
Global Mobile Inventors∗

Dany Bahar † Prithwiraj Choudhury
Brown University Harvard Business School

Harvard Growth Lab

Ernest Miguelez Sara Signorelli
Institute of Public Goods and Policies, CSIC École polytechnique – CREST

August 19, 2024

Abstract
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1 Introduction

Albert Einstein’s legacy goes beyond his own contributions to science. He, as well as many

other German Jewish scientists who fled Nazi Germany to the United States, are given credit

for having "revolutionized US innovation", especially in fields such as chemistry (Moser et al.,

2014). In other fields such as Mathematics, the post-1992 influx of Soviet mathematicians

to the United States has been attributed to an increase in the production of "Soviet style

Mathematics" in the United States (Borjas and Doran, 2012). These studies, conducted

in specific fields of science and in specific epochs of history, raise the question: Can we

systematically trace back the origin and rise of a country’s inventive activity in specific

fields to geographically mobile inventors transferring knowledge from abroad? This paper

aims to answer this question.

Using the universe of USPTO records over the past 50 years, which include 6.1 million

patents and 3.4 million inventors traceable across time and space, our paper demonstrates

how this “Einstein” phenomenon is not an isolated one. Inventors who move across borders

–or Global Mobile Inventors (GMIs) as we refer to them– are a rising global phenomenon

leaving a clear footprint in the diffusion of technologies in the global stage.

Our analysis starts by enunciating a conceptual framework of knowledge diffusion across

space based on insights from several strands of literature and lays out testable empirical

predictions on the contexts in which we expect mobile inventors to be particularly effective

at spreading innovation. In sum, knowledge does not move freely across space because

learning is localized and is subject to search costs and contextual frictions.1 In this type of

environment, we theorize, GMIs act as brokers of information from their location of origin

to their location of destination.

We then move to our empirical analysis, starting by describing in detail the GMI phenomenon
1This is consistent consistent with the observation using patent data that shows that knowledge moves with

incredible difficulty across geography and that spillovers are highly localized (see Jaffe et al. (1993); Thompson
(2006); Singh and Marx (2013); Murata et al. (2014); Figueiredo et al. (2015); Balsmeier et al. (2023)).
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to provide some key insights. In particular, we document a substantial increase in the

proportion of GMIs within the inventor population over the past few decades. The share

of GMIs went from negligible levels in 1990 to consisting of 10% of all inventors and being

present in 30% of all patents by 2015, surpassing the well-established parallel phenomenon

of Global Collaborative Patents (GCPs), patents in which inventors located in different

countries collaborate as a team (Kerr and Kerr, 2018). Interestingly, the main corridors

of geographic mobility have also evolved, transitioning from primarily Western countries

and Japan to encompass a growing number of emerging markets such as China, India, and

Korea. This shift highlights the importance of these nations as innovation hubs and signals

a changing landscape of global knowledge flows. In particular, the largest 10 corridors of

inventor mobility include the US as a source or destination, and we can establish that most

of these moves concern inventors from China, Korea, India, and Japan (and Taiwan to a

lesser extent) that migrate in the US for a period of time and subsequently return to their

home country. Finally, as a last stage of our descriptive analysis, we show that GMIs are

“superstars” in a number of dimensions, such as their patenting activity and the quality of

their innovations.

Next, we explore the link between GMIs and the diffusion of technology between nations. In

particular, we study the life cycle of 623 technology classes (as per the Cooperative Patent

Classification, or CPC) in over 200 countries of residence of inventors, and uncover two main

findings with regards to GMIs. First, GMIs are about 70 percent more likely to innovate

in the early stages of technologies new to the countries where they reside after moving

(i.e., we measure early stage as the first chronological decile of patents filed by inventors

in that country and in that technology), as compared to patents in the later stages. This

pattern is much more pronounced when GMIs have previous experience patenting that same

technology abroad before moving, suggesting that they function as a vector of diffusion of

knowledge across borders. This first set of results validates the role of GMIs predicted by our

conceptual framework. We further show that the over-representation of GMIs in the early
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stages of the technology life-cycle is more pronounced for (i) more complex technologies, (ii)

when the destination of the GMIs is a developing country (which are further away from the

technological frontier).2

We also show that, on average, the relative abundance of GMIs becomes negligible roughly

half way through the life cycle of a technology-country pair, implying that after a period of

time the ability to continue to innovate becomes fully embedded in local inventors. Based on

this empirical regularity, we create a novel measure of the speed of local absorptive capacity

(Cohen and Levinthal, 1990) that aims to capture how quickly knowledge is transferred from

GMIs to local inventors. Our findings demonstrate that this local absorptive capacity grows

faster when GMIs are more central in the network with local coauthors in early stages of the

life cycle of technology-country pairs, and this is especially true when the local coauthors of

the GMIs are themselves central in the network, and thus more productive.

While we acknowledge that our study lacks the type of exogenous variation allowing us to

draw definitive conclusions on causal effects –though we carefully estimate a series of increas-

ingly demanding specifications that leave little room for concerns regarding endogeneity– we

believe our results shed a new light on an understudied phenomenon and on the mechanisms

underlying it.

Our paper contributes to a growing literature that links immigrant inventors to positive

effects on innovation in terms of their ability to diffuse knowledge across borders.3 In par-

ticular, our study generalizes the fact that immigrant inventors serve as agents of knowledge

diffusion. This fact has been documented for specific historical events (Moser et al., 2014;

Bernstein et al., 2022) and for specific migration corridors (Prato, 2022). Our paper finds

this empirical regularity to be robust to using the universe of countries filing patents for the
2Consistently, we have an additional finding that shows that the effect is mostly driven by instances where the

GMI is a returnee, which is more common for corridors from developed (technologically advanced) to developing
(technologically laggard) countries.

3Major contributions in this direction include Kerr (2008); Agrawal et al. (2008); Hunt and Gauthier-Loiselle
(2010); Kerr and Lincoln (2010); Hornung (2014); Ganguli (2015); Bosetti et al. (2015); Choudhury (2016); Akcigit
et al. (2017); Breschi et al. (2017); Bernstein et al. (2018); Lissoni (2018); Miguélez (2018); Choudhury and Kim
(2018); Doran and Yoon (2019); Bernstein et al. (2022); Prato (2022); Miguelez and Morrison (2023).
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USPTO and over a period of approximately 50 years.

Furthermore, we contribute to the literature documenting the link between aggregate migra-

tion flows and knowledge diffusion (Bahar and Rapoport, 2018; Bahar et al., 2020), delving

into the mechanisms underlying the relationship. In particular we highlight the crucial role

played by mobile inventors, especially when central in the network of local coauthors. We

also contribute to the limited literature on the crucial role returned workers play in fostering

innovation in developing countries and emerging markets, in part due to the difficulties in

identifying them.4

Finally, we make a significant methodological contribution by moving away from patent cita-

tions to measure technological diffusion, which is recognized to be a noisy measure (Thomp-

son and Fox-Kean, 2005; Jaffe and De Rassenfosse, 2017).

Our findings and contributions have important implications. When it comes to economics, by

linking human mobility to the ability of countries to innovate in new technologies, our results

speak to human mobility as a central determinant of economic growth through innovation.5

This is particularly important in the context of developing countries, where our results tend

to be consistently stronger.

Consequently, our results have direct policy implications. First, countries can benefit

from encouraging scientists and inventors to move and bring with them their accumulated

knowledge and experience, to foster the diffusion of knowledge, which is key to foster innova-

tion and productivity. Second, the integration of newcomers is crucial, as team collaboration

is crucial to facilitate the dissemination of knowledge to local inventors.6

4Related to this literature is the work by Fry (2022) showing that sub-Saharan African scientists returning home
after a stay in the US significantly increase publishing and the size of their local network of colleagues who never left.

5The link between innovation and economic growth has been well established theoretically and empirically. A
recent example is Akcigit et al. (2017).

6In this context our paper also contributes to a growing literature on the role of teams on innovation. In this
literature, for example, it is shown that inventors are increasingly working in teams due to the growing specialization
of knowledge (Uzzi and Spiro, 2005; Jones, 2009). In addition, teamwork comes with division of labor and hierarchy,
with senior inventors holding precious assets capable of transferring them to the rest of the team (Balconi et al., 2004;
Singh, 2005; Jaravel et al., 2018; Bernstein et al., 2022).
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The remaining of the paper is organized as follows: Section 2 lays out theoretical considera-

tions to better understand our results; Section 3 describes the data used; Section 4 presents

some stylized facts about GMIs; Section 5 presents the main analysis on the link between

inventor mobility and technological diffusion; Section 6 explores the mechanisms behind lo-

cal absorption; and Section 7 concludes. This paper is accompanied by an Online Appendix

that further details data sources, methodological approaches, and robustness results.

2 Theoretical Considerations

There is longstanding research across multiple literatures on how knowledge might be con-

fined within geographic regions and may not easily spread to distant geographies. In the

innovation economics literature, it is well known that knowledge spillovers are spatially lo-

calized (e.g., Jaffe et al., 1993)7 and this insight relates to agglomeration economies and the

spatial concentration of knowledge clusters (e.g., Glaeser and Gottlieb, 2009; Rosenthal and

Strange, 2001).

There are three main mechanisms that explain the geographic concentration of knowledge

within regions.

The first of these mechanisms is the high effectiveness of localized learning between individ-

uals during serendipitous face-to-face interactions (as opposed to not face-to-face learning).

This mechanism was highlighted by Marshall (1920) and Jacobs (1969) and is salient to a

stream of recent research in economics and management (e.g., Duranton and Puga, 2001;

Nardi and Whittaker, 2002; Choudhury, 2017; Bahar and Rapoport, 2018; Battiston et al.,

2021; Lane et al., 2021; Atkin et al., 2022).

The second mechanism relates to the intuitive proven fact that, when it comes to finding
7Other papers that document and relate to geographic localization of knowledge spillovers include Almeida and

Kogut (1999); Thompson and Fox-Kean (2005); Breschi and Lissoni (2009); Gambardella and Giarratana (2010);
Belenzon and Schankerman (2013); Singh and Marx (2013); Murata et al. (2014); Contigiani and Testoni (2023).
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sources of knowledge, the search costs are for the recipient of such knowledge are considerably

lower in proximate geographies. This applies to what is often referred to as a proximate macro

geography (e.g., within the same city or state) or even a proximate micro geography (e.g.,

being in the same floor of a building Vs. different floors), as opposed to distant macro or

micro geographies (e.g., Bahar et al., 2014; Bahar, 2020; Sandvik et al., 2020; Roche et al.,

2024).

The third mechanism relates to the contextual frictions, i.e., language, culture and the

tacitness component of knowledge, that prevent the dissemination of “sticky knowledge”

across geographies. The literature has argued that knowledge might be “sticky” and may

not traverse across geographies, especially if such knowledge is non-codified or un-codifiable

(e.g., Szulanski, 2000; Cowan et al., 2000). A more recent stream of research documents how

language and culture can represent frictions in disseminating knowledge across regions (e.g.,

Choudhury and Kim, 2019; Bahar et al., 2023).

Given the geographic localization of knowledge, and the mechanisms that explain such fact,

we theorize the following.

