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Abstract

Many existing approaches for generating pre-
dictions in settings with distribution shift
model distribution shifts as adversarial or low-
rank in suitable representations. In various
real-world settings, however, we might expect
shifts to arise through the superposition of
many small and random changes in the popu-
lation and environment. Thus, we consider a
class of random distribution shift models that
capture arbitrary changes in the underlying
covariate space, and dense, random shocks to
the relationship between the covariates and
the outcomes. In this setting, we character-
ize the benefits and drawbacks of several al-
ternative prediction strategies: the standard
approach that directly predicts the long-term
outcomes of interest, the proxy approach that
directly predicts shorter-term proxy outcomes,
and a hybrid approach that utilizes both the
long-term policy outcome and (shorter-term)
proxy outcome(s). We show that the hybrid
approach is robust to the strength of the distri-
bution shift and the proxy relationship. We
apply this method to datasets in two high-
impact domains: asylum-seeker placement
and early childhood education. In both set-
tings, we find that the proposed approach
results in substantially lower mean-squared
error than current approaches.

1 INTRODUCTION

Distribution shift—changes in the underlying data dis-
tribution over time or across locations—is a persistent
obstacle to generating high-quality, long-term predic-
tions in various real-world settings. For example, con-
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sider the burgeoning research on the algorithmic as-
signment of refugees and asylum seekers to geographic
locations within host countries. This approach, intro-
duced by Bansak et al. (2018), uses machine learning
models trained on historical data to generate counter-
factual outcome predictions for every refugee–location
combination upon arrival. Then, these predictions are
used to assign the refugee or asylum-seeker family to
a particular location. This approach has been imple-
mented or under consideration for implementation in
several countries, including Switzerland, the United
States (US), and the Netherlands.

However, the efficacy of this approach largely depends
on the accuracy of the underlying outcome predictions.
One persistent challenge in generating these predictions
is the inherent nonstationarity across time and loca-
tions, which leads to a drop in performance between
the training and the deployment environment. This
problem is further compounded by the fact that policy
outcomes of interest are often long term. In the case
of refugee and asylum-seeker placement, longer-term
outcomes better capture the experience and welfare
of refugees than short-term outcomes that may reflect
transient dynamics. This problem is not unique to
the refugee and asylum-seeker resettlement domain;
rather, decision-making in many high-impact settings
requires making long-term predictions in changing en-
vironments.

As a result, there has been a surge of interest in robust
and generalizable machine learning. The approaches
can be grouped into adversarial (Huber, 1964; Ben-Tal
et al., 2009; Maronna et al., 2019; Biggio and Roli,
2018; Duchi and Namkoong, 2021) and representation-
based approaches (Pan and Yang, 2009; Ganin and
Lempitsky, 2015; Rojas-Carulla et al., 2018). The ad-
versarial approach focuses on worst-case perturbations
that either appear in the training environment (Hu-
ber, 1964), or the deployment environment (Szegedy
et al., 2014; Duchi and Namkoong, 2021). The goal
of representation-based approaches is to decompose
the data into spurious and invariant components, and
then to develop a prediction method that leverages the
invariances in the data.
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Both approaches have shown some success, but do not
consistently beat empirical risk minimization (Gulra-
jani and Lopez-Paz, 2020; Koh et al., 2021). There
might be several contributing factors. Adversarial-
based approaches can be conservative for real-world
settings, due to fundamental tradeoffs between robust-
ness and accuracy (Mehrabi et al., 2021). Further-
more, it can be challenging to tune models under
distributional shifts (Gulrajani and Lopez-Paz, 2020).
Representation-based approaches rely on an assump-
tion that parts of the distribution stay invariant (Pan
and Yang, 2009; Ganin and Lempitsky, 2015; Rojas-
Carulla et al., 2018). This might be unrealistic for
distributional changes that arise through the superpo-
sition of thousands (or millions) of small changes in
circumstances.

In contrast to these settings, we are interested in gener-
ating predictions amidst complex social and economic
phenomena where there are no adversarial agents, but
rather dense and inherently unpredictable shifts driven
by a confluence of broader social, economic, and nat-
ural forces. As put by Thorsten Drautzberg, a senior
economist at the Federal Reserve of Philadelpha, main-
stream economics sees business cycles as driven by the
‘random summation of random causes’ (Drautzburg,
2019).

As a result, we consider a class of distribution shifts
that capture changes that may arise through the super-
position of many random changes. Models for random
distributions are popular in Bayesian nonparametrics
(Ghosal and Van der Vaart, 2017), but only recently
have been used to model distribution shift in frequen-
tist estimation problems (Jeong and Rothenhäusler,
2022; Rothenhäusler and Bühlmann, 2023). In this
work, we consider the problem of making robust predic-
tions under random distribution shifts in a frequentist
setting.

This paper formalizes and characterizes the benefits and
drawbacks of several alternative prediction strategies in
settings with random distribution shift: the standard
approach that directly predicts the long-term outcomes
of interest, the proxy approach that directly predicts
shorter-term proxy outcomes, and a hybrid approach
that utilizes both the long-term policy outcome and
(shorter-term) proxy outcome(s). Thus, we address the
following question: Given the goal of maximizing a
specific policy outcome, how should we leverage proxy
outcomes and policy outcomes in a randomly changing
environment?

1.1 Contributions

This study makes the following contributions:

Methodological. We contribute to the research

agenda on prediction under distribution shifts (see
related work below) by providing the first compari-
son of models under random distribution shifts in a
nonparametric setting. Theorem 1 provides an exact
characterization of the weaknesses of each of the three
approaches. The standard approach is ineffective when
distribution shift is large, and the proxy approach fal-
ters if the proxy relationship is not strong enough. The
hybrid approach, on the other hand, is robust to both
of these failure points.

Empirical. We establish that the robustness of the
hybrid approach is not simply a theoretical novelty but
a matter of real-world, practical significance by present-
ing empirical evidence from two high-impact domains:
geographic assignment of asylum seekers in the Nether-
lands and an early childhood education intervention
in the US. In both cases, the proposed approach re-
sults in substantially better predictions of the relevant
long-term policy outcome than the standard or proxy
approach.

2 RELATED WORK

Adversarial and robust machine learning. There
is a rich literature that models perturbations as adver-
sarial (Huber, 1964; Ben-Tal et al., 2009; Maronna et al.,
2019; Biggio and Roli, 2018; Duchi and Namkoong,
2021). The adversarial approach focuses on worst-case
perturbations that either appear in the training (Huber,
1964) or the deployment environment (Szegedy et al.,
2014). This perturbation can either act at the level of
distribution or the level of an individual observation.
Adversarial inputs are somewhat pessimistic for our
problem setup, where the changes occur due to natural
shifts over time (as discussed above).

Invariance-based approaches. Another line of work
considers distribution shifts that lie on subspaces and
relies on the assumption that certain conditional proba-
bilities or representations stay invariant across settings.
In other words, these works study representations and
procedures that use invariances to transfer across set-
tings (e.g., Ganin and Lempitsky, 2015; Rojas-Carulla
et al., 2018; Arjovsky et al., 2019; Rothenhäusler et al.,
2021). For an overview, see Chen and Bühlmann (2021).
These methods have shown some success, but do not
consistently outperform empirical risk minimization
(Gulrajani and Lopez-Paz, 2020; Koh et al., 2021).
One major difference, as described above, is that in
our setting we expect changes to arise through a super-
position of many random environmental and economic
changes, which violates the invariance assumption.

Surrogate outcomes. When policy outcomes are
long-term, surrogate outcomes are a common tool to
guide policy decisions on a faster time scale (Prentice,
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1989). In the traditional setting, the policy maker has
access to historical data containing the long-term out-
come but not the treatment decision, and experimental
data containing the treatment decision but not the
long-term outcome (Yang et al., 2023; Athey et al.,
2019). Thus, the problem can be viewed as a missing
data issue. By contrast, in this paper the historical
data contains both treatment decisions and the long-
term outcome of interest, and the motivation for using
a shorter-term outcome is distribution shift.

Pre-training and self-training. The proposed pro-
cedure is also loosely related to pre-training and self-
training, which are methods that allow combining mul-
tiple data sets during the training phase.

Self-training (Scudder, 1965; Chapelle et al., 2006) al-
lows one to combine labeled data with unlabeled data.
In its most basic form, one starts by learning a predic-
tion mechanism only for the labeled data. Then, based
on imputations on the unlabeled data, the prediction
mechanism is re-trained on its own predictions for the
unlabeled data and the original labeled data. In the
past few years, there has been an increasing interest
in studying the theoretical properties of self-training
(Carmon et al., 2019; Chen et al., 2020; Raghunathan
et al., 2020; Kumar et al., 2020).

We study a particular form of self-training under tem-
poral shifts. In particular, during the re-training stage,
we discard the part of the data that has been subject to
distribution shift. We add to the existing literature by
showing that this variant of self-training has attractive
adaptivity properties under random distribution shifts.

Pre-training refers to learning a feature representation
by regressing auxiliary data on the covariates on a
large data set and then using this as a feature vector
on the smaller (target) data set, either by updating
the feature vector or by regressing the final outcome
on the feature representation (Caruana, 1997; Weiss
et al., 2016; Hendrycks et al., 2019).

This has some similarities with the two-step procedure
we propose, τC . One difference is that in pre-training
one often assumes that the final prediction model is
within a neighborhood of the pre-trained prediction
model, with a low-dimensional update to the parameter.
In our model, the prediction model may change in a
random and dense fashion, driven by a confluence of
social, economic, and natural forces.

