these welfare costs vary across economies with different degrees of price flexibility as measured by their frequency N. It can be proved that the cumulative welfare costs from two economies with the same distribution of price changes are inversely proportional to their frequency of price changes.

For example, although not perfect, in Table 4 we can see that the cumulative welfare costs of the inflation episode for the food and beverages sector is roughly a third of the welfare costs for the aggregate PRISMA data, correspondingly the frequency of adjustments in the
Figure 14: Price-setting statistics

Note: The model uses the calibration for the food and beverages sector of euro area countries in Table 2. The calibration matches a frequency of $N = 1$ price change a year, the kurtosis and standard deviation of price changes of 2.8 and 10% respectively.

food and beverages sector is 2.4 times larger.

5 Concluding remarks

The New Keynesian paradigm, which greatly influences modern monetary economics, assumes that firms’ prices are somewhat rigid and unresponsive to fundamental shocks, at least temporarily. We concentrate on two inefficiencies that emerge from this framework. First, the assumption of sticky prices implies distorted prices, impeding efficient resource allocation—this is known as the welfare cost of misallocation. Second, firms waste resources to maintain prices near optimal levels, resulting in a deadweight loss—we term this as the welfare cost of price management.

We propose a methodology to calculate both welfare costs for the period preceding 2022, and during the subsequent high inflation period triggered by substantial energy shocks in Europe. This task is involved because the welfare costs are not directly observable, as often the case in welfare economics. To measure these costs, we apply a tractable sticky-price model, mapping it to detailed data from PriceStats and the ECB’s PRISMA project.
Our findings reveal significant welfare costs for the Euro Area. In the low-inflation environment that prevailed before 2022 the efficiency cost amounts to roughly 2% of GDP. About 3/4 of these steady-state costs result from misallocation, while the remaining 1/4 is attributed to the costly price management activity. Moreover, we estimate how the recent inflationary shock has affected these welfare costs. We found that the energy shocks led to an above-average surge in costly repricing activity, cumulatively adding to a cost of around 1.5% of GDP. A comparable increase of the welfare cost was caused by a temporary increase of the economy’s misallocation. The total cumulated welfare costs of the energy shock thus range at about 3% of GDP.

We see our contribution as providing a first step in quantifying the welfare costs of misallocation in NK models. Future studies should examine the robustness of these estimates and tackle the data and modeling issues that we have discussed in the paper.
References