First, individuals who move between regions can act as catalysts to spread the otherwise

geographically constrained knowledge, especially by acting as “knowledge brokers” between

groups of individuals within their professional and social networks. By doing so, geographi-

cally mobile inventors are potentially critical actors behind the origin and rise of a country’s

inventive activity in specific fields. As such, GMIs can facilitate the spread of knowledge

from the territory where the knowledge was originally produced to the host country where

the GMI is now located.8

Second, we also theorize that GMIs will disproportionately benefit knowledge diffusion when

more central in the host territory network, speeding up local absorptive capacity (Cohen and
8Related research on inventors as knowledge brokers includes Hargadon and Sutton (1997); Balconi et al. (2004);

Fleming et al. (2007b); Breschi and Catalini (2010); Forti et al. (2013); Choudhury (2016); Paruchuri and Awate
(2017); Balachandran and Hernandez (2018); Zacchia (2020); Bahar et al. (2023); Fry and Furman (2023).
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Levinthal, 1990). This idea builds on the longstanding literature on networks and brokerage,

especially the literature on “small world” networks in sociology and management. Networks

research (e.g., Watts and Strogatz, 1998; Watts, 1999)has highlighted the existence of “small

worlds” in the production and dissemination of knowledge. Small worlds have been defined

as “clusters of locally dense interactions connected via a few bridging ties” (Fleming et al.,

2007a, p. 938).9 Given the existence of small worlds in knowledge production and knowledge

dissemination where such small worlds are tethered to geographic regions, GMIs can also

serve as “knowledge brokers” locally when sharing geographically constrained knowledge to

local peers in their host areas.

Heterogenous Effects

The sociology literature has offered two conceptual views on brokerage: Structural holes

(e.g., Burt, 2004), and structural folds (e.g., Vedres and Stark, 2010). In the structural holes

view, individuals at the intersection of two small-world networks can derive social capital

by brokering knowledge and information across the structural hole. In the structural folds

view, individuals serve as “multiple insiders” (i.e., have inside-access to two or more small

world networks) and can facilitate the transfer of knowledge between such disparate small

world networks.

We argue that GMIs could represent either or both, structural holes or structural folds,

between two small world networks (i.e., the small world network pertaining to the country

originally producing the knowledge, and small-world network pertaining to the country where

the GMI is now located). Building on Szulanski (2000) and Cowan et al. (2000), we further

theorize that the effectiveness of the GMI as a knowledge broker between the two countries

would be accented if the knowledge being transferred was more complex (i.e., the knowledge

comprised more tacit and non-codified components), as their adoption and acquisition is
9The idea that social networks might be driving the innovativeness of regions has been long theorized in the

economics literature, too (e.g., Marshall, 1920; Piore and Sabel, 1984).
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more costly (Tamer Cavusgil et al., 2003; Balland and Rigby, 2017). We also hypothesize

knowledge transfers to be more important when the destination country lays further away

from the technological frontier (i.e., a developing country), and thus has more to learn.

This is even reinforced when the GMI is a returnee, as usually returnee flows occur from

technological leaders to laggard countries. Further, returnees can be particularly important

knowledge brokers as they share language and cultural traits with their colleagues in their

home country with whom they will share the newly acquired knowledge. Finally, we theorize

that the effectiveness of the GMI as a knowledge broker between the two regions would be

accented if the GMI had a rich and dense network of local collaborators in the host territory

that are also in turn well connected into the network (i.e., the small world of the receiving

country).

These theoretical considerations guide the empirical analysis throughout the rest of the

paper.

3 Data

We base our analysis on patents and inventors from PatentsView. This open data platform

contains the universe of patents granted by the USPTO for the period from 1970 until 2015,

which we assign to countries based on the country of residence of their inventors, and to

one of 623 technology classes according to its first listed Cooperative Patent Classification

(CPC). Our final sample includes 6,146,440 granted patents belonging to 3,490,075 inventors.

In our main analysis, we look at the prevalence of GMIs among the inventors of the first

patents of a technology class ever filed in a given country. In a robustness test, we show

that results are robust to considering all CPC classifications mentioned in the patent, and

not just the first. To define a time span for each patent, our analysis uses the filling date (or

the priority date if earlier). This follows the practice in the literature that considers filing
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dates as the most closely related to the date the knowledge creation occurred.10 Although

this data source only includes patents that were (also) filed in the USPTO, we argue that it

includes all patents that can be considered as transformational, since it is the second largest

patent office in the world, after China, and by far the largest repository of non-resident

patents (WIPO, 2022).11

PatentsView uses complex algorithms to disambiguate the names of inventors and firms,

resulting in a unique identifier for both (Monath et al., 2020).12 It also registers the location

of residence of each inventor at the time of patent filing, which together with the individual

identifier, allows us to follow inventors across time and space and thus identify cross-border

moves (consistent with patent activity).13

We define as GMIs all inventors that patent in a country other than the one that they have

been observed patenting previously. An open question for this definition is for how long an

inventor who moved across borders is to be considered a GMI. One possibility is to consider

that after the first move an inventor remains a GMI during the rest of her career. The other

extreme case is to only assign the GMI label to the first patent filed after a given move. In

the main analysis of this paper, we define an inventor as a GMI since the moment she files

the first patent in a country other than the one in which she filed her previous patent and

during all patenting activity that occurs within the year after that. In this instance, a GMI

is identified as such for patents filed within one year of observing the first patent filing in a

different country. In our approach the one-year clock is reset following a new cross-border

move. In the Online Appendix Section B.1 we show that the results are robust to assigning
10We drop patents filed after 2015 to avoid right-censoring, which is due to the time delay existing between the

time of the filing and the time of acceptance. Our results, however, are robust to including the full dataset.
11In Online Appendix B.4 we show that the results are robust to excluding from the sample technology-country

pairs where the very first patents filed do not appear in the USPTO, as indicated by the PATSTAT dataset. We also
show that our results are robust to the reproducibility of the analysis using data from the European Patent Office
(EPO).

12Extensive prior work describes both the USPTO data and assignee disambiguation efforts (see Hall et al. 2001;
Li et al. 2014) and the role of patent data as an indicator of innovation (Trajtenberg, 1990; Hall et al., 2001).

13The most common practice is that an inventor reports her address, or the address of her work office, at the
moment of filing the patent. This information is thus useful both for measuring inventor mobility across borders and
for determining the countries where the MNE has offices around the world.
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the GMI status to the inventor’s entire career following the first move.

As opposed to the micro data used by Miguelez and Fink (2017), PatentViews contains no

information on inventor’s nationality, implying that GMIs cannot be directly classified into

immigrants or returnees. In order to obtain this distinction, we perform a name analysis

using the cultural origin of inventors’ names (Kerr, 2008; Breschi et al., 2017).14 If a GMI

moves to a country where her name and surname are not common (highly frequent), we

define her as “immigrant”, otherwise we define her as “returnee”. If they are common in both

home and host countries (e.g., when both countries share the same linguistic group), then

we grant her origin country where she filed her first patent (more details available in Breschi

et al., 2017; Coda-Zabetta et al., 2021).

4 The Rise of Global Mobile Inventors

Figure 1a reveals that by 2015 nearly 30 thousand patenting inventors have moved interna-

tionally at some point in their career, corresponding to about 70 thousand patents, going

from 1 thousand and 2 thousand in 1980 respectively.15 Figure 1b shows that while the

mobility of inventors was a negligible phenomenon until the 1990s, it grew massively since

then, reaching almost 10% of all inventors and 30% of all patents by 2015.16 Figure 1c shows

that, while in the 1980s and 1990s the largest flows of inventors were taking place within

Western countries and Japan, with the United States as the focal point, since the beginning

of the 2000s emerging markets such as China, Korea and India entered the top 10 of the

most important corridors of inventor mobility, rendering it a truly global phenomenon.
14We rely on IBM’s Global Name Recognition (GNR) system, which includes 750k full names + computer-generated

variants for each name or surname that were originated by Immigration authorities in the US at the beginning of
the 1990’s, to run ethno-linguistic analysis on inventors’ names and surnames. For each of them, it provides (among
other things) a list of countries of association, together with information on the name’s/surname’s frequency in each
country (expressed in deciles).

15For this graph, we consider a GMI every inventor that has moved at some point in the past and throughout his
following career.

16For comparison, note that the share of patents that classify as Global Collaborative Patents Kerr and Kerr (2018),
another form of the internationalization of innovation, has grown from nearly 0.5% of all patents in the early 1970s
to over 8% of all patents in the mid 2010s (see Online Appendix figure A5).
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Online Appendix figure A1 show a similar picture for the evolution of the number of

patents filed by country. While the US and Japan remain the global leaders in 2015 as

measured by aggregate patents filed, China, South Korea and Taiwan show an impressive

progression over the period and by the end they surpass France and the U.K.

Figure 1: The rise of mobile inventors and the shifting corridors

(a) N. of GMI inventors and patents (b) Shares of GMI inventors and patents

(c) Shifting corridors of mobility

Panel a. and b. count the mobile inventors and the patents they file globally each year (in numbers and shares,
respectively). Panel c. shows the evolution of the top 10 largest corridors of mobility over the period, with the
largest corridor at the top.

Online Appendix A provides additional descriptive statistics, including the breakdown of
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the main corridor by migrant versus returnee status (see Figures A2 and A3). What we can

observe is that by 2015 the three largest returnee flows concern inventors returning to China,

Korea, and India after a stay in the US.

GMIs are highly productive, highly capable inventors, called “superstars”. As such, they are

among the few inventors able to transfer knowledge across borders, sharing it with locals,

and pioneer the development of new technological life-cycles in the receiving countries. In

Table 1 we present summary statistics comparing GMIs to non-GMIs.17 Since in our sample,

by definition, a GMI must have at least two patents, we highlight the comparison between

GMIs and never moving inventors with at least two patents. Compared to non-GMIs with

at least two patents, GMIs patent significantly more (17.17 vs 7.13). We also find that 44%

of all GMIs patents in firms that belong to the top 100 in terms of the number of patents

filed globally, whereas the corresponding figure for non-GMIs with two or more patents is

29%. GMIs are almost three times as likely to participate in Global Collaborative Patents

than non-GMIs. Finally, GMIs have a patenting career that is longer, almost twice or three

times as long as for non-GMIs, and receive more citations.

5 GMIs and the Diffusion of Technologies

In this section, we move on to investigate whether GMIs play a special role in explaining

the dynamics of technology diffusion across countries. We focus in particular on GMIs with

previous experience in a given technology, defined as an inventor that has filed at least one

patent in that technology class before moving. We first provide preliminary evidence by

regressing a dummy identifying GMIs with prior experience (or experienced GMI) in a given

technology class on a series of dummies identifying each decile of all patents filed within

that technology in the destination country, chronologically ordered by priority date. For
17Any person that was ever a GMI according to all definitions above is considered a GMI for this exercise, even

before the first international movement.
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Table 1: GMIs vs. non-GMIs

µGMI µnonGMI ∆ µ2+
nonGMI ∆2+

Number of patents 17.17 3.94 13.23*** 7.13 10.04***
Number of assignees 3.95 1.24 2.71*** 1.72 2.22***
Filed in Top 100 assginee 0.44 0.21 0.23*** 0.29 0.15***
Number of active years 14.72 4.64 10.08*** 8.59 6.13***
Share of GCPs 0.23 0.08 0.15*** 0.08 0.15***
Multiple Fields 0.48 0.43 0.05*** 0.45 0.02***
NPL Citations 6.59 3.97 2.61*** 4.94 1.65***
Citations (5-year) 9.88 6.52 3.37*** 8.28 1.60***
Sample Size 97192 3391954 - 1626550 -

This table presents averages for a number of measures for GMIs and non-GMIs. Averages for GMIs are denoted
by µGMI . For non-GMIs we provide averages for the overall sample of non-GMIs (µnonGMI) as well as for the
sub-sample of non-GMIs with two or more patents filed throughout the patenting career of the inventors (µ2+

nonGMI).
The table also presents difference of the means between GMI and non-GMIs (denoted by ∆) as well as for GMI and
non-GMI with 2 or more patents (denoted by ∆2+). Statistical significance of t-test are presented using stars as
follows: ∗p < 0.10,∗∗ p < 0.05,∗∗∗ p < 0.01

example, the dummy for the first decile equals one if the patent is among the first 10% of

all patents ever produced in that technology within that country; while the dummy for the