3 SETUP

3.1 Preliminaries

Consider a finite time horizon with three distinct pe-
riods: period 0 (the present), period −1 (one period

prior), and period −2 (two periods prior). In each
period, a large1 sample of i.i.d. units (e.g., asylum
seekers) arrive with some vector of background charac-
teristics, X = x, and their outcomes are observed for
at least two subsequent periods. Let Y2—the outcome
observed after two periods—be the policy outcome
of interest, and let Y1 be a related but shorter-term
outcome measured one period after arrival.2

For units who arrive in any period t and the variables
defined above, we posit the existence of a tuple gener-
ated according to a probability distribution Pt:

(Y1, Y2, X)t ∼ Pt.

This paper is focused on predicting Y2 for units who
arrive in the present period, that is τ(x) := E0[Y2|X =
x].

The problem is that we do not observe Y2 (nor do we
observe Y1) for the cohort that arrives in period 0 at
the time of prediction. Thus, we do not have data
to directly fit the target E0[Y2|X = x]. Instead, we
observe the data (Y2, Y1, X)−2 ∼ P−2, (Y1, X)−1 ∼
P−1, and (X)0 ∼ P0.

3.2 Alternative Approaches

In the presence of distribution shift, there are (at least)
three strategies one could pursue:

1. τA(x) = E−2[Y2|X = x]

2. τB(x) = E−1[Y1|X = x]

3. τC(x) = E−1[E−2[Y2|Y1, X]|X = x]

The first approach estimates the policy outcome using
the data from period −2.3 In many settings such
as asylum-seeker and refugee placement, this is the
default approach in the literature. Unfortunately, its
performance may suffer under distribution shift.

The second approach estimates the shorter-term out-
come, Y1, using data from period −1. Relative to
τA(x), the advantage of this strategy is that it employs
more recent data, and hence is less susceptible to the
effects of distribution shift. However, the performance
of this approach hinges on the strength of the proxy
outcome.

The third approach again estimates Y2, but uses the
data from both periods −2 and −1. The general

1For most of the paper, we make an infinite-data assump-
tion. In Section 4.3 we discuss finite-sample considerations.

2Appendix B discusses how to extend the proposed meth-
ods to more than two time periods and outcomes, or multi-
dimensional outcomes.

3In practice, data from earlier periods could also be used.
This is also true for the second and third approaches.
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idea behind the third strategy is that we want to de-
vise the best available approximation of the density
P0(y2, y1, x) = P0(y2|y1, x)P0(y1, x). We cannot know
P0(y2|y1, x), so we use the best guess P−2(y2|y1, x).
And we cannot know P0(y1, x) so we use the best guess
P−1(y1, x), since P−1 is likely closer to P0 than is P−2.
Putting things together,

τ(x) = E0[Y2|X = x] = E0[E0[Y2|X,Y1]|X = x]

≈ E−1[E−2[Y2|X,Y1]|X = x] = τC(x).

In words, this strategy first regresses Y2 on X and Y1

using the period −2 data, and then regresses that fitted
model on X using the period −1 data.

3.3 Robust Predictions Under Distribution
Shift

Before diving into the theoretical model, let us infor-
mally discuss a robustness property of τC . Namely,
that τC can be seen as an interpolation estimator that
behaves similarly to τA and τB in extreme cases.

First, note that intuitively τB is problematic if Y1 is
not predictive of Y2. In this case, τC(x) ≈ τA(x).
Example 1 (Proxy violated). Let us consider the case
where Y1 is not predictive of Y2, that is E−2[Y2|Y1, X] ≈
E−2[Y2|X]. Using the tower property,

τC(x) = E−1[E−2[Y2|Y1, X]|X = x]

≈ E−1[E−2[Y2|X]|X = x]

= E−2[Y2|X = x]

= τA(x).

Now let us turn to a different extreme case. If Y1 ≈ Y2,
then one might prefer τB over τA, since it uses more
recent data. In this case, τC(x) ≈ τB(x).
Example 2 (Y1 ≈ Y2). If Y1 ≈ Y2, then
E−2[Y2|Y1, X] ≈ Y1. Thus,

τB(x) = E−1[Y1|X = x]

≈ E−1[E−2[Y2|Y1, X]|X = x]

= τC(x).

We see this interpolation property as an advantage
of τC . However, these extreme cases are not very
realistic in practice. Thus, in the following, we will
study settings in between these extreme cases.

4 PREDICTIONS UNDER
DISTRIBUTION SHIFT

As motivated above, we will model distributional
changes as random. To avoid measurability issues and

simplify the discussion, we will focus on discrete distri-
butions, that is, the random variable takes value in a
finite alphabet (X,Y1, Y2) ∈ X×Y1×Y2. Note that this
focus does not impose a serious practical constraint, as
any continuous variables of interest can be arbitrarily
coarsened to meet this requirement. We consider the
distribution P−2(y1, y2|x) as fixed, and assume that
P−1(y1, y2|x) differs randomly from P−2(y1, y2|x) and
that P0(y1, y2|x) differs randomly from P−1(y1, y2|x).
To be more specific, for t ∈ {−2,−1} we write

St(y1, y2|x) = Pt+1(y1, y2|x)− Pt(y1, y2|x),

where we call St(y1, y2|x) a distributional shift vari-
able. That is, between time 0 and −1 and between
time −1 and −2 the event probabilities get shifted
by a random amount that can depend on y1, y2,
and x. There are two constraints on the shift vari-
ables to make P−1 and P−2 well-defined probabil-
ity measures. First, the shift variables must satisfy
0 ≤ Pt(y1, y2|x) + St(y1, y2|x) ≤ 1. Furthermore, since∑

y1,y2
P0(y1, y2|x) = 1 =

∑
y1,y2

P−1(y1, y2|x) the
shift variable St has to satisfy

∑
y1,y2

St(y1, y2|x) = 0.

We allow the distribution to shift arbitrarily in X;
however, to avoid issues of identifiability, we require
the support of X to be time invariant. Note that we
also allow the shifts to be correlated across different x,
that is we allow

Cov(St(y1, y2|x), St(y1, y2|x′)) ̸= 0

for x ̸= x′. This allows for shifts that affect many units
in a similar way (for example, an economic boom). We
will assume that the perturbation process has (condi-
tional) mean zero.
Assumption 1 (Centered shifts). E[S−2] = 0 and
E[S−1|S−2] = 0.

Intuitively, this means that the perturbation has no
momentum: the perturbation that shifts P−2 to P−1

is uncorrelated with the perturbation that shifts P−1

to P0. This does not rule out memory/momentum
driven by systematic factors (e.g. systematic or secular
changes in the labor market) that can be captured by
time and other covariates contained in X.

To be able to give an interpretable decomposition of
the mean-squared error for different procedures, we put
an additional working assumption on the distribution
shift (which will be relaxed later). In Bayesian statis-
tics, distributions are often modelled as random, with
the Dirichlet process the “default prior on spaces of
probability measures” (Ghosal and Van der Vaart, 2017,
Chapter 4). Motivated by this, we use a frequentist
variant to describe how distributions shift across time.
This assumption is mostly for interpretability and will
be relaxed in Section 4.2.
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Assumption 2 (Symmetry). For some potentially
unknown κt with 0 < κt < 1, for all events • ⊆ Y1×Y2,

Var(S−2(•|x)) = κ−2P−2(•|x)(1− P−2(•|x)),
Var(S−1(•|x)|S−2) = κ−1P−1(•|x)(1− P−1(•|x)).

In Assumption 2, the event • and the variable x are
considered fixed, and the variance is over the random-
ness in the shift S−2 (top equation) or S−1 (bottom
equation). We will not discuss how to construct such
distribution shifts, but refer the reader to Ghosal and
Van der Vaart (2017) and Jeong and Rothenhäusler
(2022).

Intuitively, this perturbation process captures “well-
behaved” or “symmetric” distribution shift (Jeong and
Rothenhäusler, 2022), where the perturbation of an
event depends on its initial probability: events that
have a small probability are only perturbed by a small
amount. One can think about the unknown scaling
factor κt ∈ (0, 1) as a measure of the strength of distri-
bution shift between Pt+1 and Pt.

We now present a theorem that compares the pre-
dictive performance of the three approaches under
distribution shift, in the infinite-data case. Finite-
sample considerations are discussed in Section 4.3. The
proof can be found in Appendix D. For clarity, we
will assume that Y1 and Y2 are on the same scale.
That is, a potentially non-linear transformation has
been applied to Y1 in a pre-processing step such that
E−2[(E−2[Y1|X] − E−2[Y2|X])2] is as low as possible.
Strictly speaking, the mathematical results below do
not require this scaling, but the interpretation is clearer
with scaling. When Y1 is rescaled, for clarity we will
rename τB as τ̃B and Y1 as Ỹ1.
Theorem 1 (Comparison under symmetric shifts).
Under Assumption 1 and Assumption 2,

MSE(τC) =κ−2E−2[(Y2 − E−2[Y2|Y1, X])2]︸ ︷︷ ︸
shift between −2 and −1

+K1 +O(κ−1κ−2)

MSE(τA) =κ−2E−2[(Y2 − E−2[Y2|X])2]︸ ︷︷ ︸
shift between −2 and −1

+K1 +O(κ−1κ−2)

MSE(τ̃B) = E−2[(E−2[Y2 − Ỹ1|X])2]︸ ︷︷ ︸
error due to using proxy outcome

+ κ−2E−2[(Y2 − Ỹ1 − E−2[Y2 − Ỹ1|X])2]︸ ︷︷ ︸
inflation of proxy error under shift

+K1 +O(κ−1κ−2)

where K1 := κ−1E−2[(Y2 − E−2[Y2|X])2] is the shift
between −1 and 0 that impacts all methods equally.
Here, MSE(τ•) = E[(τ•(X)− τ(X))2], where the outer

expectation is both over the randomness in distribution
shift and the randomness in X.

Let us discuss how to interpret the results for the case
of τC . First, since κt ∈ (0, 1), κ−1κ−2 is usually of
lower magnitude than the other error terms. At a high
level, one can think about the error as

MSE(τC) =
∑
shifts

strength of shift · sensitivity

One part of the error depends on the shift between −2
and −1, and one part depends on the shift between −1
and 0. The strength of the shift enters the equation
via κ−1 and κ−2, and is multiplied by the sensitivity of
the τC(x) with respect to that particular distributional
change. The sensitivity of τC(x) depends on the noise
level E−2[(Y2 − E−2[Y2|Y1, X])2]. This makes sense
intuitively: if the noise is high that means there are
important unobserved variables besides X that deter-
mine the value of Y2. Since those unobserved variables
can shift in distribution over time, generalization may
suffer. The estimator τA has a similar decomposition
and interpretation as τC .

Now let us turn to the interpretation of the error of
τ̃B. There are three terms. The first term captures
whether Ỹ1 is a reasonable proxy for Y2 in the absence of
distribution shift. Even if Ỹ1 is a good proxy under P−2,
due to distribution shift this might change between P−2

and P−1. This is captured in the second term. The
second term may be zero, for example in the case where
Ỹ1

a.s.
= Y2. Finally, the last term corresponds to the

shift between P−1 and P0, which is the same for τC ,
τA, and τ̃B. It can be thought of as an irreducible
error since all procedures are equally affected by the
shift between P−1 and P0.

4.1 Comparison of the Three Approaches

In the following, we build further intuition for the
strengths and weaknesses of the approaches.

τA versus τC . On a high level, τA is more affected
by shifts between −2 and −1 than τC . In the theorem
this is reflected by the fact that κ−2 is multiplied by
sensitivity factor E−2[(Y2 − E−2[Y2|Y1, X])2], which is
always smaller, and can be much smaller, than τA’s
sensitivity factor E−2[(Y2 − E−2[Y2|X])2]. Using the
theorem,

MSE(τC) ≪ MSE(τA) +O(κ−1κ−2).

By this argument, τC is generally preferable over τA

(and is always preferable under the assumptions made
above). That being said, there may be real-world situa-
tions where one would prefer τA over τC . For example,
if P−1 is the time period of a pandemic, then the op-
timal prediction mechanism might change drastically



Learning Under Random Distributional Shifts

for this particular year (P−1), and then switch back to
the original mechanism, leading to P−2 ≈ P0. In this
case, the (random) distribution shifts S−1 and S−2 are
negatively correlated.

τ̃B versus τC . The comparison between τ̃B and τC is
slightly more technical. Both have the same dependence
on κ−1, the shift between P0 and P−1. However, they
have a different sensitivity with respect to the shift
between P−2 and P−1. This sensitivity is lower for τC :

E−2[(Y2 − E−2[Y2|Y1, X])2]

= min
g(Y1,X)

E−2[(Y2 − g(Y1, X))2]

≤ E−2[(Y2 − Ỹ1 − E−2[Y2 − Ỹ1|X])2].

Thus, τC also outperforms τ̃B (up to lower-order
terms), and the gap will generally grow as the cor-
relation of Y2 and Ỹ1 decreases.

4.2 Asymmetric Shifts

Theorem 1 provides interpretable error terms that show
how different procedures behave under various type
of shifts, in particular that τC is non-inferior to the
other approaches under Assumptions 1 (centered shifts)
and 2 (symmetric shifts). The conclusion that τC is
non-inferior to the other approaches also holds under
asymmetric shifts (i.e., when Assumption 2 is violated)
if we assume that the distribution of y2 given y1 and x
stays invariant.4

Theorem 2 (Comparison under asymmetric
shifts). Under Assumption 1, and assuming that
P−2(y2|y1, x) = P−1(y2|y1, x) = P0(y2|y1, x),

MSE(τC) ≤ min(MSE(τ̃B),MSE(τA)).

The main intuition for this phenomenon is that the
third strategy corresponds to a “best guess” under ran-
dom centered shifts, as explained in Section 3.1. The
proof of Theorem 2 is in Appendix D.

4.3 Finite-Sample Considerations

These results provide intuition for the relative strengths
and weaknesses of each approach, which are further
demonstrated using real-world data in the following

4For intuition regarding the invariance assumption, con-
sider an economic disruption that makes finding a new job
difficult and therefore many people keep their current job.
In this case (assuming that our outcomes correspond to
whether someone has found a job after a certain time pe-
riod) the distribution of Y1|X (employment after 1 time
period given covariates) is expected to change drastically
while Y2|Y1, X (employment after 2 time periods given em-
ployment after 1 time period and covariates) is expected to
change much less.

section. Recall that these theoretical results apply to
an infinite data setting. In finite data settings where
the distribution shift is of larger order than sampling
uncertainty, we expect the intuition on the strengths
and weaknesses of each estimator to remain consis-
tent. However, if the distribution shift is very small
there are cases where τA or τ̃B may outperform τC

asymptotically. See Appendix C for more details.

5 EMPIRICAL ASSESSMENTS

5.1 Early Childhood Education

In this application, we use data from the Student
Teacher Achievement Ratio project (Project STAR)
in Tennessee (Achilles et al., 2008). The dataset con-
tains test scores, demographics, and other information
on a large cohort of elementary school students who
were tracked by the Tennessee State Department of
Education as part of a study focused on evaluating the
effect of class size on early student performance (Finn
and Achilles, 1990).

Our primary outcome, Y2, is students’ second-grade
scores on the Stanford Achievement Test (SAT), a stan-
dardized test with components in math, reading, and
listening. We evaluate various proxy outcomes, Y1,
including first-grade SAT scores, first-grade and kinder-
garten scores on the math component, and kindergarten
attendance records. Collectively, these proxies range
in correlation with the outcome of interest from 0.18
to 0.81.

The covariates X include the students’ demographic
information and their class size/type, which students
were randomized into as part of the study. Our final
dataset contains the 3, 033 students for whom all our
variables are measured. More information on the data
and variables can be found in Appendix A.1.

A relevant policy goal one might have is to predict
which students’ longer-term outcomes would be most
benefited by being placed in smaller class sizes start-
ing in kindergarten. Students currently enrolling in
kindergarten, however, may have a distribution shift
compared to the previous cohorts whose outcomes we
can observe.

To test our proposed method, we randomly split the
data into three datasets, corresponding to data from
period 0, −1, and −2. To induce distribution shift in
the relationship between X and (Y1, Y2) we randomly
permute the covariate vectors for a certain percentage
of the period −1 dataset. For the period −2 dataset,
we perform this random permutation twice to induce
a stronger shift. We then implement our proposed
methods on the resulting data, using random forests
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  KG Attendance Proxy  
cor(Y1,Y2) = 0.18

 KG Math Test Proxy 
cor(Y1,Y2) = 0.53

G1 Math Test Proxy
cor(Y1,Y2) = 0.72

G1 SAT Test Proxy
cor(Y1,Y2) = 0.81
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Figure 1: MSE of the alternative strategies τA, τ̃B, and τC in predicting second-grade SAT test scores, with
varying degrees of distribution shift and proxy strength (measured by its correlation with Y2). In the panels, KG
corresponds to “Kindergarten” and G1 corresponds to “first grade”. See Appendix A.1 for more details, including
a version of this figure displaying confidence intervals.

to estimate our models, and averaging the results over
1000 random data splits.5

Figure 1 shows the results, with each panel using a
different proxy variable (for τ̃B and τC). The y-axis
corresponds to the MSE as defined in Theorem 1, and
the x-axis corresponds to the degree of distribution
shift, from 0 (no permutation) to 1 (100% permuta-
tion). MSE curves are shown for each of the methods,
along with that of an intercept/constant model as a
reference point. Under all scenarios, τC performs bet-
ter than or approximately as well as τA and τ̃B . The
performance of all methods degrades as the strength
of the shift increases. As in the theoretical results,
τA and τC perform (roughly) equivalently under no
shift, but τC degrades more slowly than τA as shift
increases. In addition, τC outperforms τ̃B under no
shift, and the two methods’ performance converges as
shift increases. Taken together, these results show the
robustness property of τC . Also in line with the theory,
the advantage of τC over τA (τ̃B) grows (shrinks) with
a stronger proxy relationship. Finally, it is also worth
noting that as the shift gets stronger, it can eventually
reach a point where none of the methods can learn
anything useful.

Because the outcome Y2 is inherently noisy, it is difficult
to discern the practical improvement that τC offers
relative to τA or τ̃B based solely on Figure 1. For that
reason, Appendix A.1 shows the same plot but with R-
squared on the y-axis, thus demonstrating the superior
predictive power of τC . The predictive superiority of

5Replication code and data for this application
can be accessed at https://github.com/kbansak/
Learning-under-random-distributional-shifts.

τC over τA is substantial in settings with relatively
strong distribution shift and proxy correlation. As
the figure in the Appendix shows, for example, using
the proxy with a correlation of 0.72, the predictive
performance of τC is more than twice as strong as that
of τA when the distribution shift surpasses 0.5. In
contrast, τC ’s superiority over τ̃B is most prominent in
settings with less shift and/or lower proxy correlation.

5.2 Asylum Seeker Assignment

In this section, we demonstrate the performance of
the proposed approaches on asylum seeker data from
the Netherlands. This evaluation, which uses propri-
etary, sensitive data, was approved by the Institutional
Review Boards at UC Berkeley, Harvard, and Stanford.