10th decile equals one if the patent is among the latest -or most recent- 10% of patents filed

in that technology in that country, according to our sample. By doing this, we estimate the

probability that a "pioneering" patent (within any given country-technology pair) is linked

to at least one experienced GMI. We omit the dummy for the 10th decile so that the other

coefficients can be interpreted as the additional concentration of experienced GMIs in earlier

deciles relative to the final decile. Finally, we control for fixed effects for country-year,

technology-year, and assignee-year combinations to absorb shocks that affect a particular

technology over time and changes in overall R&D investments in a given country or a given

multinational firm, all of which could be correlated with the flow of GMIs and the emergence

of new technologies simultaneously. Formally, we estimate the following model :

GMI
prev_exp
i,p,k,c,t =

10∑
d=1

βddecile
d
p,k,c + θc,t + ϕk,t + ηassigneep,t + ui,p,k,c,t (1)
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where subscript i is an inventor, p is a patent, k is a technology class, c is the country of

residence of the inventor, and t is the year of patent filing. The data set is thus uniquely

identified by the inventor ID and patent ID. GMI
prev_exp
k,i,p,c,t is a binary outcome that takes the

value 1 if the inventor i is a GMI with prior experience in technology k before time t in a

country other than c. deciledp,c is a dummy variable that takes the value 1 if the patent p is in

the dth decile of all patents within each technology class k and country c chronologically order

by the date of application (or priority date, whatever is earliest). For example, decile1i,p,c = 1

if patent p is among the first 10% of all patents ever produced in country c and in technology

k; while decile10i,p,c = 1 if patent p is among the latest –or most recent– 10% of patents filed

in country c and technology k, according to our sample. In this sense, β1 is an estimator

of the probability that a “pioneering patent” (within any given country-technology pair) is

related to at least one experienced migrant inventor.

Figure 2 summarizes the result of this estimation by plotting the probability of observing a

mobile inventor with past experience in a given technology, across the life cycle of that same

technology in the country of destination. Panel (a) shows the results for all countries pooled

together, while panel (b) distinguishes between OECD and non-OECD countries.18

If GMIs with previous experience abroad were randomly distributed across the technology

lifecycle, we would see no differences in their presence across deciles. However, that is

not the case. For Panel (a), we observe that patents in the first decile have around 0.5

percentage points higher probability of having been invented by at least one experienced

GMI than the latest 10% patents filed in the same country and technology. Since in our

sample the unconditional probability of seeing any experienced GMI across all deciles is
18Our choice to define deciles by splitting the total number of patents filed in a given country and technology pair,

rather than splitting the calendar time between the first and last patent filed, is justified by the fact that the very
first patents take longer to be invented than those that come later on in the life-cycle. Appendix table B2 shows that,
on average, it takes 6 years to invent the first decile of patents, while the length quickly converges to 2 years for the
deciles after. If we define deciles according to equally sized periods of time, we obtain a median of 2 patents in the
first decile instead of the 5 obtained with our preferred definition, reducing considerably the number of observations
considered as "pioneering inventions". Nonetheless, in Appendix figure B2 we reproduce our main figure according
to the alternative calendar time definition, and show that a similar pattern arises, even though much more noisily
when using the "GMI 1 year" definition and only significant when using the "GMI always" definition.
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0.7%, this implies that an experienced GMI is over 70% more likely to file a patent in the

earliest decile of any given country-technology pair. Noticeably in the figure, the probability

keeps dropping and becomes statistically insignificant after the third decile (based on the

confidence intervals at the 90% level). We can interpret the fact that the over-representation

of GMIs fades out in patents invented later in the life cycle of a technology as evidence that

the ability to innovate in that technology, as time goes by, becomes fully embedded in local

inventors.

Panel (b) shows that, while this relationship holds true in both OECD and non-OECD

countries, it is much more pronounced in non-OECD countries, where there is a 3 percentage

points higher probability that a patent in the first decile is invented by experienced GMIs

than a patent in the last decile (as opposed to under 1 percentage point for OECD countries).

This heterogeneity highlights how GMIs are particularly crucial for technology diffusion in

countries that are further away from the technological frontier (as predicted in Section 2).

In the Online Appendix B.1 we show that the figure remains unchanged if we use the "GMI

Always" definition, which assigns the GMI status throughout the entire career of the inventor

after the observed first change in country of residence. This definition of GMI is more conser-

vative since it excludes the possibility of earlier GMIs being considered as locals after the first

year spent patenting at destination. The fact that our results remain unchanged supports

our interpretation of the figure as evidence of diffusion towards never-moving inventors. The

OECD heterogeneity is also robust to this change.

Our main regression analysis aims to confirm the robustness of the link between the arrival

of an experienced GMI and the introduction of a new class of technology in the country

of destination. To do that, we regress the probability that a patent belongs to the first

decile of the country-specific technology life cycle depending on the presence of a GMI with

previous experience (relative to the other 9 deciles, thus a very stringent test), controlling

for a battery of inventor-level and patent-level controls and several layers of fixed effects. We
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Figure 2: Probability of patent by experienced GMI throughout life-cycle
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This figure plots the probability of observing a mobile inventor with previous experience abroad across the 10 deciles
of that technology life-cycle in the country of destination. The 10th decile (e.g the patents filed most recently)
is used as the comparison one, and the whiskers represent the 90% confidence intervals (based on standard errors
clustered at the country level). The underlying regression controls for technology × year, country × year, and
firm × year fixed effects to absorb differences explained by specific technology, country and firm trends. Panel (a)
shows the results for the entire sample, while Panel (b) distinguishes between OECD and non-OECD countries.

then explore the heterogeneity of the effect across types of mobility to test whether GMIs

are particularly relevant for technology diffusion in contexts consistent with the theoretical

considerations discussed in Section 2, and we perform several robustness checks to rule out

alternative explanations. Formally, we estimate:

decile1p,k,c = βGMIGMI
prev_exp
i,p,k,c,t + controlsi,p+

+ θc,t + ϕk,t + ηassigneep,t + ui,p,k,c,t

(2)

where subscript i is an inventor, p is a patent, k is a technology class, c is the country of

residence of the inventor and t is the year of patent filing. GMI
prev_exp
k,i,p,c,t is a binary outcome

that takes the value 1 if the inventor i is a GMI with previous experience in technology k

before time t in a country other than c. decile1p,c is a dummy variable that takes the value 1

if patent p is in the first decile of all patents within each technology class k and country c in
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chronological order by application date. In this sense, βGMI is an estimator of the probability

that a "pioneering" patent (within any given country-technology pair) is linked to at least

one experienced GMI. Controls include patent characteristics and inventor characteristics.

In the first category, we include a dummy equal to one if the patent is a GCP, the number of

citations to non-patent literature, the number of claims included in the patent, the team size,

a dummy for foreign priority, and the lag between application and granting. In the second

category, we include the experience of the inventor computed as the number of years since

the first patent she produced and the productivity of the inventor computed as the total

stock of patents filed over her entire career. Finally, we control for the length, in calendar

time, of the first decile of technology diffusion. All continuous variables are included using

the inverse hyperbolic sine (IHS) transformation, which controls for skeweness similarly to

the logarithm, but it is also defined in zero. Given this set of controls, our aim is to control

for the fact that GMIs are generally more productive, as shown in the previous section.

The model also includes country-year fixed effects to capture any country-level trends in

the likelihood of introducing new technologies that might be correlated with GMI flows and

technology-year fixed effects to capture broad evolutions of technology across all countries.

Finally, it controls for assignee-year fixed effects to capture any specific trends in innovation

within firms that might be correlated with both their inventor mobility and their likelihood

to introduce a new technology in another country.

Results from estimating equation 2 are presented in Table 2. Column 1 presents the esti-

mation of our coefficient of interest. The interpretation is that the likelihood of seeing a

GMI with prior experience in the first decile of the technology lifecycle is approximately 0.2

percentage points higher than in the remaining 90% of patents filed, equivalent to a 30%

increase from the baseline.19

Column 2 of Table 2 presents an important robustness test. Our claim is that the coefficient

βGMI captures the role of GMIs in the emergence of new technologies for a country. This
19The baseline is the unconditional probability of seeing a GMI in our sample which is 0.7%.
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statement might be violated if the differential effect captured by βGMI is simply driven by

the fact that GMIs are particularly productive inventors. In addition to the set of controls

already added in the main analysis, Column (2) shows that the estimate is much smaller for

GMIs that do not have prior experience in that technology before moving. This suggests that

our finding is not driven only by highly productive inventors but rather by specific knowledge

diffusion (below we also show results that include inventor fixed effects, which further control

for the innate ability of the inventor). Another possibility that would invalidate our results

is a mechanical one: If mobile inventors are more present at the beginning of the country-

technology cycle because of the temporary definition that we adopt (e.g., for the first year

after the move). In the online Appendix Section B1 we show that results remain virtually

unchanged if we use the "GMI always" definition, consisting of assigning the GMI status for

the entire career of the inventor following the move, thus ruling out this possibility.

One might also wonder whether the effects are driven by the strategy of multinational firms

to start operating in a new country, and thus rotate experienced talent from abroad to fa-

cilitate it. Column 3 of Table 2 shows that the over-representation of GMIs is similar if

we compare inventors that moved internationally within the same firm or across firms, sug-

gesting that what we observe is not the mere reflection of firm-specific strategies combining

technology adoption and international human capital management. Furthermore, the inclu-

sion of assignee-year fixed effects in all of our specifications is also meant to control for this

possibility.

The remaining columns of Table 2 test the heterogeneity of the effect across different sub-

samples to verify some theoretical ideas exposed in Section 2. First, as already shown in

Figure 2, Column 4 confirms that the over-presence of GMIs in the early phases of technology

life-cycle is more pronounced in non-OECD countries. This is consistent with the claim that

GMIs are particularly useful for technology diffusion in countries that lie further away from

the technological frontier. Column 5 shows that returnees are twice as likely to be present in

the first decile of technology diffusion than immigrants. This result is consistent with what
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shown by others in the literature (Fry, 2022) and highlights that returnees are particularly

effective knowledge brokers because they possess both the experience accumulated abroad

and the ability to effectively communicate it with those inventors that never left their own

countries. Given the description of the main bilateral corridors concerning returnee mobility

presented in Appendix Table A3, this result suggests that the knowledge transmitted by

inventors that spent some time in the US is particularly valuable for the innovation in

emerging markets such as China, Korea and India.

Column (6) shows that the effect is driven particularly for technologies that are complex.

We define technology complexity by applying the Hidalgo and Hausmann (2009) method

to measure complexity to technologies instead of trade: In short, complex technologies are

those that are rare and only diversified innovation hubs are able to patent in them.20 We

expect complex technologies to contain more tacit knowledge, and thus to be particularly

slow to diffuse without the presence of knowledge brokers such as our GMIs. In the main

table we define complexity using the most recent period of USPTO data (2016-2020). In

Appendix section B.3 we show that the results are robust to measuring complexity in various

periods further back in time.

Finally, Column (7) splits the sample according to the time period of a given technology

diffusion in the country.21 The fact that GMIs are particularly effective at spreading tech-

nologies in countries after the beginning of the 1990s is consistent with the previous results

highlighting the importance for diffusion in non-OECD countries, that started innovating

more recently and can thus learn from the technological leaders. It is also consistent with

the fact that the main flows of returnees going from OECD countries towards emerging mar-

kets become larger in the 2000s, while in the early periods most inventor mobility took place

within OECD.