The data consists of background characteristics, arrival
year/month, assigned location (corresponding to one
of the 35 labor market regions within the Netherlands),
and employment outcomes for adult asylum seekers in
the Netherlands across multiple years. The modeling
approach used to estimate τA, τB, and τC is based
on the methodology developed in Bansak et al. (2018).
In this approach, separate stochastic gradient boosted
tree models are fit for each labor market. We note
that, because of the quasi-random status quo assign-
ment procedure that generated the training data, the
predictions in this setting can be interpreted causally.
These predictions are then used in an algorithm—such
as those developed in Bansak and Paulson (2024) and
Ahani et al. (2023)—designed to suggest an optimal
labor market region for each incoming family.

For this assessment, we consider the following two



Learning Under Random Distributional Shifts

Actual Proxy Violated More Shift Induced Proxy Violated + More Shift

τ
A

τ~
B

τ
C

τ
C − τ

A

τ
C − τ~

B

τ~
B − τ

A

τ
A

τ~
B

τ
C

τ
C − τ

A

τ
C − τ~

B

τ~
B − τ

A

τ
A

τ~
B

τ
C

τ
C − τ

A

τ
C − τ~

B

τ~
B − τ

A

τ
A

τ~
B

τ
C

τ
C − τ

A

τ
C − τ~

B

τ~
B − τ

A

−2

0

2

4

P
er

ce
nt

ag
e−

P
oi

nt
 G

ai
ns

Figure 2: Counterfactual gains in two-year employment (compared to status quo employment rate of 14.26%)
with actual data (left) and perturbed data using the alternative strategies τA, τ̃B , and τC . Confidence intervals
are 95% bootstrapped. For details see Appendix A.2.

outcomes: Y2 is the proportion of time worked in an
asylum seeker’s first two years after assignment, and
Y1 is the proportion of time worked in the first year
after assignment. Based on preliminary analyses of the
data, we find strong evidence of distribution shift in
the data and a strong proxy relationship between Y1

and Y2 (see Appendix A.2).

The asylum seekers who arrived between 2018-06-01
and 2018-08-31 are designated as the period 0 “test
cohort”, and we employ the proposed approaches as if
these families were arriving in the present time, with
the goal of maximizing average two-year employment.
For each individual in the test cohort, and for each
labor market region, we generate predictions using τA,
τB , and τC . We note that given the test cohort’s start
date, estimation of τA, τB , and τC can only utilize data
on Y2 prior to 2016-06-01 and Y1 prior to 2017-06-01
(see Appendix A.2 for more estimation details).

Because the predictions are used to inform the down-
stream assignments, we will evaluate (1) the predictive
accuracy of each method, and (2) the expected impact
of the varying methods, taking into account the down-
stream assignment problem. Regarding evaluation (1),
as the theory suggests, τC results in a 20-25% smaller
MSE than τA and τ̃B (see Appendix A.2).

Evaluation (2) is critical: even if τC attains superior
predictive accuracy, if all three methods result in similar
geographic assignments then they will also result in
similar two-year employment for the test cohort. To
that end, Figure 2 (left panel) shows the predicted
impact of each method, in terms of gains in two-year
employment relative to the status quo, when geographic
assignments are made on the basis of the predictions
attained by τA, τ̃B, and τC . For more details on the
impact evaluation, see Appendix A.2.

The gains in two-year employment are largest using the

τC estimator, closely followed by τ̃B, followed by τA.
These results suggest that both the distribution shift
between period -2 and 0 is relatively large, and one-year
employment is a good proxy for two-year employment.
Thus, not only does the τC estimator result in the best
accuracy, but these improved predictions translate into
meaningful gains in employment.

To further illustrate the theory, we perform additional
tests in which we induce (a) a violation of the proxy
relationship, and (b) additional distribution shift. For
the proxy violation test, Y1 is randomly permuted for
50% of the full data set, thereby weakening the relation-
ship between Y1 and Y2. For the additional distribution
shift test, the covariate vectors are randomly permuted
for 50% of the data prior to 2016-06-01. For each test,
the permutations are applied prior to the training of
the models corresponding to τA, τ̃B , and τC .

The impact on gains in two-year employment for each
test is shown in Figure 2. When the proxy relationship
is violated, the performance of τ̃B dramatically suffers,
as does the performance of τC to a lesser extent. How-
ever, τC still outperforms τA, thus demonstrating its
robustness to proxy violations. When more distribu-
tion shift is present in the data, the performance of
all three predictors suffers, and τ̃B and τC perform
similarly well (with a slight edge to τ̃B , although their
difference is not statistically significant). When both a
proxy violation and more distribution are introduced,
all three estimators perform similarly.

6 CONCLUSIONS, LIMITATIONS,
AND BROADER IMPACT

In this research, we characterized the strengths and
weaknesses—theoretically and empirically—of three ap-
proaches for generating predictions in settings with ran-
dom distribution shift. The standard approach trains
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a model to directly predict a (long-term) outcome of
interest, suffering under distribution shift. The proxy
approach directly predicts a short-term proxy outcome,
suffering if the proxy relationship is weak. The hybrid
approach enjoys the strengths of both the standard
and proxy approaches without suffering from their re-
spective failure points. That is, the hybrid approach
is robust to both distribution shift and the strength of
the proxy relationship.

Our theoretical conclusions were empirical validated
in two real-world contexts: asylum-seeker placement
and early childhood education. In these domains, the
hybrid approach consistently outperformed both the
standard and proxy approaches, demonstrating the
practical relevance of our theoretical insights. More
broadly, we expect the hybrid approach to perform well
in other real-world domains where distribution shifts
arise due to natural economic and social changes.

The model considered in this paper has several limita-
tions. We consider a specific type of distribution shift,
characterized in Section 4. The results of our empirical
analyses show that this can be a reasonable model in
certain contexts. However, it does prohibit certain
dynamics; for example, we do not address situations
where P−2 ≈ P0, but P−1 ̸= P0. Such a phenomenon
could occur if an isolated event only impacts period −1.
Furthermore, this paper only considers random shifts.
There could be large, unpredictable shifts that make all
historical data useless (for example a new technology
that disrupts an economy).
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Supplementary Materials

A APPENDIX FOR EMPIRICAL ASSESSMENTS

A.1 Early Childhood Education

A.1.1 Background

Experts and policymakers have long been interested in forecasting and understanding the determinants of
positive outcomes in early childhood education. Being able to effectively estimate expected outcomes in early
childhood education and identify effective interventions can facilitate educational or curricular reforms that
improve immediate student learning, while also improving downstream educational and economic outcomes later
in life (e.g. see Krueger and Whitmore, 2001; Duncan et al., 2007; Burchinal et al., 2008; Chetty et al., 2011).
However, the relationships among learning outcomes and other variables can shift over time owing to changes
occurring in schools, school systems/districts, and the populations and economies linked to those systems/districts.

One prominent example of a study focused on evaluating an early childhood education intervention is the
Student Teacher Achievement Ratio project (Project STAR). Conducted in Tennessee in 1985–1989 by the State
Department of Education, Project STAR was a longitudinal study focused on evaluated the effects of class size
on student academic performance, as measured by a number of standardized and curriculum-based tests (Finn
and Achilles, 1990). We use the data from Project STAR for this application.

A.1.2 Data and Estimation Procedures

The Project STAR data set, which is available at Achilles et al. (2008), contains the test scores, demographics,
and other information on a large cohort of elementary school students who participated in the study. The full
data set contains information for 11, 601 students, though we focus on the subset of students who have complete
observations (i.e. no missing data) for the variables we employ in our analysis (n = 3, 033). These variables, and
their role in our analysis, are as follows:

• Primary outcome (Y2)

- Students’ second-grade scores on the Stanford Achievement Test (SAT), sum of the math, reading, and
listening components

• Proxy outcomes (Y1)

- Students’ first-grade scores on the SAT, sum of the math, reading, and listening components
- Students’ first-grade scores on the math component of the SAT
- Students’ kindergarten scores on the math component of the SAT
- Students’ kindergarten attendance record

• Covariates (X)

- Year of birth
- Month of birth
- Race (White, Black, Asian, Hispanic, Native American, Other)
- Gender
- Indicator for eligibility for free lunch (a measure of family socioeconomic status)
- Indicator for special education status
- Randomly assigned class size/type (Regular class, Regular class + teacher’s aide, Small class)

All models were trained using the ranger package in R using the default parameter settings.
Replication code and data for this application can be accessed at: https://github.com/kbansak/
Learning-under-random-distributional-shifts.



Kirk Bansak, Elisabeth Paulson, Dominik Rothenhäusler

A.1.3 Additional Results

MSE Results. Figure 3 displays confidence intervals corresponding to the results shown in Figure 1. Specifically,
displayed are 99% normality-based confidence intervals reflecting the simulation uncertainty.

  KG Attendance Proxy  
cor(Y1,Y2) = 0.18

 KG Math Test Proxy 
cor(Y1,Y2) = 0.53

G1 Math Test Proxy
cor(Y1,Y2) = 0.72

G1 SAT Test Proxy
cor(Y1,Y2) = 0.81
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Figure 3: 99% confidence intervals for the MSE of the alternative strategies τA, τ̃B, and τC in predicting
second-grade SAT test scores, with varying degrees of distribution shift and proxy strength (measured by its
correlation with Y2). In the panels, KG corresponds to “Kindergarten” and G1 corresponds to “first grade”.