Finally, in many of these tests the question of the expected direction of causality arises.
20See Moscatelli et al. (2024) for a detailed description of the methodology.
21We define the period based on the date of the first patent that follows the first decile of diffusion.
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While we lack an exogenous treatment that explains the movement of inventors, and thus we

cannot ultimately disregard some other explanations, we find comfort in the survival of our

estimation after the estimation of several specifications and inclusion of a battery of fixed

effects. Certainly a possible story driving our results is that countries systematically put

forward plans to enter a new technological field of innovation, and to achieve it, they adopt

policies aiming to attract foreign workers with the right knowledge and qualifications. If this

were the case, it would still be consistent with our results that in order for countries and

firms to drive their innovation in a new direction, the role that GMIs play is instrumental

for the diffusion of knowledge across borders.

Figure 3 reports how the coefficient associated with GMI with previous experience evolves

with the inclusion of increasingly demanding layers of fixed effects. Vertical bars represent

the confidence intervals at the 10% and 5% level. Standard errors are clustered at the coun-

try level. The first specification includes country-year, technology-year, and firm-year fixed

effects, in addition to all the controls described in the main analysis. Thus, it controls for all

country-specific time trends common to all technologies, for all the technology-specific time

trends common to all countries, and for all firm-specific time-variant factors. This corre-

sponds to our baseline specification. In the second specification, we further add technology-

country fixed effects, which absorb all factors specific to a technology-country pair that are

time invariant. Finally, the last specification adds inventor fixed effects. In the latter case,

the coefficient captures the additional presence of GMIs with previous experience in early

stages of technology diffusion during the year following the inventor’s mobility to another

country, as compared to all other periods of her career. We believe that this last specification

can capture the vast majority of unobservable factors that might confound our relation of

interest. We find that the effect remains significant at the 5% level and preserves a similar

size between specification 1 (our preferred one) and specification 3, the most restrictive one.
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Table 2: Main Results

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00226*** 0.00235***
(0.000732) (0.000761)

GMI, no previous exp. 0.000802***
(0.000271)

GMI, same assignee 0.00232***
(0.000830)

GMI, diff. assignee 0.00216**
(0.00107)

GMI, OECD 0.00202***
(0.000748)

GMI, non OECD 0.00304**
(0.00124)

GMI, immigrant 0.00247***
(0.000920)

GMI, returnee 0.00565***
(0.00124)

GMI, high complex tech. 0.00322**
(0.00138)

GMI, low complex tech. 0.000919
(0.000680)

GMI, prior 1990 -0.000358
(0.00139)

GMI, post 1990 0.00368***
(0.00137)

Observations 13,621,698 13,621,698 13,621,698 13,621,698 13,621,698 13,621,612 13,621,698
R-squared 0.867 0.867 0.867 0.867 0.867 0.867 0.867

Notes: Country-level standard errors in parentheses. Control variables include a dummy equal
to one if the patent is a GCP, the number of citation to non-patent literature (transformed using
the inverse hyperbolic sine, IHS), the number of claims included in the patent (IHS), the size
of the patent team (IHS), a dummy indicating whether the patent has a foreign priority, the
time between application and granting, in days (IHS), the experience of the inventor computed
from the first patent she produced (IHS), the stock of patents produced by the inventor over her
career (IHS), and the length in calendar time of the first decile of technology diffusion (IHS).
The regression further controls for country-year fixed effects, technology-year fixed effects, and
assignee-year fixed effects.
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Figure 3: Main coefficient after adding increasingly demanding fixed effects

Notes: The figure reports the evolution of the main coefficient of interest - as-
sociated with GMI with previous experience - after the addition of increasingly
demanding levels of fixed effects. The "baseline" specification includes country-
year, technology-year, and firm-year fixed effects, in addition to all the controls (a
dummy equal to one if the patent is a GCP, the number of citations to nonpatent
literature, the number of claims included in the patent, the size of the patent team,
a dummy indicating whether the patent has a foreign priority, the time between
application and granting, in days, the experience of the inventor computed from
the first patent she produced, the stock of patents produced by the inventor over
her career), and the length in calendar time of the first decile of technology dif-
fusion. The second specification adds country-technology fixed effects. The third
column adds individual inventor fixed effects.

Additional Robustness

In the Online Appendix we perform several additional robustness tests.

In Section B.4 we address the concern that what we measure as the pioneering patents in a

country-technology cell is not indeed pioneering as USPTO patents in that cell might have

been preceded by patents in another patent country office. To address this selection problem,

we look at all patents from all national and regional patent offices worldwide, grouped by

patent family (from the PATSTAT database) for all technology-country pairs and show that

our main results are robust to restricting the sample to the cases where: (1) there is at least
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one USPTO patent in the first decile of the life-cycle of the pair; and where (2) the very first

patent of the life-cycle is a USPTO one. The latter restriction is much more stringent, since

it reduces the sample from 13.6 millions to 1.4 million observations, but all the coefficients

and heterogeneities of interest remain consistent and very similar in magnitude. This reveals

that our results are not driven by country-technology cells that appear as pioneering in the

USPTO data but are not such when incorporating information from other patent offices.

We also show that our results are robust to including all technology classes listed in the

patent instead of only the first one (Section B.5); to using different GMI definitions (Section

B.1); to collapsing the data at the patent level (Section B.6); and to conducting the same

analysis using data from the EPO instead of the USPTO (Section B.7). The latter is an

additional test to ensure our results are not driven by selection into the USPTO. The Online

Appendix does not just report the results for these tests, but also includes a description of

our interpretation.

6 Mechanisms of Local Absorption: Network centrality

The over-representation of GMIs in the life cycle of a technology-country cell decreases

gradually over time, so that by the fourth decile, on average, GMIs and local inventors

become as likely to be involved in an innovation as predicted by their overall share (Figure

2). As such, we can interpret the slope of the graph as a novel measure of the speed of the local

absorptive capacity between local inventors (Cohen and Levinthal, 1990): The more negative

the relationship between time and share of patents by GMIs, the faster local inventors have

the embedded capacity to continue to innovate.

We exploit the relationship described in Figure 2 by adopting a similar approach to esti-

mate the speed of local absorptive capacity (Cohen and Levinthal, 1990) in each country-

technology cell, using the following specification:
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Sh_GMIexpm,y = αspeed × pctilem,y + um,y (3)

where Sh_GMIexpm,y captures the share of GMIs with previous experience out of all inventors

patenting in a given month m and year y, and pctilem,y records the percentile of patents

filed in each time period (from 0 to 100), as our counter.22 Thus, αspeed captures the speed

of local absorptive capacity: The more negative it is, the faster the over representation of

GMIs fades out. We ran about 11 thousand regressions: one for each technology-country

pair that has a large enough sample in our data. This approach introduces a novel measure

of local diffusion, or local adoption that focuses on the time it takes for locals to fully absorb

the know-how imported by inventors from abroad.23

Appendix Figure C1a shows graphically how the coefficient of local absorption speed is

recovered for the example of the medical instrument technology class in India. Appendix

Figure C1b shows the distribution of the diffusion parameter speed obtained in all countries

and classes, where the outcome in the regression is the share of GMIs. The summary statistics

of the speed measures are reported in the Appendix Table C1. The mean and median of

the coefficient are positive and very close to 0 in magnitude. This can potentially be due

to a combination of two effects. First, the negative relation documented in the previous

section comes from the fact that the technology slowly becomes embedded in the local

pool of inventors, and second, the general increase in the share of GMIs across the globe

documented in the summary statistics, which makes it generally more likely to find GMIs

in more recent years24 To eliminate the second effect, we also perform the analysis using a
22Our findings are robust to use a RCA-like measure of GMI share, which account for the global trend in GMIs in

each technology. Results are reported in the robustness analysis.
23One common approach adopted by the literature to capture technological diffusion is to measure the cumulative

share of adopters at each point in time, which typically proceeds following an S-shape (initially very few adopt, then
there is an acceleration when the majority starts adopting, and finally it slows down again when it reaches the group
most averse to adoption) (Rogers et al., 2014). This approach is suitable for applications that use technology usage
data, but not for applications using patent data. Patents record new inventions in a given technology that typically
do not behave according to the same patterns.

24This effect is absorbed by the year fixed effects in Figure 2.
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Relative Comparative Advantage (RCA) type variable as the outcome, which is simply the

share of GMI observed in a given technology-country percentile divided by the share of GMIs

observed globally at the same moment in time. Appendix Figure C1c plots the distribution

of the speed of diffusion parameter obtained when the outcome is the RCA. Here, the mean

and the median are both negatives (mean =-0.0085, median = -0.0014), consistent with what

was shown when combining all technology-country cells. Next, we keep all the coefficients

in our data set, regardless of their sign, and we store the t-statistic to be able to weight the

observations according to their significance level.25

For the rest of our analysis and for easier interpretation, we flip the sign so that the larger

it is, the faster the speed of the local absorptive capacity. Thus, we define speedc,k =

−α̂speed. To explore whether the number of collaborations between experienced GMIs and

local inventors can predict the speed of knowledge absorption, we then regress the speed on

different measures of network centrality of the GMI using the following model.

speedck = β11(Sh_GMIexpd=1 > 0) + β2NetworkGMIexpd=first

+ β31(Sh_GMIexpd=1 > 0)×NetworkGMIexpd=first + β4Xck + ηc + φk + uck

(4)

where 1(Sh_GMIexpd=1 > 0) is a dummy equal to one if there is at least one GMI with

previous experience within the first decile of the development of the technology k in the

country c. NetworkGMIexpd=first is a measure of the centrality of the GMI network with

previous experience in the first decile of the life cycle where they are found. If in a given

country-technology there are no GMIs with previous experience in the first 3 deciles of
25We remain agnostic on why in some cases the estimated speed of diffusion is positive or negative. It might be noise

caused by estimations with very small samples or something more structural about the different country-technology
cells. In this paper we take the estimates at face value but use the weights to make sure our results are not driven
by noisy estimates. Properly investigating these differences, though, is an important part of our ongoing research
agenda.
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patents filed, we take the average network of the experienced GMIs in the 4th decile. Third,

we include an interaction between the dummy indicating whether there is at least a GMI

in the first decile and the network centrality measure. We use four distinct measures of

network centrality : i) degree centrality, which captures the number of local co-inventors with

whom the GMI is patenting; ii) eigenvector centrality, which is similar to degree centrality

but weights the local coauthors by how central they themselves are in the network; iii)

closeness centrality, which measures its average closeness (inverse of distance) to all other

local inventors. GMIs with a high closeness score have the shortest distances to all other

inventors; iv) betweenness centrality, which measures the shortest paths between all pairs of

GMIs and local inventors in the country. This measure is often used to find individuals in the

network that serve as a bridge between different groups (see summary statistics in the Online

Appendix Table C1). All measures of speed and network centrality are standardized to have

mean 0 and standard deviation 1 to facilitate interpretation. Regressions also include fixed

effects for the country and for technology, and a number of controls Xck including the total

number of days in the country’s technology life cycle, the duration of each decile in days, the

number of days since the first patent was filed in country technology and the total number

of inventors in the 1st decile (all in IHS). Standard errors are clustered at the country level.

We perform four types of regressions: unweighted, weighted by the number of observations

in the technology country cell, weighted by the absolute value of the t-statistic obtained in

the speed regression (equation 3), and unweighted on the sub-sample of speed values that are

statistically significant in equation 3. The weighted regressions aim to give more emphasis

to the observations where the speed estimation is more precise, while the last column only

considers the observations where this speed is significantly different from 0. We expect β1 to

be positive: Given that our absorption speed is directly computed using the slope of GMI

intensity across deciles, the speed is more likely to be higher if there is at least one GMI

with previous experience patenting in the first decile. Here we are thus mainly interested in

β3, which compares country-technology pairs with at least one GMI in the first decile and
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tests whether the speed of local absorptive capacity is higher when these GMIs have a larger

network of local coinventors.

Table 3 reports the main results of our regression analysis. They confirm our hypothesis that

the earlier the presence of GMI with previous experience in the life-cycle of the technology,

and the more central these GMI are among the network of inventors, the faster the speed

of absorptive capacity of locals. In particular, the first column and first row of Table 3

Panel A show that, conditional on the presence of at least one GMI in the first decile

of the technology-country pair (as opposed to later deciles), a standard deviation higher

degree centrality of the GMI in the network of local inventors increases the speed of local

absorptive capacity by about half a standard deviation.26 Using other measures of network

centrality or adding different weighting to the regressions results in qualitatively similar

effects. Interestingly, the coefficients on the interaction are even slightly larger when using

the eigenvector centrality measure, which gives more importance to coauthors in the network

that are themselves central. This suggests that the diffusion of knowledge from GMIs to local

inventors is even faster when the latter are better connected themselves. On the contrary,

we note a smaller and barely statistically significant coefficient in two of the coefficients of

panel D, implying that the betweenness centrality of the GMI (its capacity to bridge separate

networks) might be less important in facilitating local knowledge absorption than measures of

interaction intensity within a given network (such as degree centrality, eigenvector centrality

and closeness centrality)27.

Our interpretation of this final result is consistent with what we spelled out in Section 2,

namely the idea that the more the GMIs are interconnected with the local network through

co-inventorship, the faster the new knowledge they bring into the country is absorbed by

the local inventors, and this is especially true when local coauthors are themselves central in
26Note in the second row that the presence itself of a GMI in the first decile of the patenting activity of the

technology-country pair also explains faster speed, thus the overall explanatory power is of one full standard deviation
(0.521+0.598). However, this second effect could also happen partly by construction, so we focus on the interaction
term as our main effect of interest.

27The coefficients on the various network measures are comparable in size because they have been standardized.
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the network. Appendix Table C2 extends the measure of degree centrality to the number of

local inventors with whom the GMIs co-work within the same subsidiary of the firm, while

not directly patenting together, and recovers the robustness of results to defining the speed

coefficient using the RCA measure, and to define GMI with previous experience using the

GMI always definition, always using degree centrality as the measure of the network. Both

tests give rise to remarkably similar results, while the network of co-workers that are not

co-inventors does not affect the speed of local absorptive capacity. Finally, Appendix Table

C3 introduces triple interactions between the dummy of having a GMI in the first decile,

the degree centrality in the network of local coauthors, and a measure of productivity of the

network of local coauthors. The latter is computed as the average number of patents filed

per year until that point in time by all local inventors that coauthor with a GMI. Results

are not always significant but generally point in the direction that higher productivity of the

local network is associated with fastest diffusion, which both corroborates our conceptual

framework and what found by others in the literature.

7 Conclusion

Our results in this paper speak to the importance of human mobility in facilitating the

process of knowledge diffusion across borders, especially for emerging markets.

This non-trivial result, we believe, has important implications for global dynamics. The

Schumpeterian view argues that innovation –by boosting productivity– translates into higher

economic growth. As such, within this framework, our results suggest that human mobility

is a central determinant of growth and development by effectively spreading ideas globally.

Further, our result showing that the local capacity of inventors to continue producing knowl-

edge in technologies that arguably arrived with GMIs shows that this process is sustainable,

as GMIs seem to ignite innovation, but local inventors are the ones that maintain the pro-
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duction of knowledge over time.

In our future research agenda we aim to further investigate this nonconventional relationship,

and continue to push the frontier of our knowledge surrounding the effect of human mobility

–and migration– on outcomes that go beyond innovation, which also would carry important

policy implications.

If the relationship we uncover here is representative of the role human mobility could play

in other determinants of economic growth, then one could argue that human mobility is a

core part of the solution to bridge the long-standing gaps between developing and developed

nations.
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Table 3: Determinants of the speed of diffusion

(1) (2) (3) (4)
Outcome : speed of diffusion

unweighted wgt by
obs. wgt by T-stat

Only
significant

coefs.

Panel A) Network measure: Degree centrality

1 * [GMI in 1st decile] 0.598*** 0.531*** 0.774*** 0.998***
(0.0655) (0.0567) (0.0875) (0.180)

1 * [GMI in 1st decile] *network local coauthors 0.521*** 0.546*** 0.674*** 0.673**
(0.0743) (0.0704) (0.0968) (0.320)

Observations 4,843 4,843 4,842 925
R-squared 0.322 0.296 0.432 0.595

Panel B) Network measure: Eigenvector centrality

1 * [GMI in 1st decile] 0.586*** 0.534*** 0.770*** 1.121***
(0.0544) (0.0474) (0.0741) (0.168)

1 * [GMI in 1st decile] *network local coauthors 0.573*** 0.560*** 0.766*** 0.969***
(0.0714) (0.0636) (0.0943) (0.209)

Observations 4,843 4,843 4,842 925
R-squared 0.321 0.295 0.430 0.593

Panel C) Network measure: Closeness centrality

1 * [GMI in 1st decile] 0.653*** 0.524*** 0.859*** 1.179***
(0.0814) (0.0694) (0.113) (0.162)

1 * [GMI in 1st decile] *network local coauthors 0.299*** 0.286*** 0.399*** 1.221***
(0.0717) (0.0641) (0.112) (0.229)

Observations 4,843 4,843 4,842 925
R-squared 0.270 0.242 0.369 0.578

Panel D) Network measure: Betweenness centrality

1 * [GMI in 1st decile] 0.622*** 0.485*** 0.813*** 1.027***
(0.0872) (0.0753) (0.120) (0.182)

1 * [GMI in 1st decile] *network local coauthors 0.0287* 0.0362*** 0.0221 0.491**
(0.0152) (0.0129) (0.0170) (0.230)

Observations 4,843 4,843 4,842 925
R-squared 0.261 0.233 0.359 0.537

Notes : Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.
All columns include country and technology fixed effects. It includes as controls the following variables: network
of local coauthors and coworkers (not interacted with), total days of the country-tech life cycle, duration of each
decile in days, total days until first patent filed in tech-country, and total number of inventors in country-tech
in the 1st decile (all in IHS). We show the unweighted regressions as in the main text, and the robustness to
weighting by the number of observations and the t-statistics obtained from the speed regression (equation 3), and
finally restricting observations to those with a significant coefficient in equation 3 (significance defined at the 10%
level).
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Online Appendix

Global Mobile Inventors

By Bahar, Choudhury, Miguelez and Signorelli

August 19, 2024

A Descriptive Statistics and Stylized Facts

Figure A1 plots the total number of patents filed per year in our sample (using the earliest

between application and priority dates). As expected, the number of filings increases over

time, reaching over 250,000 patents filed per year during the mid 2010s, up from just above

50,000 patents filed per year in the 1970s and 1980s. While we do not report it in this figure,

we also see that the number of filings is steeply reduced for the most recent years (after

2015), due to the right censoring in the data (some of the most recent innovations have yet

to be granted a patent, given the time delays in the process). Hence, all of our analysis is

based on patents filed up to 2015, as noted in the main body of the text.

On average, these patents have 2.44 inventors per patent, with half of them filed by 2

or less inventors, while the maximum is 76. The size of teams filing a patent has increased

slightly over the period, going from about 1.7 in the middle of the 1970s to about 2.8 in the

early 2010s. Inventors in our sample reside in 94 different countries. However, it is only a

handful of countries that account for the majority of the inventors’ countries of residence.

Figure A2 plots the number of inventors observed patenting each year by country of residence,

for the countries that for at least five years in the whole sample (1970 to 2019) were among

the five countries with the largest number of patenting inventors. The US is the country

with the largest number of patenting inventors during the entire period in our sample, with
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Figure A1: Total patents filed by year
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This figure plots the number of patents filed by year of application in our sample. Please note that the scale on the
Y-axis is non-linear, to better visualize the progression of emerging markets.
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Figure A2: Top countries filing patents by inventors’ residence and year
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This figure plots the number of patenting inventors by year and country of residence. The list of countries included
is limited to those countries that for at least five years during the whole sample (1970 to 2015) were in the top five
countries with the largest number of patenting inventors.

Japan as a close second throughout. China, South Korea and Taiwan stand out in the figure

because of their impressive rise in number of inventors between 1970 until the present. On

the contrary, Germany, France, and the UK - which counted within the innovation leaders in

the 1970s - have had a stable number of patenting inventors since, and have been surpassed

by the Asian countries in recent years.

With the growth in the number of mobile inventors, we also observe an expansion in

the number of major international corridors. Figure A3 plots the intensity of movements in

the top 50 international corridors for the period 2015 to 2019 (which represent 85% of all

movements in that period). The graph shows how the United States is the largest country
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Table A1: Main corridors by 5-year periods

Rank 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2015
1 GB → US GB → US GB → US GB → US US → CN US → CN
2 US → GB JP → US JP → US JP → US CN → US CN → US
3 JP → US US → GB DE → US US → DE GB → US CA → US
4 DE → US US → JP US → GB DE → US CA → US US → CA
5 US → JP US → DE US → DE CA → US US → GB KR → US
6 US → DE DE → US US → JP US → GB US → CA US → KR
7 CA → US CA → US CA → US US → JP US → DE GB → US
8 US → CA US → CA US → CA US → CA JP → US US → GB
9 CH → DE DE → CH US → TW US → CN US → JP US → IN
10 DE → CH CH → DE FR → US CN → US DE → US IN → US

This table presents the top ten international corridors for moving inventors for every five-year period during 1985 to
2015, in terms of absolute number of movements.

of origin and of destination for mobile inventors, with China being the second largest. The

two largest flows, accordingly, are from the US to China and from China to the US. Other

countries that stand out as the origin and destination of the main international corridors are

South Korea, Taiwan, Japan, Hong Kong, India, Canada, the United Kingdom, Germany,

and France, consistent with figure A2.

It is important to note that the main international corridors for inventors have undergone

important changes over the years. Table A1 presents the top ten corridors for every five-

year period since 1985 to 2015 (using total movements for each period, based on application

year). For instance, during the 1985 to 1989 period, the top five international corridors for

inventors were: from the United Kingdom to the United States, from Japan to the United

States, from the United States to Japan, from Germany to the United States, and from the

United States to the United Kingdom. In the most recent period in the sample (2010-2015),

the main corridors are from China to the United States, from the United States to China,

from South Korea to the United States, from Canada to the United States, and from the

United Kingdom to the United States. Indeed, consistent with Figure A2, the rise of China

and South Korea in patenting activity is also correlated with their inclusion in the major

corridors of international mobility of inventors over time.
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Figure A3: Top 50 international corridors for inventors (2015-2019)
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Table A2: Main corridors for GMI migrants by 5-year periods

Rank 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2015
1 JP → US JP → US JP → US JP → US CN → US CN → US
2 GB → US GB → US GB → US US → CA JP → US KR → US
3 US → GB US → GB US → GB GB → US US → CA US → CA
4 DE → US DE → US DE → US US → GB US → GB CA → US
5 US → CA US → CA CA → US DE → US KR → US US → GB
6 CA → US CA → US US → CA CA → US GB → US JP → US
7 US → DE US → DE US → DE CN → US CA → US IN → US
8 DE → CH DE → CH FR → US US → DE DE → US GB → US
9 CH → DE FR → US KR → US KR → US US → DE DE → US
10 DE → AT CH → DE DE → CH TW → US TW → US TW → US

This table presents the top ten international corridors for immigrant inventors for every five-year period during 1985
to 2015, in terms of absolute number of movements.