R-squared Results. The outcome Y2 is inherently noisy, and thus the practical improvement that τC offers
relative to τA or τ̃B can be challenging to interpret based solely on the MSE results shown in Figure 1 in the
main text. Here, Figure 4 shows analogous results but instead using the R-squared, which is more straightforward
to interpret from a practical perspective. Based on this figure, we can see clearly the superior predictive power
of τC . For example, using the proxy with a correlation of 0.72, the predictive performance of τC is more than
twice as strong as that of τA when the distribution shift surpasses 0.5. Figure 5 displays the corresponding 99%
normality-based confidence intervals reflecting the simulation uncertainty.
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Figure 4: R-squared of the alternative strategies τA, τ̃B , and τC in predicting second-grade SAT test scores, with
varying degrees of distribution shift and proxy strength (measured by its correlation with Y2). The R-squared is
calculated with respect to the target (i.e. period 0) data. In the panels, KG corresponds to “Kindergarten” and
G1 corresponds to “first grade”.
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  KG Attendance Proxy  
cor(Y1,Y2) = 0.18

 KG Math Test Proxy 
cor(Y1,Y2) = 0.53

G1 Math Test Proxy
cor(Y1,Y2) = 0.72

G1 SAT Test Proxy
cor(Y1,Y2) = 0.81
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Figure 5: 99% confidence intervals for the R-squared of the alternative strategies τA, τ̃B, and τC in predicting
second-grade SAT test scores, with varying degrees of distribution shift and proxy strength (measured by its
correlation with Y2). The R-squared is calculated with respect to the target (i.e. period 0) data. In the panels,
KG corresponds to “Kindergarten” and G1 corresponds to “first grade”.

A.2 Asylum Seeker Assignment

A.2.1 Data

We use data on asylum seekers in the Netherlands from two data sources. The first is the administrative data
on individuals granted temporary asylum residence permit (“permit holders”) from the Central Agency for the
Reception of Asylum Seekers (COA), which is the government agency in charge of the asylum system in the
Netherlands. This is a comprehensive data set covering all permit holders in the Netherlands containing their
background characteristics, procedural information, and location data. The second is the Asielcohort microdata
compiled by Statistics Netherlands (CBS). The Asielcohort microdata is comprised of merged data from a number
of administrative databases, several of which track various measures of permit holders in the Netherlands after
arrival. These include economic, educational, and other indicators of integration and well-being that can be
evaluated as downstream outcomes.

The target population for our assessment is comprised of permit holders who were geographically assigned in the
Netherlands through the regular housing procedure. Further, we only consider data and outcomes for adults (i.e.
18 years or older). We also exclude some subsets of permit holders who fall outside the scope of the objectives
of algorithmic assignment or for whom data are unreliable.6 In addition, the target population for algorithmic
assignment further excludes family reunifiers, since such permit holders are automatically reunified with their
family in the Netherlands.7 The permit holders in the available data were assigned between January 2014 and
August 2018 (n ≈ 46, 000).

As per rules on usage of these data sets, and in accordance with our data access and use agreements with CBS,
our access to and analysis of these data is conducted entirely via a secure Remote Access Environment. All
statistics and results that are reported from these data are checked and cleared for export by CBS.

6We exclude permit holders who fell under the 2019 Children’s Pardon, resettlers / relocants / asylum seekers covered
by the EU-Turkey deal, and permit holders who have “hard criteria” that pre-determined their locations. Beyond family
reunification constraints, hard criteria may be motivated by other determinants such as employment contracts and medical
issues.

7Note, however, that data for family reunifiers is included the data used to estimate the various models comprising
τA, τB , and τC , with a family reunifier indicator also included as a variable in the models. Family reunifiers were not,
however, included in the “test cohort” defined below since they are outside the scope of algorithmic assignment.



Kirk Bansak, Elisabeth Paulson, Dominik Rothenhäusler

A.2.2 Setup

For the refugee and asylum-seeker assignment problem, the formal problem set-up is as follows. We note that it
closely follows the set-up in the main text, with the key distinctions being 1) location-specific outcomes for every
unit, and 2) a formal presentation of the causal model for this application.

In each period, refugees arrive and must be assigned to a single location within the set L = {1, 2, ...|L|}. Let
J ∈ L denote the location assignment of a refugee that arrives in the current period, and again let X denote a
vector of background characteristics.

Following the potential outcomes framework of Neyman (1923) and Rubin (1974), let Y1(j) and Y2(j) denote the
one-period and two-period potential outcomes under assignment to location j ∈ L. We assume that the stable
unit treatment assumption (SUTVA) holds, so we observe Y1 = Y1(J) and Y2 = Y2(J) (Rubin, 1980).

For refugees who arrive in any period t and the variables defined above, we posit the existence of a tuple generated
according to a probability distribution Pt:

(Y1(1), ..., Y1(|L|), Y2(1), ..., Y2(|L|), X, J)t ∼ Pt.

Further, we assume that within any period, the assignment mechanism is such that

Y1(j) ⊥ J |X, Y2(j) ⊥ J |X, and P (J = j|X = x) > 0 ∀ j, x.

This is often referred to as the ignorability assumption (Rosenbaum and Rubin, 1983). It is satisfied here when
location assignments are made on the basis of the observed characteristics, and when those characteristics do
not preclude refugees from being assigned to any particular location, as in our application to the Dutch asylum
system. Therefore, Et[Yk(j)|X] = Et[Yk|X, J = j] for k = 1, 2. This paper is focused on the identifiable quantities
Et[Yk|X, J = j].

To maximize Y2, as in the main text, we would ideally choose location assignments for the refugees or asylum
seekers arriving in period 0 by first estimating τ(x, j) = E0[Y2|X = x, J = j], and using these estimates within a
static or dynamic matching procedure to optimally assign each refugee to a particular location subject to any
necessary constraints, such as capacity constraints and the need to keep family members together, as in the
algorithmic assignment procedures proposed by Bansak et al. (2018), Ahani et al. (2021), Ahani et al. (2023),
and Bansak and Paulson (2024) (also see Acharya et al., 2022).

However, we do not observe Y2 (nor do we observe Y1) for the cohort that arrives in period 0 at the time of their
assignment. Instead, at the time of assignment, we observe the data (Y2, Y1, X, J)−2 ∼ P−2, (Y1, X, J)−1 ∼ P−1,
and (X)0 ∼ P0. As described in the main text, we can thus employ the three proposed strategies τA, τB and τC

as described. The only subtle difference is that, for every unit, each strategy results in |L| predictions—one for
each possible assignment location.

A.2.3 Modeling and Estimation Procedures

The modeling approach is based on the methodology developed in Bansak et al. (2018). We first merge the
historical data for the target population’s background characteristics, employment outcomes, and geographic
locations. Using supervised learning on these merged data, we fit separate models across each labor market region
(LMR) that predict one- or two-year employment using the predictors described in a section below. To do so, for
each model we first subset the training data to permit holders who were assigned to a given LMR, and then use
this subset for the model training. The next subsection describes the basis upon which LMRs were targeted as
the geographic locations of interest.

To generate our models, we employ stochastic gradient boosted trees with squared error loss, which we implement
in R using the gbm package. We employ cross-validation to determine the optimal values for tuning parameters.
Specifically, we cross-validate over the number of boosting iterations (trees) and the interaction depth of the trees.
We employ 5 folds in our cross-validation, allowing the gbm functionality to determine the random splits. For each
model, we cross-validate over tree depths of 3-8 and a number of trees that we ensure are sufficient to be able to
identify the number that yields the minimum CV mean squared error (i.e. we ensure that we do not consider too
few trees to find the minimum CV error). Parameters were tuned independently for each location-specific model.
Preliminary assessments on the bag fraction, learning/shrinkage rate, and minimum number of observations per
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node demonstrated relatively little to no impact on model performance within conventional value ranges, and so
these parameters were held fixed at 0.5, 0.01, and 5, respectively. Where appropriate, 95% confidence intervals
are generated using a nonparametric bootstrap.

A.2.4 Target Geography

Selecting the appropriate target unit of geography for algorithmic recommendations requires balancing three goals:
(1) generating a large number of geographic options to provide the algorithmic recommendation procedure with
as much geographic variation as possible, (2) ensuring that each geographic option is associated with a sufficient
amount of historical data such that accurate and effective predictive models can be trained, and (3) identifying
levels or regions of geography that are administratively compatible with the underlying goals and procedures.

Based on these criteria, and in consultation with our partners at COA, we determined that the best target unit of
geography in the Dutch context is the labor market region (LMR). Hence, as noted above, we generate separate
predictive models for each of the 35 LMRs, and the algorithmic assignment procedure determines the optimal
LMR for each family of permit holders (i.e. the LMR where they have the highest chance of employment success,
subject to all the constraints).

A.2.5 Predictors

Based on data availability, the pre-arrival characteristics we include as the covariates X are age, gender, martial
status, prior education, number of family members, country of origin, religion, native language, ethnicity, and prior
work experience and industry. In addition, we also include in X several key variables related to the assignment
procedure as predictors, including the month of assignment, year of assignment, whether or not someone is a
family reunifier, and what type of processing location their housing interview took place at.

A.2.6 Evidence of Proxy Relationship and Distribution Shift

As a simple analysis of the proxy relationship, we fit a linear regression of Y2 on Y1 using the entire dataset and
find a large R2 value of 0.625. The R2 increases to 0.642 when the covariates are added to the model.

To establish the presence of distribution shift, we perform two analyses making use of the data from 2015-06-01
to 2016-05-31 (analogous to period −2 in our impact assessment) and from 2016-06-01 to 2017-05-31 (analogous
to period −1). First, we fit classifiers (using gradient boosted trees according to the procedures described above,
but with binomial deviance loss in place of squared error loss) that predict which period each data point belongs
to as a function of the outcomes and the covariates (described above). Note that for this procedure, we omit
the month and year covariates for obvious reasons. We find solid predictive performance with these models: a
classification accuracy of 0.768 (relative to 0.547 under a null/intercept model) and an R2 of 0.344.