Interestingly, the top ten corridors differ if we consider immigrant separately from re-

turnee GMIs. We use our name recognition approach to divide GMIs into these two cate-

gories and reclassify corridors accordingly. The results are reported in Tables A2 and A3.

In particular, if we take the most recent period, we see that the two largest corridors of

migration go from China and South Korea towards the US. Moreover, the US are the desti-

nation of 8 out of the top 10 immigrant corridors, the remaining two being from the US to

Canada and the UK. Clearly, the direction of inventor migration goes from emerging markets

towards advanced economies. Consistently, the opposite is observed if we look at the main

corridors for returnees. The four largest flows consist of movements from the US towards

Asia (in order towards China, Korea, India, and Japan). This fact is strongly suggestive of

the temporary nature of most immigrants’ stay in the US, and reinforces our finding that

returnees having accumulated new knowledge abroad are key players in the diffusion of such

knowledge in their countries of origin upon their return.
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Table A3: Main corridors for GMI returnees by 5-year periods

Rank 1985-1989 1990-1994 1995-1999 2000-2004 2005-2009 2010-2015
1 US → JP US → JP US → JP US → JP US → CN US → CN
2 GB → US GB → US US → DE US → CN US → KR US → KR
3 US → DE US → DE GB → US US → DE US → JP US → IN
4 US → GB CA → US DE → US GB → US GB → US US → JP
5 CA → US US → GB CA → US US → KR CA → US CA → US
6 DE → US DE → US US → TW CA → US US → TW GB → US
7 CH → DE US → KR US → GB US → TW US → IN US → TW
8 AT → DE CH → DE US → KR DE → US US → DE US → DE
9 DE → CH US → CA US → CA US → GB DE → US US → CA
10 US → CA US → TW US → IL US → IN US → GB US → GB

This table presents the top ten international corridors for returnee inventors for every five-year period during 1985
to 2015, in terms of absolute number of movements.

A.1 The Rise of GMIs

Figure A4 plots the total number of international movements observed in our sample by

year.28 The plot shows that the mobility of inventors across borders has grown significantly

over the past decades, going from a few hundreds in the 1970s and 1980s to about 20,000

in the mid-2010s. The figure also shows that the vast majority of movements throughout

the years take place outside the boundaries of the assignee (firm), though a non-negligible

amount of movers that patent in different countries do so within the same assignee.

A known factor that defines the internationalization of knowledge production is the rising

prominence of patents filed by teams of inventors residing in multiple countries, also known

as global collaborative patents (GPCs) (Kerr and Kerr, 2018). The latter are typically large

and ambitious projects involving international collaborations. The share of patents that are

classified as GCPs in our sample has grown from nearly 0.5% of all patents in the early 1970s

to more than 8% of all patents in the mid-2010s, a 16X growth.29 The internationalization
28These movements are equivalent to the number of GMI (First Patent) in the sample every year, according to the

definitions in the previous subsection.
29We identify GCPs in our sample as the patents filed by at least two inventors residing in at least two different

countries at the time of application. The large growth observed is consistent with the findings of Kerr and Kerr
(2018), who, using a sample of US public company patents, found that the share of GCPs went from 1% in 1982 to
6% in 2004. Our sample is not limited to US firms, which is explaining the differences in the overall figures, although
the trends are quite similar. For comparison purposes, we report that in our sample the share of GCPs goes from
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Figure A4: International movements of inventors, by. year
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This figure plots the absolute number of international movements we see in our sample by year, using the year of
application (or priority, if earlier) of a patent where the inventor’s reported country of residence differs to the one
reported in the immediately previous patent by the same inventor.
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trend observed through the rise in GCPs is even more pronounced when we look at patents

filed by teams with at least one GMI. Figure A5 plots the share of all patents that have at

least one GMI year-by-year, using the three different definitions outlined above. The graph

shows that in the early 1970s less than half a percent of all patents had at least one GMI,

regardless of the GMI definition used. In fact, the share of patents with a GMI in the team

was significantly lower than the share of GCPs in 1970. However, patents with at least

one GMI in the team became much more common over the past decades. In 2015, about

7% of the patents in the sample had at least one GMI, using the “First Patent” definition.

Naturally, because of the cumulative effect of how the variables are computed, when using

the other definitions, the number is even larger, as seen in the figure. About 15% and 28% of

the patents in the sample, by 2015, had a GMI defined using the “First Year” and “Always”,

respectively. Thus, regardless of how it is measured, the GMI phenomenon is as fast-growing,

if not more, and often larger (depending on how GMI is defined) than GCPs.

1.5% in 1982 to nearly 6% in 2004, which are very similar figures.
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Figure A5: Share of patents by categories

0
.1

.2
.3

S
h

a
re

 o
f 

P
a

te
n

ts

1970 1975 1980 1985 1990 1995 2000 2005 2010 2015
Filing Year

GCP GMI (First Patent)

GMI (First Year) GMI (Always)

This figure plots for every year of application (or priority if earlier) the share of patents with at least one GMI using
three different definitions outlined in the main body of the text, as well as the share of patents that can be classified
as a GCP.
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B GMIs and the Life-Cycle of Technologies: robustness and het-

erogeneity

B.1 Using a different definition for GMIs

Given our preferred definition of GMIs, which consists in assigning the GMI status after each

cross-country move of an inventor and for the year that follows such move, it could be the

case that in some technology-country cells the mobile inventors are the only ones patenting,

and that the decreasing slope in Figure 2 in the main text is explained by the fact that

they gradually become "locals" according to our definition. To ensure that this fact is not

biasing our results, we reproduce the same exercise but using the "GMI Always" definition

instead, which continues to consider as GMIs all the inventors that move throughout the

rest of their career. Results are presented in Figure B1. The picture is extremely similar to

the one obtained using the "GMI 1 year" definition, both in magnitude and shape. We thus

conclude that what we observe is indeed the fact that the technology-related knowledge gets

slowly embedded into local inventors that have never moved before.

We also repeat the regression results, but we consider that an inventor remains a GMI

for her entire career after the first move. Table B1 shows the results. The coefficients are

smaller than in the main analysis, which is to be expected since the role of the knowledge

transmitter is fading after having spent many years in the destination country. However, the

heterogeneity of effects remains consistent with the main analysis and confirms the patterns

previously discussed.

OA-11



Table B1: Using the "GMI always" definition of movers

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00126** 0.00134**
(0.000543) (0.000575)

GMI, no previous exp. 0.000431**
(0.000177)

GMI, same assignee 0.00111**
(0.000528)

GMI, diff. assignee 0.00160*
(0.000885)

GMI, OECD 0.00121**
(0.000546)

GMI, non OECD 0.00148
(0.00100)

GMI, immigrant 0.00248***
(0.000915)

GMI, returnee 0.00564***
(0.00124)

GMI, high complex. tech. 0.00200*
(0.00103)

GMI, low complex. tech. 0.000240
(0.000536)

GMI, prior 1990 0.00176*
(0.00101)

GMI, post 1990 0.000439
(0.000990)

Observations 13,621,698 13,621,698 13,621,698 13,621,698 13,621,698 13,621,612 13,621,698
R-squared 0.867 0.867 0.867 0.867 0.867 0.867 0.867

Notes: Country-level standard errors in parentheses. Main regressor of interest: presence of a
GMI with previous experience, defined as any individual who has previously patented abroad in
the same technology. Control variables include a dummy equal to one if the patent is a GCP, the
number of citation to non-patent literature (transformed using the inverse hyperbolic sine, IHS),
the number of claims included in the patent (IHS), the size of the patent team (IHS), a dummy
indicating whether the patent has a foreign priority, the time between application and granting,
in days (IHS), the experience of the inventor computed from the first patent she produced
(IHS), the stock of patents produced by the inventor over her career (IHS), and the length in
calendar months of the first decile of technology diffusion (IHS). The regression further controls
for country-year fixed effects, technology-year fixed effects, and assignee-year fixed effects.
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Figure B1: Patents by experienced mobile inventors - GMI always definition - across the technology
life-cycle

(a) Overall
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(b) OECD vs non-OECD countries
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This figure plots the probability of observing a mobile inventor with previous experience abroad across the 10 deciles
of that technology life-cycle in the country of destination. The definition of GMI used here is the one of "GMI
Always", which assigns the GMI status to the entire career of the inventor after the first cross-country move. The
10th decile is used as the comparison one, and the wiskers represent the 90% confidence intervals (based on standard
errors clustered at the country level). The underlying regression controls for technology × year, country × year, and
firm × year fixed effects to absorb differences explained by specific technology, country and firm trends. Panel A)
shows the results for the entire sample, while Panel B) distinguishes between OECD and non-OECD countries.

B.2 Definition of deciles

Our analysis defines deciles of a technology life-cycle within a given country according to

the total number of patents filed within that pair. This choice is motivated by the fact that

pioneering patents take longer to be introduced than patents coming later on, which are

more incremental rather than transformational. Table B2 shows that, on average, the first

decile of patents takes 6 years to be invented, while the second takes 3 years and later the

length stabilizes at around 2 years per decile. If we take the alternative approach of defining

deciles by splitting evenly the calendar time observed between the first and last patent, we

would obtain deciles of about 2 years of length each, at the expense of reducing the number

of patents included among the pioneering one.30 While the average number of patents in

the first decile remains high with both definitions (59 using our preferred one vs 32 using
30The length is not exactly the same across the calendar time deciles because in some technology-country pairs we

observe less than 10 patents and it is thus not possible to define 10 distinct deciles. The same reasoning applies to
the fact that the number of patents found in each decile of our main approach is not exactly the same.
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the calendar time one), the median drops from 5 patents to 2 patents, highlighting how

for half of the country-technology cells we would have very few observations left within the

pioneering inventions.

We nonetheless provide the figure obtained with the alternative calendar time definition

of deciles for comparison (see figure B2). When we consider the presence of GMIs defined

as GMIs only for the first year after the move, the descending pattern remains visible in the

decile coefficients but the standard errors become much larger (panel A). This is probably

due to the fact that in many technology-country pairs in our sample we observe very few

patents in the first calendar deciles, and it becomes even rarer to observe a GMI "1 year"

among their inventors. Nonetheless, Panel B shows that the descending relation becomes

again significant when using the "GMI Always" definition, which we have argued in the

previous section of the Appendix to be a more conservative measure of GMIs. Overall, these

results highlight that the main finding of the paper re-emerges, albeit more noisily, with the

calendar time definition of deciles.

B.3 Measurement of technology complexity

One of the key heterogeneities of our results is that GMIs are particularly instrumental to

favor the diffusion of technologies that are complex, and thus expected to contain a greater

amount of tacit knowledge difficult to transmit across borders. As explained in the main

text, we define a measure of technology complexity using the methodology first introduced

by Hidalgo and Hausmann (2009) to define countries’ production complexity using trade

data and applied to technologies by a recent WIPO report (Moscatelli et al., 2024). High

complexity technologies are thus defined by splitting our dataset at the median of the level

of complexity measured using the most recent data (2016-2020). One might wonder whether

the results hold if we measure complexity using data from further back in time, since our

analysis focuses on a period that extends much further in the past. Table B3 shows the results
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Table B2: Summary statistics for different definitions of life-cycle deciles

Deciles def: N. of patents Deciles def: calendar time

N. years N. patents N. years N. patents

Decile mean median mean median mean median mean median

1 6.1 5 59 5 2.2 2 32 2
2 3.2 3 57 5 2.1 2 35 4
3 2.6 2 57 5 2.1 2 35 5
4 2.2 2 57 5 2.2 2 42 5
5 2.3 2 56 5 2.2 2 52 6
6 1.7 1 58 5 2.3 3 68 7
7 2.0 2 55 5 2.4 3 86 7
8 1.9 2 57 5 2.4 3 89 7
9 2.1 2 55 5 2.4 3 92 8
10 2.6 2 55 5 2.5 3 96 7

Notes: this table compares the number of patents and the length expressed in years of each decile
according to two different definition. Our preferred definition, which consists in splitting the total
number of patents observed in a given technology-country pair in equally sized deciles; and an
alternative definition consisting in splitting the calendar time observed between the first and last
patent filed in a given technology-country pair in equally sized deciles.

Figure B2: Probability of patent by experienced GMI throughout the life-cycle defined by calendar
time

(a) GMI 1 year definition
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(b) GMI Always definition
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This figure plots the probability of observing a mobile inventor with previous experience abroad across the 10 deciles
of that technology life-cycle in the country of destination, defined by calendar time between the first and last patent
filed. The definition of GMI used in Panel A) is our preferred one, which consists of considering an inventor a GMI
during the first year after the move, while the definition in Panel B) is the one of "GMI Always", which assigns
the GMI status to the entire career of the inventor after the first cross-country move. The 10th decile is used as
the comparison one, and the wiskers represent the 90% confidence intervals (based on standard errors clustered at
the country level). The underlying regression controls for technology × year, country × year, and firm × year fixed
effects to absorb differences explained by specific technology, country and firm trends.
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obtained if we measure complexity in different periods: i) 2016-20 (our baseline measure),

ii) 2012-16, iii) 2008-12, IV) 2004-08, and v) 2000-04. Importantly, while the complexity

measures are correlated across time, as we would expect, the correlation is far from perfect:

if we take the continuous measure of complexity in 2000-2004 and 2016-20 their correlation

is of 0.57 and only 60% of technologies classified as high-complexity in 2004 remain classified

as high complexity in 2020. Nonetheless, regardless of the measure used, the same empirical

regularity arises : GMIs are particularly instrumental in introducing complex technologies

to countries that have yet to innovate in that domain.

B.4 Testing the role of selection into the USPTO dataset

The USPTO dataset has the great advantage of providing both assignee and inventor dis-

ambiguation over a large period of time (1970 onward). However, the dataset only includes

patents that are filed with the US office, and does not record patents that are only filed in

other country offices. We argue that the USPTO is by far the largest and more attractive

patent office in the world, and that it should include all the transformational patents, since

avoiding to file a patent in the US implies that the invention is not protected there. One

might still wonder whether our results are biased by the missing patents in the data, es-

pecially in the case where the earliest patents produced in a given technology-country cell

are only filed in a country office other than the USPTO. To check whether our results are

affected by missing patents, we construct a subsample of country-technology cells where at

least one patent within the first decile was filed in the USPTO (99% of our sample), and a

sub-sample of country-technology cells where the very first patent was filed in the USPTO

(32% of our sample). The data cover all patent documents worldwide filled in any office,

geolocalized at the country level, and come from the European Patent Office’s (EPO) World-

wide Patent Statistical Database (PATSTAT). Patents are treated at the family level. The

results are shown in Tables B4 and B5. As expected, nothing changes when we exclude the

1% of the sample for which none of the patents in the first decile appear in the USPTO.
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Table B3: Heterogeneity by technology complexity measured at different points in time

(1) (2) (3) (4) (5)
VARIABLES Dependent variable: First Decile

GMI, high complex. tech. (2016-20) 0.00322**
(0.00138)

GMI, low complex. tech. (2016-20) 0.000918
(0.000680)

GMI, high complex. tech. (2012-16) 0.00460**
(0.00189)

GMI, low complex. tech. (2012-16) -0.00247
(0.00283)

GMI, high complex. tech. (2008-12) 0.00280**
(0.00140)

GMI, low complex. tech. (2008-12) 0.00165**
(0.000766)

GMI, high complex. tech. (2004-08) 0.00415**
(0.00192)

GMI, low complex. tech. (2004-08) 0.000324
(0.00102)

GMI, high complex. tech. (2000-04) 0.00469**
(0.00209)

GMI, low complex. tech. (2000-04) -0.000112
(0.00119)

Observations 13,621,612 13,621,612 13,621,612 13,621,612 13,621,612
R-squared 0.867 0.867 0.867 0.867 0.867

Notes: Country-level standard errors in parentheses. The table shows the heterogeneity of the
role of GMIs for technologies with high and low levels of complexity, measured in different periods
of time. Control variables include a dummy equal to one if the patent is a GCP, the number of
citation to non-patent literature (transformed using the inverse hyperbolic sine, IHS), the number
of claims included in the patent (IHS), the size of the patent team (IHS), a dummy indicating
whether the patent has a foreign priority, the time between application and granting, in days
(IHS), the experience of the inventor computed from the first patent she produced (IHS), the stock
of patents produced by the inventor over her career (IHS), and the length in calendar months
of the first decile of technology diffusion (IHS). The regression further controls for country-year
fixed effects, technology-year fixed effects, and assignee-year fixed effects.
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More interestingly, the coefficients become even stronger in the 32% of the sample where the

very first patent was filed within the USPTO. Therefore, we conclude that, if anything, the

selection of the USPTO sample attenuates the magnitude of the effect.

B.5 Including all technology classes of patents

In the main analysis we have only considered the first class of technology that appear on the

patent. Here we repeat the exercise by considering all the technology classes appearing on the

patent, which in practice consists in duplicating patent observations across all technology

classes. The dataset becomes much larger, from 13 mio observations to 23 mio, but the

coefficients obtained are largely unchanged, as shown in Table B6.

B.6 Patent level regressions

In the main analysis we kept the observations at the level of inventor-patent. Here we

collapse the data at the patent level, where the GMI dummy equals one if at least one of

the inventors within the team is a GMI with previous experience. The same is done for all

the GMI indicators. Note that in this case a patent can have both the dummy for GMI with

and without experience equal to one if both types of inventors are part of the team. The

inventor level controls are averaged within the patent. The results reported in table B7 show

coefficients that are very similar to those of our main specification.

B.7 Using data from the European Patent Office (EPO)

USPTO patents neither cover all patenting activity worldwide nor constitute the largest

patent repository. Since 2011, the Chinese patent office (CNIPA) outnumbered the USPTO

as the leading patent office, and currently receives 3 times the number of applications received

at the USPTO. Yet, the large majority of applications at the CNIPA come from Chinese
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Table B4: Sample of country-tech cells where USPTO is in the first decile

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00211*** 0.00220***
(0.000701) (0.000733)

GMI, no previous exp. 0.000858***
(0.000274)

GMI, same assignee 0.00221**
(0.000852)

GMI, diff. assignee 0.00195*
(0.00106)

GMI, OECD 0.00192***
(0.000703)

GMI, non OECD 0.00279*
(0.00143)

GMI, immigrant 0.00224***
(0.000840)

GMI, returnee 0.00591***
(0.00116)

GMI, high complex. tech. 0.00307**
(0.00140)

GMI, low complex. tech. 0.000823
(0.000687)

GMI, prior 1990 0.00343**
(0.00141)

GMI, post 1990 -0.000204
(0.00136)

Observations 13,386,443 13,386,443 13,386,443 13,386,443 13,386,443 13,386,357 13,386,443
R-squared 0.869 0.869 0.869 0.869 0.869 0.869 0.869

Notes: Country-level standard errors in parentheses. The sample excludes all the technology-
country cells for which none of the patents appearing in the first decile are filed at the USPTO.
The latter excludes a very small minority of our sample. Control variables include a dummy
equal to one if the patent is a GCP, the number of citation to non-patent literature (transformed
using the inverse hyperbolic sine, IHS), the number of claims included in the patent (IHS), the
size of the patent team (IHS), a dummy indicating whether the patent has a foreign priority, the
time between application and granting, in days (IHS), the experience of the inventor computed
from the first patent she produced (IHS), the stock of patents produced by the inventor over her
career (IHS), and the length in calendar months of the first decile of technology diffusion (IHS).
The regression further controls for country-year fixed effects, technology-year fixed effects, and
assignee-year fixed effects.
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Table B5: Sample of country-tech cells where the 1st patent is in the USPTO

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00222** 0.00234**
(0.000957) (0.000930)

GMI, no previous exp. 0.000478
(0.000510)

GMI, same assignee 0.00236*
(0.00139)

GMI, diff. assignee 0.00205***
(0.000755)

GMI, OECD -0.000335
(0.00197)

GMI, non OECD 0.00326***
(0.000891)

GMI, immigrant 0.00333
(0.00246)

GMI, returnee 0.00359**
(0.00167)

GMI, high complex. tech. 0.00377***
(0.000860)

GMI, low complex. tech. 0.000339
(0.00137)

GMI, prior 1990 0.00267**
(0.00102)

GMI, post 1990 -0.000482
(0.00241)

Observations 1,444,767 1,444,767 1,444,767 1,444,767 1,444,767 1,444,767 1,444,685
R-squared 0.931 0.931 0.931 0.931 0.931 0.931 0.931

Notes: Country-level standard errors in parentheses. The sample excludes all the technology-
country cells for which the very first patent was not filed in the USPTO. The latter excludes a
large portion of our sample. Control variables include a dummy equal to one if the patent is a
GCP, the number of citation to non-patent literature (transformed using the inverse hyperbolic
sine, IHS), the number of claims included in the patent (IHS), the size of the patent team (IHS),
a dummy indicating whether the patent has a foreign priority, the time between application
and granting, in days (IHS), the experience of the inventor computed from the first patent
she produced (IHS), the stock of patents produced by the inventor over her career (IHS), and
the length in calendar months of the first decile of technology diffusion (IHS). The regression
further controls for country-year fixed effects, technology-year fixed effects, and assignee-year
fixed effects.
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Table B6: Sample including all tech. classes mentioned in patents

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00226*** 0.00244***
(0.000491) (0.000523)

GMI, no previous exp. 0.00140***
(0.000288)

GMI, same assignee 0.00225***
(0.000594)

GMI, diff. assignee 0.00229***
(0.000810)

GMI, OECD 0.00198***
(0.000456)

GMI, non OECD 0.00320***
(0.000937)

GMI, immigrant 0.00269***
(0.000497)

GMI, returnee 0.00415***
(0.00121)

GMI, high complex. tech. 0.00445***
(0.00169)

GMI, low complex. tech. -0.000346
(0.00142)

GMI, prior 1990 0.00398***
(0.00101)

GMI, post 1990 -0.000268
(0.00130)

Observations 22,588,748 22,588,748 22,588,748 22,588,748 22,588,748 22,588,748 22,588,748
R-squared 0.660 0.660 0.660 0.660 0.660 0.660 0.660

Notes: Country-level standard errors in parentheses. The sample considers all the CPC technol-
ogy classes listed in each patent. Control variables include a dummy equal to one if the patent is
a GCP, the number of citation to non-patent literature (transformed using the inverse hyperbolic
sine, IHS), the number of claims included in the patent (IHS), the size of the patent team (IHS),
a dummy indicating whether the patent has a foreign priority, the time between application
and granting, in days (IHS), the experience of the inventor computed from the first patent she
produced (IHS), the stock of patents produced by the inventor over her career (IHS), and the
length in calendar months of the first decile of technology diffusion (IHS). The regression fur-
ther controls for country-year fixed effects, technology-year fixed effects, and assignee-year fixed
effects.
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Table B7: Sample collapsed at the patent level

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00232** 0.00236**
(0.000906) (0.000929)

GMI, no previous exp. 0.000678**
(0.000334)

GMI, same assignee 0.00234**
(0.000952)

GMI, diff. assignee 0.00231*
(0.00124)

GMI, OECD 0.00201**
(0.000872)

GMI, non OECD 0.00340**
(0.00162)

GMI, immigrant 0.00231**
(0.00110)

GMI, returnee 0.00596***
(0.00173)

GMI, high complex. tech. 0.00294*
(0.00150)

GMI, low complex. tech. 0.00143**
(0.000705)

GMI, prior 1990 0.00367**
(0.00159)

GMI, post 1990 -0.000166
(0.00151)

Observations 5,099,117 5,099,117 5,099,117 5,099,117 5,099,117 5,099,074 5,099,117
R-squared 0.857 0.857 0.857 0.857 0.857 0.857 0.857

Notes: Country-level standard errors in parentheses. The sample is collapsed at the patent level,
and GMI is a dummy equal to one if at least one of the inventors filing the patent is a GMI with
previous experience. Control variables include a dummy equal to one if the patent is a GCP, the
number of citation to non-patent literature (transformed using the inverse hyperbolic sine, IHS),
the number of claims included in the patent (IHS), the size of the patent team (IHS), a dummy
indicating whether the patent has a foreign priority, the time between application and granting,
in days (IHS), the experience of the inventor computed from the first patent she produced
(IHS), the stock of patents produced by the inventor over her career (IHS), and the length in
calendar months of the first decile of technology diffusion (IHS). The regression further controls
for country-year fixed effects, technology-year fixed effects, and assignee-year fixed effects.
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resident applicants, while the USPTO is the largest receiving office of non-resident applicants.