Second, we split the period −1 data into training and test sets, and we estimate models (again using gradient
boosted trees according to the procedures described above, and with squared error loss) that predict the two-year
outcome as a function of the covariates. We fit models using the period −1 training data, and separately also fit
models using a period −2 training set that is randomly sampled to have identical size as the period −1 training
set. We then compare the performance of these models in predicting onto the period −1 test set, and we find
clearly superior performance of the period −1 training models (a test set R2 of 0.126) over the period −2 training
models (a test set R2 of 0.081). We find similar results when we use these models to predict onto data that is
analogous to period 0.

A.2.7 Application

Let WA, WB , and WC be the prediction matrices corresponding to τA, τB , and τC , where each row corresponds
to an individual in the test cohort, and columns corresponding to labor market regions.

WA is estimated by fitting models for expected two-year employment using the data prior to 2016-06-01 (i.e.
two years earlier than the test cohort), equivalent to period −2, and then applying those models to the test
cohort. WB is estimated by fitting models for expected one-year employment using the data prior to 2017-06-01,
equivalent to the union of period −1 and −2, and then applying those models to the test cohort. WC is estimated
via a two-step process. In the first step, models for expected two-year employment are fit using using the data
from prior to 2016-06-01, with one-year employment being included as a regressor. Those models are applied to
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the data between 2016-06-01 and 2017-05-31. With these predicted/expected values in hand, in the second step,
another set of models for two-year employment are fit using all data prior to 2017-06-01—which can be done
“feasibly” by using the predicted/expected values for two-year employment as the outcome for these models—with
only the variables contained in X as the regressors. In addition, the data from prior to 2016-06-01 are also
included in the training of these models, with the true/observed values (rather than predicted/expected values)
of two-year employment used for those observations. This methodology effectively combines period −1 and −2
for the τB estimator and for the second stage of the τC estimator, which is a deviation from the assumptions
made in Section 4. One could also estimate τB and the second stage of τC using only period −1 data (between
2016-06-01 and 2017-05-31). In Section A.2.10 we show a figure analogous to Figure 2 where τB and τC were
estimated using this approach.

Let W ∗ denote the ground truth prediction matrix, estimated by fitting models for expected two-year employment
using all of the available data, including the data for the 2018-06-01 – 2018-08-31 test cohort. We use all of
the data for this quantity for the sake of counterfactual evaluation; if one were trying to assign the 2018-06-01 –
2018-08-31 in the real world (i.e. if that was the present), it would obviously not be possible to estimate W ∗.
In contrast, WA, WB , and WC are all estimated in ways that would be possible, allowing them to be used to
determine the counterfactual assignment decisions.

A.2.8 Assignment and Constraints

Once the models corresponding to τA, τB , and τC have been estimated, the models can then be applied to the
test cohort to estimate their expected employment success at each of the possible LMRs. Optimal algorithmic
assignment decisions on which specific LMR each permit holder should be assigned to can then be made, based on
maximizing the expected average employment subject to the constraints. There are two key types of assignment
constraints that we take into account for our assessment. The first are family-related constraints. All permit
holders in the same family (or associated with the same case number for other reasons) must be assigned together
to the same location. The second are location capacity constraints. That is, permit holders must be assigned
across labor market regions according to pre-determined capacity and proportionality guidance.

Let ZA, ZB , and ZC be defined as the (predicted) optimal assignments corresponding to each method, given by:

Zk = argmax
z∈Z

n0∑
i=1

|L|∑
j=1

wk
ijz

k
ij for k = A,B,C

where Z is the set of feasible assignments of asylum seekers to labor market regions. At a minimum, zij must be
binary with each asylum seeker assigned to exactly one location, and Z must satisfy the constraints.

To compare the impact of each method, we will compare the quantities:

Ek =

n0∑
i=1

|L|∑
j=1

w∗
ijz

k
ij for k = A,B,C

A.2.9 Results

The mean squared error for each method is computed by taking the average over locations j ∈ L and refugee
strata x. The MSE for each test is shown in Table A.2.9.

Table 1: MSE Results
SETTING τA τ̃B τC

Actual 0.010084 0.009388 0.007520
Proxy Violated 0.010084 0.013649 0.009756
More Shift 0.012559 0.009721 0.008650
Proxy Violated + More Shift 0.012407 0.013527 0.012243
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Figure 6: Counterfactual gains in two-year employment (compared to status quo) with actual data (left) and
perturbed data using the alternative strategies τA, τ̃B , and τC . Confidence intervals are 95% bootstrapped.

A.2.10 Results where Old Data is Dropped for τ̃B and τC

Figure 6 is analogous to Figure 2 but shows the results where τ̃B and the second stage of τC are estimated only
using data from between 2016-06-01 and 2017-05-31. This method more closely aligns with the theoretical results,
but practically turns out to be less desirable because the sample size becomes much smaller. As can be seen by
comparing Figure 6 and Figure 2, both τ̃B and τC perform slightly worse using this methodology.

B EXTENSIONS

B.1 More than Two Time Periods/Outcomes

In a more general version of the problem discussed above, we have T + 1 time periods: t ∈ {0,−1, ...,−T}, where
period 0 is the present time, and we have T outcomes, Y1 through YT , with YT being the policy outcome of
interest. The period t data contains outcomes Y1 through Yt. There are now at least T + T (T + 1)/2 strategies
one could pursue in choosing an outcome and estimation method to guide the algorithmic recommendations. In
particular, there are T estimands of the form: τ t(x) = E−t[Yt|X = x] for t = 1, ..., T . There are also T (T + 1)/2
nested methods of the form:

τ t1−t2(x) = E−t1 [E−t1−1[...E−t2+1[E−t2 [Yt2 |Yt1 , ..., Yt2−1, x]|Yt1 , ..., Yt2−2, x]...]|x]

for t2 > t1. For example, when T = 3,

τ1−3(x) = E−1[E−2[E−3[Y3|Y2, Y1, x]|Y1, x]|x].

Similar intuition for the relative merits and drawbacks of each method as in Section 4 will hold. In particular, we
expect τ1−T (x) to have similar robustness properties as τC .

B.2 Multi-Dimensional Outcomes

As in Section 5.1, there could be cases where we have access to multiple short-term proxies and thus Y1 is
effectively multi-dimensional. Compared to just using one of these proxy outcomes, the performance of τC and
τB can generally be expected to improve with the addition of more proxies. In this setting, there are multiple
ways to compute τB but generally speaking analogous arguments will hold and therefore the relative ordering of
mean-squared errors given in Theorems 1 and 2 will remain unchanged.

B.3 Other Data Fusion Problems

In addition to extending the modeling framework to an arbitrary number of time periods, one could also extend
the framework to non-temporal shifts. In particular, consider a scenario with three datasets, I, II, and III. Our
goal is to predict a particular outcome, outcome A, for individuals in dataset I, where no outcome labels are
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present. Dataset II consists of a population of individuals and an outcome B, related to outcome A. Finally,
dataset III contains yet another population for which outcomes A and B are both present. The question is how
to use datasets II and III, along with the outcomes they contain, to best predict outcome A for dataset I. In this
paper, the random distribution shift model effectively meant that period -1 data is closer to period 0 than period
-2 is to period 0. In this generalization, a key difficulty is measuring the “closeness” of datasets I, II, and III. If
dataset II is closer to dataset I than dataset III is to I, one could employ an analogous estimator to estimator
τC(x).

C FINITE-SAMPLE CONSIDERATIONS

In the following we will study how the procedures compare from a asymptotic viewpoint, in the absence of
distribution shift (that is, if P−2 = P−1 = P0). This setting is particularly important for relatively small shifts,
since in this case the error due to sample size will dominate the overall mean-squared error. For mathematical
simplicity, we assume that the ratio of units for the two periods converges to a constant, that is n−1

n−2
→ ρ ∈ (0,∞).

We write n = n−1 + n−2.

In general, it is difficult to compare the three approaches since the performance depends both on the choice of
machine learning algorithms and on the data set. In particular, similar to “no free lunch” theorems in machine
learning (Wolpert, 1996), we expect that for any choice of algorithm, any of the strategies can perform best
depending on the dataset. That being said, in the following, we will see that in the setting where X and Y1 is
discrete, a clear comparison can be drawn. In this case, in low-dimensional settings the estimator can be based
on sample proportions. Let I−2,x be the set of indices for units from period t = −2 that have Xi = x.

τ̂A(x) =
1

#I−2,x

∑
i∈I−2,x

Y2,i.

We now define an estimate of τC . To this end, let I−1,x denote the set of indices for units from time period
t = −1 that have Xi = x. Similarly, let I−2,x,y be the set of indices for units from time period t = −2 that have
Xi = x, and Y1,i = y. As above, we can define

τ̂C(x) =
1

#I−1,x

∑
i∈I−1,x

Q̂(x, Y1,i), where Q̂(x, y) =
1

#I−2,x,y

∑
i∈I−2,x,y

Y2,i.

In the following, we introduce an estimator for τB . Analogously to the above, define

τ̂B =
1

#I−1,x

∑
i∈I−1,x

Y1,i.

Let us now compare the asymptotic performance of the three approaches. The estimator τ̂B is justified if the
relationship between the target Y2 and the proxy outcome is linear, that is if E−2[Y2|X = x] = β1E−2[Y1|X =
x] + β0. This is a very strong assumption. In particular, it assumes that the relationship does not change for
different values of X = x. The proof of the following result can be found in Section D.
Example 3 (Invariant distribution; proxy assumption does not hold). Assume that there is no shift, i.e. that
P−2(·|x) = P−1(·|x) = P0(·|x). Then,

√
n(τ̂A(x)− τ(x)) ⇀ N (0, σ2

A)√
n(τ̂C(x)− τ(x)) ⇀ N (0, σ2

C),

where σ2
A < σ2

C if and only if ρ < 1. Furthermore, if the linear proxy assumption does not hold, we have

β1τ̂
B(x) + β0 − τ(x) ̸→P 0.

Please note that we expect n−2 > n−1, since for P−2 we can pool many observations from previous timepoints.
Thus, if there is not distribution shift and the proxy assumption is violated, one would generally prefer τ̂A. If
the linear proxy assumption holds and n−1 > n−2, then the conclusions change. This will be discussed in the
following.

The following example shows that in this case τB is preferable over the other procedures. The proof can be found
in Section D.
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Example 4 (Invariant distribution; proxy assumption holds). Assume that there is no shift, that is P−2(·|x) =
P−1(·|x) = P0(·|x) and that ρ > 1. If E−2[Y2|Y1, X] = β1Y1 + β0, then for τ̂Bscaled(x) = β1τ̂

B + β0 we get
√
n(τ̂A(x)− τ(x)) ⇀ N (0, σ2

A)√
n(τ̂C(x)− τ(x)) ⇀ N (0, σ2

C)√
n(τ̂Bscaled(x)− τ(x)) ⇀ N (0, σ2

B).

Furthermore,
σ2
B < min(σ2

A, σ
2
C).

D PROOFS

D.1 Proof of Theorem 1

Proof. For notational simplicity, without loss of generality, we will assume that Y1 is already transformed, that is
Y1 = Ỹ1. First, let us prove a few auxiliary results. By Assumption 1, for fixed y2, y1, y

′
2, y

′
1, x, x

′ we have

E[St(y2, y1|x)] = 0 and Cov(S−2(y2, y1|x), S−1(y
′
2, y

′
1|x′)) = 0, (1)

for t ∈ {−2,−1}. For every function f and fixed x we have

Var(
∑
y1,y2

f(y1, y2, x)S−2(y1, y2|x))

=
∑
y1,y2

∑
y′
1,y

′
2

f(y1, y2, x)f(y
′
1, y

′
2, x)Cov(S−2(y1, y2|x), S−2(y

′
1, y

′
2|x))

(2)

Here, the variance is over the randomness in the shift S−2. Now if y1 = y′1 and y2 = y′2, then by Assumption 2,

Cov(S−2(y1, y2, |x), S−2(y
′
1, y

′
2|x))

= Var(S−2(y1, y2|x))
= κ−2P−2(y1, y2|x)(1− P−2(y1, y2|x)).

If y1 ̸= y′1 or y2 ̸= y′2, let A be the event that (y′1, y
′
2) = (Y1, Y2) or (y1, y2) = (Y1, Y2). Then we can use additivity,

that is P−1(A|X = x) = P−1((y
′
1, y

′
2) = (Y1, Y2)|X = x) + P−1((y1, y2) = (Y1, Y2)|X = x) to obtain

Var(P−1(A|X = x))

= Var(S−2(y
′
1, y

′
2|x)) + 2Cov(S−2(y1, y2|x), S−2(y

′
1, y

′
2|x)) + Var(S−2(y1, y2|x))

Applying Assumption 2 directly on both sides, we get

κ−2P−2(A|x)(1− P−2(A|x))
= κ−2P−2(y1, y2|x)(1− P−2(y1, y2|x)) + 2Cov(S−2(y1, y2|x), S−2(y

′
1, y

′
2|x))

+ κ−2P−2(y
′
1, y

′
2|x)(1− P−2(y

′
1, y

′
2|x)).

Applying additivity to the left-hand side, we get

κ−2(P−2(y1, y2|x) + P−2(y
′
1, y

′
2|x))(1− P−2(y1, y2|x)− P−2(y

′
1, y

′
2|x))

= κ−2P−2(y1, y2|x)(1− P−2(y1, y2|x)) + 2Cov(S−2(y1, y2|x), S−2(y
′
1, y

′
2|x))

+ κ−2P−2(y
′
1, y

′
2|x)(1− P−2(y

′
1, y

′
2|x)).

Simplifying, we get

−2κ−2P−2(y
′
1, y

′
2|x)P−2(y1, y2|x) = 2Cov(S−2(y1, y2|x), S−2(y

′
1, y

′
2|x)).

Thus,

Cov(S−2(y1, y2|x), S−2(y
′
1, y

′
2|x)) = −κ−2P−2(y1, y2|x)P−2(y

′
1, y

′
2|x).
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To summarize, we have

Cov(S−2(y1, y2, |x), S−2(y
′
1, y

′
2|x))

=

{
κ−2P−2(y1, y2|x)(1− P−2(y1, y2|x)) if (y1, y2) = (y′1, y

′
2),

−κ−2P−2(y1, y2|x)P−2(y
′
1, y

′
2|x) if (y1, y2) ̸= (y′1, y

′
2).

This allows us to re-write equation (2) as

Var(
∑
y1,y2

f(y1, y2, x)S−2(y1, y2|X = x))

= κ−2(
∑
y1,y2

f(y1, y2, x)
2P−2(y1, y2|x)− (

∑
y1,y2

f(y1, y2, x)P−2(y1, y2|x))2)

= κ−2Var−2(f(Y1, Y2, X)|X = x).

On the left-hand side, the variance is over the randomness in the shift St, where on the right-hand side the
variance is computed under P−2. Since S−2 has mean zero, for any function f with E−2[f(Y1, Y2, X)|X = x] = 0
we have

E[(
∑
y1,y2

f(y1, y2, x)S−2(y1, y2|x))2]

= κ−2Var−2(f(Y1, Y2, X)|X = x)

= κ−2E−2[f(Y1, Y2, X)2|X = x].

(3)

By an analogous argument, for any function f with E−2[f(Y1, Y2, X)|X = x] = 0 we have

E[(
∑
y1,y2

f(y1, y2, x)S−1(y1, y2|x))2]

= κ−1(1− κ−2)E−2[f(Y1, Y2, X)2|X = x].

(4)

(Notice that κ−2 is naturally upper bounded by 1: For an event with Pt(•|x) = 1/2, the right-hand side of
Assumption 2 is κt/4. The left-hand side of 2 is upper bounded by 1/4, since Pt + St is a [0, 1]-valued random
variable, and the maximum variance of a [0, 1]-valued random variable is achieved by Ber(1/2). Thus, Assumption 2
implies 1

4 ≥ κt

4 . Thus, we have 0 ≤ κt ≤ 1.)

We now have all auxiliary results in place to investigate the MSE of τC . For every fixed x we have

τ(x)− τC(x) =
∑
y2,y1

y2(P−2(y1, y2|x) + S−1(y1, y2|x) + S−2(y1, y2|x))

−
∑
y2,y1

E−2[Y2|Y1 = y1, X = x](P−2(y1, y2|x) + S−2(y1, y2|x))

=
∑
y2,y1

y2(S−1(y1, y2|x) + S−2(y1, y2|x))

−
∑
y2,y1

E−2[Y2|Y1 = y1, X = x]S−2(y1, y2|x)]

=
∑
y2,y1

(y2 − E−2[Y2|Y1 = y1, X = x])S−2(y1, y2|x)

+
∑
y2,y1

y2S−1(y1, y2|x)

The first inequality follows by definition. The second inequality follows from the fact that
∑

y2,y1
y2P−2(y1, y2|x) =

E−2[Y2|X = x] and
∑

y2,y1
E−2[Y2|Y1 = y1, X = x]P−2(y1, y2|x) = E−2[E−2[Y2|Y1, X = x]|X = x] = E−2[Y2|X =

x] and thus these terms cancel out. The third inequality follows by rearranging terms.
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Since
∑

y2,y1
S−1(y1, y2|x) = 0, we have

∑
y2,y1

E−2[Y2|X = x]S−1(y1, y2|x) = 0. Combining this with the
equation above,

τ(x)− τC(x)

=
∑
y2,y1

(y2 − E−2[Y2|Y1 = y1, X = x])S−2(y1, y2|x)

+
∑
y2,y1

(y2 − E−2[Y2|X = x])S−1(y1, y2|x).

Squaring and taking expectations, using equation (1), equation (4), and equation (3) yields

E[(τ(x)− τC(x))2|X = x] = κ−2E−2[(Y2 − E−2[Y2|Y1, X])2|X = x]

+ κ−1E−2[(Y2 − E−2[Y2|X])2|X = x] +O(κ−1κ−2)

Now taking the expectation over X yields

E[(τ(X)− τC(X))2] = κ−2E−2[(Y2 − E−2[Y2|Y1, X])2]

+ κ−1E−2[(Y2 − E−2[Y2|X])2] +O(κ−1κ−2).

This completes the first claim. Similarly,

τ(x)− τA(x) =
∑
y2,y1

y2(P−2(y2, y1|x) + S−1(y2, y1|x) + S−2(y2, y1|x))

−
∑
y2,y1

y2P−2(y2, y1|x)

=
∑
y2,y1

y2S−1(y2, y1|x) + S−2(y2, y1|x))

=
∑
y2,y1

(y2 − E−2[Y2|X = x])(S−1(y2, y1|x) + S−2(y2, y1|x))

Analogously as above, squaring and taking expectations (using equation equation (1), equation (4), and equa-
tion (3)) yields the claim. Lastly,

τ(x)− τB(x) = E−2[Y2|X = x]

+
∑
y2,y1

(y2 − E−2[Y2|X = x])(S−1(y1, y2|x) + S−2(y1, y2|x))

− E−2[Y1|X = x]

−
∑
y2,y1

(y1 − E−2[Y1|X = x])S−2(y1, y2|x)

= E−2[Y2|X = x]− E−2[Y1|X = x]

+
∑
y2,y1

(y2 − y1 − E−2[Y2 − Y1|X = x])S−2(y1, y2|x)

+
∑
y2,y1

(y2 − E−2[Y2|X = x])S−1(y1, y2|x).