In fact, together with the European Patent Office (EPO), they are the only ones with more

applications from non-residents than from residents (WIPO, 2022). Given these numbers,

it is clear that data from the USPTO are the best candidates for the present analysis, on

the emergence of new technologies in countries as a result of cross-border diffusion. Yet,

it could be argued that certain "home bias" still remains when using USPTO data, as

US-based applicants are, naturally, way more likely to apply (Akcigit et al., 2018). The

home-centered bias is less likely to be present in the data from the EPO. While European

and, particularly, German applicants may have a higher tendency to apply to the EPO, the

leading countries remain the US and Japan, and the origins of the applications at the EPO

are better distributed according to the countries’ size (Akcigit et al., 2018). The EPO is,

however, considerably smaller, and presents other drawbacks that make it less suitable than

the USPTO for this analysis. Nevertheless, in order to show that our analysis is not driven

by USPTO-specific features, we reproduce our main results using EPO data.

EPO data are retrieved from EPO’s Worldwide Patent Statistical Database (PATSTAT).

In coherence with the main approach taken in the paper, we only take granted patents for

this analysis. The disambiguation of inventors’ names (crucial for the present exercise) is

slightly different, but follows similar principles of cleaning and parsing the raw data, matching

same/similar names, and filtering the matched names based on similarity of characteristics,

such as common backward citations, among others (Pezzoni et al., 2014). All in all, our final

dataset consists of almost 2 million patents and over 2 million unique inventors.

Contrary to the USPTO, the EPO does not have a main technological class assigned,

and provides only a list of tech codes. To make the analysis comparable to the USPTO one,

we arbitrarily assign one single technological class to each patent. To do so, we look at the

CPC codes of applications, and assign them to the class with more CPC codes listed. If two

or more classes are equally listed, we then prioritize the CPC codes written in the first line

of the list of codes (CPC codes are not listed alphabetically, but there is no a priory rule
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to list them).31 We drop the remaining applications for which we could not assign a unique

technological class (around 9%).

Figure B3 reproduces the main graph of the paper, but with EPO data. The resulting

figure resembles that obtained using USPTO, as one clearly sees a decreasing coefficient with

increasing deciles. However, the drop is less pronounced and the coefficients are estimated

with less precision. We see the same pattern in the regression analysis (table B8). Coefficients

have the expected sign, but they are only significant at the 10% level.

All in all, results using EPO data seem to point to the same direction: GMIs play a

crucial role in diffusing technologies across countries, and in infiltrating them to the local

economy. Yet, coefficients seem to be estimated with less precision and some of the effect

heterogeneities found in the USPTO dataset cannot be reproduced here, which we attribute

to several characteristics of the EPO dataset (e.g., difficulties in assigning patents to an

unequivocal technological class, smaller number of inventors - particularly GMIs returning

to their home country) and to the fact that the EPO is not a national office, but a regional

one (covering Europe, with US and Japan-based applicants on top). The latter makes us

suspect that the EPO is not generally used to register the most novel technologies emerging

in each country.

31The data on the position of the codes in the application come from PATSTAT - table TLS209.
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Figure B3: Patents by experienced mobile inventors across the technology life-cycle - EPO data
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This figure plots the probability of observing a mobile inventor with previous experience abroad across the 10 deciles
of that technology life-cycle in the country of destination. The 10th decile is used as the comparison one, and
the wiskers represent the 90% confidence intervals (based on standard errors clustered at the country level). The
underlying regression controls for technology × year, country × year, and firm × year fixed effects to absorb differences
explained by specific technology, country and firm trends.

OA-25



Table B8: Main results using EPO data

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: First Decile

GMI, previous exp. 0.00383* 0.00387*
(0.00222) (0.00224)

GMI, no previous exp. 0.000923
(0.000904)

GMI, same assignee 0.00375
(0.00264)

GMI, diff. assignee 0.00415
(0.00259)

GMI, OECD 0.00576***
(0.00167)

GMI, non OECD -0.0135**
(0.00535)

GMI, immigrant 0.00662***
(0.00185)

GMI, returnee 0.00150
(0.00604)

GMI, high complex. tech. 0.000193
(0.00273)

GMI, low complex. tech. 0.00734**
(0.00294)

GMI, prior 1990 0.00376
(0.00474)

GMI, post 1990 0.00389**
(0.00174)

Observations 4,705,984 4,705,984 4,705,984 4,705,984 4,705,984 4,705,984 4,705,984
R-squared 0.863 0.863 0.863 0.863 0.863 0.863 0.863

Notes: Country-level standard errors in parentheses. GMI is a dummy equal to one if at least
one of the inventors filing the patent is a GMI with previous experience. Control variables include
a dummy equal to one if the patent is a GCP, the number of citation to non-patent literature
(transformed using the inverse hyperbolic sine, IHS), the number of claims included in the patent
(IHS), the size of the patent team (IHS), a dummy indicating whether the patent has a foreign
priority, the time between application and granting, in days (IHS), the experience of the inventor
computed from the first patent she produced (IHS), the stock of patents produced by the inventor
over her career (IHS), and the length in calendar months of the first decile of technology diffusion
(IHS). The regression further controls for country-year fixed effects, technology-year fixed effects,
and assignee-year fixed effects.
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C Mechanisms: speed of knowledge diffusion and network central-

ity of GMIs

C.1 Measuring Speed

Figure C1a shows graphically how the coefficient of speed of local absorption is recovered

for the example of the medical instrument technology class in India. Figure C1b plots the

distribution of the speed of diffusion parameter obtained across all countries and classes,

where the outcome in the regression is the share of GMIs. The summary statistics of the

speed measures are reported in table C1. The mean and the median of the coefficient are

positive and very close to 0 in magnitude. This can potentially be due to a combination of

two effects : the negative relation documented in the previous section coming from the fact

that the technology slowly gets embedded into the local pool of inventors, and the general

increase in the share of GMIs across the globe documented in the summary statistics, which

makes it generally more likely to find GMIs in more recent years.32 To get rid of the second

effect, we also perform the analysis using the RCA as the outcome, which is simply the share

of GMI observed in a given technology-country-percentile divided by the share of GMIs

observed globally at the same moment in time. Figure C1c plots the distribution of the

speed of diffusion parameter obtained when the outcome is the RCA. Here the mean and the

median are both negatives (mean =-0.0085 , median = -0.0014), consistent with what shown

when pooling all technology-country cells. We keep all coefficients in our dataset, no matter

their sign, and we store the t-statistic in order to be able to weight observations according

to their significance level.
32This effect is absorbed by the year fixed effects in Figure 2.
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Figure C1: Speed of Diffusion

(a) India A61B (Medical Instruments)
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Panel (a) plots the speed of diffusion αspeed obtained by estimating equation 3 for India in the medical instruments
technology class. Panel (b) plots the distribution of the point estimate αspeed across all country-technology pairs.
Panel (c) shows the distribution of the speed coefficient when the outcome used is the RCA instead of the share of
GMIs (which simply divides the share of GMIs in the country with the global share observed that same year, thus

controlling for time trends).

Table C1: Summary Statistics of variables of interest

Speed measures Network measures

speed (sh. GMI
measure)

speed (RCA
measure)

1st degree
centrality

closeness
centrality

betweenness
centrality

eigenvector
centrality

Productivity
local coauthors

Mean 0.00006 -0.00854 0.086 0.045 0.001 0.141 0.390
25th percentile -0.00020 -0.01182 0.000 0.000 0.000 0.000 0.000
50th percentile 0.00009 -0.00144 0.000 0.000 0.000 0.000 0.000
75th percentile 0.00048 0.00281 0.026 0.016 0.000 0.016 0.708
St. dev. 0.00173 0.03963 0.236 0.135 0.008 0.280 0.753

N 4895 4893 4896 4896 4896 4896 4896

Notes : The table reports the summary statistics for the speed measures as well as for the measures of network centrality.
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C.2 Absorptive Local Capacity

Table C2 extends the measure of degree centrality to the number of local inventors with

whom the GMIs co-work within the same subsidiary of the firm, while not directly patenting

together, and recovers the robustness of results to defining the speed coefficient using the

RCA measure, and to define GMI with previous experience using the GMI always defini-

tion, always using degree centrality as the measure of the network. Both tests give rise to

remarkably similar results, while the network of coworkers that are not coauthors does not

affect the local absorptive capacity (or if anything, affects it negatively). Finally, Table C3

corroborates the finding that the more productive is the network of local coauthors, the

fastest is the diffusion of knowledge, but introducing a triple interaction. Productivity of

local coauthors is computed as the average number of patents filed per year by all coauthors

of the GMIs up until that point in time. The triple interaction is not always significant but

generally corroborates the finding already suggested by the results on eigenvector centrality

of the network.
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Table C3: Heterogeneity of speed of diffusion effect by productivity of local co-authors

(1) (2) (3) (4)
Outcome : speed of diffusion

unweighted wgt by
obs. wgt by T-stat

Only
significant

coefs.

1 * [GMI in 1st decile] 0.590*** 0.526*** 0.766*** 1.012***
(0.0617) (0.0545) (0.0834) (0.170)

1 * [GMI in 1st decile] *network local coauthors 0.561*** 0.564*** 0.724*** 0.871***
(0.0781) (0.0741) (0.104) (0.291)

1 * [GMI in 1st decile] *network local coauthors * avg. productivity local coauth. 0.174* 0.120 0.228 0.868***
(0.101) (0.0893) (0.142) (0.307)

Observations 4,843 4,843 4,842 925
R-squared 0.326 0.299 0.436 0.619

Notes : Robust standard errors in parentheses *** p<0.01, ** p<0.05, * p<0.1.
All columns include country and technology fixed effects. It includes as controls the following variables: network of local coauthors (not interacted), productivity of local
coauthors (not interacted), productivity of local coauthors interacted with the network of local coauthors, productivity of local coauthors interacted with the first decile
dummy, total days of country-tech life cycle, duration of each decile in days, total days until first patent filed in tech-country, and total number of inventors in country-tech
in the 1st decile (all in asinh).
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