As before, squaring and taking expectations yields the claim.

D.2 Proof of Theorem 2

Proof. For notational simplicity, without loss of generality, we will assume that Y1 is already transformed, that
is Y1 = Ỹ1. In the following, we will use P−2(y2|y1, x) = P−1(y2|y1, x) = P0(y2|y1, x) repeatedly. Using this
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assumption, τ(x) = E0[Y2|X = x] = E0[E0[Y2|Y1, X]|X = x] = E0[E−2[Y2|Y1, X]|X = x]. Using this, we have

τC(x)− τ(x)

=
∑
y1

E−2[Y2|Y1 = y1, X = x]p−1(y1|x)−
∑
y1

E0[Y2|Y1 = y1, X = x]p0(y1|x))

=
∑
y1

E−2[Y2|Y1 = y1, X = x]p−1(y1|x)−
∑
y1

E−2[Y2|Y1 = y1, X = x]p0(y1|x))

=
∑
y1

∑
y2

E−2[Y2|Y1 = y1, X = x](p−1(y1, y2|x)− p0(y1, y2|x))

=
∑
y1

∑
y2

E−2[Y2|Y1 = y1, X = x](−S−1(y1, y2|x))

Since E[S−1] = 0,

E[(τC(x)− τ(x))2] = Var(
∑
y2

∑
y1

E−2[Y2|Y1 = y1, X = x]S−1(y1, y2|x))

Here, the outer expectation and variance are over the randomness in the shifts S−1 and S−2. Now let us turn to
τA(x). Similarly as before,

τA(x)− τ(x)

=
∑
y1

E−2[Y2|Y1 = y1, X = x]p−2(y1|x)−
∑
y1

E0[Y2|Y1 = y1, X = x]p0(y1|x))

=
∑
y1

E−2[Y2|Y1 = y1, X = x]p−2(y1|x)−
∑
y1

E−2[Y2|Y1 = y1, X = x]p0(y1|x))

=
∑
y1

∑
y2

E−2[Y2|Y1 = y1, X = x](p−2(y1, y2|x)− p0(y1, y2|x)))

=
∑
y1

∑
y2

E−2[Y2|Y1 = y1, X = x](−S−1(y1, y2|x)− S−2(y1, y2|x))

Since E[S−1] = E[S−2] = 0, this term has mean zero. Using E[S−1|S−2] = 0,

E[(τA(x)− τ(x))2] = Var(
∑
y2

∑
y1

E−2[Y2|Y1 = y1, X = x]S−1(y1, y2|x))

+ Var(
∑
y2

∑
y1

E−2[Y2|Y1 = y1, X = x]S−2(y1, y2|x))

≥ E[(τC(x)− τ(x))2]

Again, the outer expectations and variances are over the randomness in S−1 and S−2. Now let’s turn to τB(x).
By an analogous argument as above, we get

τB(x)− τ(x) =
∑
y1

∑
y2

y1(p−2(y1, y2|x) + S−2(y1, y2|x))

−
∑
y2

∑
y1

E−2[Y2|Y1 = y1, X = x](p−2(y1, y2|x) + S−1(y1, y2|x) + S−2(y1, y2|x))

=
∑
y1

∑
y2

(y1 − E−2[Y2|Y1 = y1, X = x])(p−2(y1, y2|x) + S−2(y1, y2|x))

−
∑
y2

∑
y1

E[Y2|Y1 = y1, X = x]S−1(y1, y2|x)

Since the mean of S−1 is zero and S−2 and S−1 are uncorrelated,

E[(τA(x)− τ(x))2] ≥ Var(
∑
y2

∑
y1

E[Y2|Y1 = y1, X = x]S−1(y1, y2|x)).

= E[(τC(x)− τ(x))2].
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Again, the outer expectations and variances are over the randomness in S−1 and S−2. This concludes the proof.

D.3 Proof of Example 3

Proof. For the second statement, please note that due to the law of large numbers τ̂B(x) →P E−2[Y1|X = x].
Since by assumption E−2[Y2|X = x] ̸≡ β1E−2[Y1|X = x] + β0, β1τ̂

B(x) + β0 − τ(x) ̸→P 0. This proves the second
statement.

Let I−2 denote the set of indices from time period −2 and I−1 denote the set of indices from time period −1. A
Taylor expansion reveals that

τ̂A(x)− τ(x) =
1

#I−2,x

∑
i∈I−2,x

Y2,i − E−2[Y2|X = x]

=
1

n−2

∑
i∈I−2

1
#I−2,x

n−2

1Xi=x(Y2,i − E−2[Y2|X = x])

=
1

n−2

∑
i∈I−2

1Xi=x

P−2(X = x)
(Y2,i − E−2[Y2|X = x]) + oP (1/

√
n).

Thus,

√
n−2(τ̂

A(x)− τ(x)) ⇀ N (0,
1

P−2(X = x)
Var−2(Y2|X = x))

As n−1/n−2 → ρ and n = n−1 + n−2,

√
n(τ̂A(x)− τ(x)) ⇀ N (0, (1 + ρ)

1

P−2(X = x)
Var−2(Y2|X = x)).

For τC the proof proceeds analogously but is a bit more technical:

τ̂C(x)− τ(x)

=
1

#I−1,x

∑
i∈I−1,x

1

#I−2,x,Y1,i

∑
i′∈I−2,x,Y1,i

Y2,i′ − E−2[Y2|X = x]

=
1

n−1

∑
i∈I−1

1Xi=xi

#I−1,x/n−1

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=Y1,i

#I−2,x,Y1,i
/n−2

(Y2,i′ − E−2[Y2|X = x])

=
1

n−1

∑
i∈I−1

1Xi=xi

#I−1,x/n−1

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=Y1,i

#I−2,x,Y1,i
/n−2

· (E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

+
1

n−1

∑
i∈I−1

1Xi=xi

#I−1,x/n−1

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=Y1,i

#I−2,x,Y1,i
/n−2

(Y2,i′ − E−2[Y2|Y1 = Y1,i, X = x])
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The first part can be drastically simplified and we can add an additional sum over y to decouple the second term:

τ̂C(x)− τ(x)

=
1

n−1

∑
i∈I−1

1Xi=x

#I−1,x/n−1
(E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

+
1

n−1

∑
i∈I−1

1Xi=x

#I−1,x/n−1

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=Y1,i

#I−2,x,Y1,i/n−2
(Y2,i′ − E−2[Y2|Y1 = Y1,i, X = x])

=
1

n−1

∑
i∈I−1

1Xi=x

#I−1,x/n−1
(E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

+
∑
y

1

n−1

∑
i∈I−1

1Xi=x,yi=y

#I−1,x/n−1

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=y

#I−2,x,y/n−2
(Y2,i′ − E−2[Y2|Y1 = y,X = x])

Now by the law of large numbers,

τ̂C(x)− τ(x)

=
1

n−1

∑
i∈I−1

1Xi=x

P−2(X = x)
(E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

+
∑
y

P−2(X = x, Y1 = y)

P−2(X = x)

1

n−2

∑
i′∈I−2

1Xi′=xi′ ,Y1,i′=y

P−2(X = x, Y1 = y)
(Y2,i − E−2[Y2|Y1 = y,X = x])

+ oP (1/
√
n)

=
1

n−1

∑
i∈I−1

1Xi=x

P−2(X = x)
(E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

1

n−2

∑
i′∈I−2

∑
y

1Xi′=xi′ ,Y1,i′=y

P−2(X = x)
(Y2,i − E−2[Y2|Y1 = y,X = x])

+ oP (1/
√
n)

=
1

n−1

∑
i∈I−1

1Xi=x

P−2(X = x)
(E−2[Y2|Y1 = Y1,i, X = x]− E−2[Y2|X = x])

1

n−2

∑
i′∈I−2

1Xi′=xi′

P−2(X = x)
(Y2,i′ − E−2[Y2|Y1 = Y1,i′ , X = x])

+ oP (1/
√
n)

Thus, by the CLT, with n−1

n−2
→ ρ we have

√
n(τ̂C(x)− τ(x)) ⇀ N (0, σ2

C),

where

σ2
C =

1 + ρ

ρ

1

P−2(X = x)
Var−2(E−2[Y2|Y1, X = x]|X = x)

+ (1 + ρ)
1

P−2(X = x)
Var−2(Y2 − E−2[Y2|Y1, X = x]|X = x).

Thus, (τA)2 < (τC)2 if and only if ρ < 1.

D.4 Proof of Example 4

Proof. Please note that following the proof of Example 3, the estimators τ̂A(x), τ̂Bscaled(x) := β1τ
B(x) + β0

and τ̂C(x) are all asymptotically unbiased. Thus, in the following we will compare their respective asymptotic
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variances. For τ̂Bscaled(x) we have asymptotic variance

1 + ρ

ρP−2(X = x)
Var(β1Y1 + β0|X = x)

=
1 + ρ

ρP−2(X = x)
Var(E−2[Y2|Y1, X = x]|X = x)

From the proof of Example 3 we know that the asymptotic variance of τ̂A(x) is

1 + ρ

P−2(X = x)
Var(Y2 − E−2[Y2|Y1, X = x]|X = x)

+
1 + ρ

P−2(X = x)
Var(E−2[Y2|Y1, X = x]|X = x).

Similarly, for τ̂C we know that the asymptotic variance is

(1 + ρ)
1

P−2(X = x)
Var(Y2 − E−2[Y2|Y1, X = x]|X = x)

+
1 + ρ

ρ

1

P−2(X = x)
Var(E−2[Y2|Y1, X = x]|X = x).

Since ρ > 1, and E−2[Y2|Y1, X] = β1Y1 + β0 the claim follows.


