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a b s t r a c t 

Technical Debt is created when design decisions that are expedient in the short term increase the costs 

of maintaining and adapting this system in future. An important component of technical debt relates to 

decisions about system architecture. As systems grow and evolve, their architectures can degrade, increas- 

ing maintenance costs and reducing developer productivity. This raises the question if and when it might 

be appropriate to redesign (“refactor”) a system, to reduce what has been called “architectural debt”. 

Unfortunately, we lack robust data by which to evaluate the relationship between architectural design 

choices and system maintenance costs, and hence to predict the value that might be released through 

such refactoring efforts. 

We address this gap by analyzing the relationship between system architecture and maintenance costs 

for two software systems of similar size, but with very different structures; one has a “Hierarchical” de- 

sign, the other has a “Core-Periphery” design. We measure the level of system coupling for the 20,0 0 0 + 

components in each system, and use these measures to predict maintenance efforts, or “defect-related ac- 

tivity.” We show that in both systems, the tightly-coupled Core or Central components cost significantly 

more to maintain then loosely-coupled Peripheral components. In essence, a small number of compo- 

nents generate a large proportion of system costs. However, we find major differences in the potential 

benefits available from refactoring these systems, related to their differing designs. Our results generate 

insight into how architectural debt can be assessed by understanding patterns of coupling among com- 

ponents in a system. 

© 2016 Published by Elsevier Inc. 
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. Introduction 

How do system design decisions affect the long-term costs of

ystem maintenance? A wealth of studies has examined the topic

f system design, developing insights into how decisions should

e made during the development of new technological systems

 Banker et al., 1993; Banker and Slaughter, 20 0 0 ). This work re-

eals the critical impact of architectural choices in creating a de-

ign that can meet requirements along multiple, sometimes com-

eting, dimensions of performance (e.g., functionality, speed, ease

f use, reliability, upgradeability etc.). Fewer studies however, have

xplored how system design decisions affect performance in the

ature stage of a system’s life, where maintenance and adaptation

osts are relatively more important. Given prior work argues that

hese costs can represent up to 90% of the total expenditures over

 system’s lifetime, this represents a significant gap in our knowl-

dge ( Brooks, 1975 ). 
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This topic is especially relevant to the software industry, given

he dynamics of how software is developed. In particular, software

ystems rarely die. Instead, each new version forms a platform

pon which subsequent versions are built. With this approach,

oday’s developers bear the consequences of all design decisions

ade in the past ( MacCormack et al., 2007 ). However, the early

esigners of a system may have different objectives from those

hat follow, especially if the system is successful and long lasting

something that may be uncertain at the time of its birth). For ex-

mple, if early designers favor approaches that are expedient in

he short term (say, to speed up time to market), later designers

ill bear the consequences of those decisions. Furthermore, as the

xternal context for a system evolves over time, even design deci-

ions that were made correctly may become obsolete and require

evisiting ( Kruchten et al., 2012a ). 

These dynamics raise an interesting question, in that for

any mature systems, significant potential value might be re-

eased through design changes to reduce a system’s complexity

hile maintaining its functionality (known as “refactoring”). Un-

ortunately, decision makers have little empirical data by which

o evaluate the value that might be generated by such effort s
ebt and system architecture: The impact of coupling on defect- 
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( MacCormack et al., 2006 ). While a software architect might in-

tuitively recognize the potential benefits of architectural change,

senior managers typically require a robust assessment of the fi-

nancial consequences of change, before funding such effort s. This

need, to link software design decisions with their financial conse-

quences, has given rise to a new metaphor, Technical Debt. It cap-

tures the extent to which design decisions that are expedient in the

short-term can lead to increased system costs in future ( Brown et al.,

2010; Kruchten et al., 2012a ). 

In this paper, we attempt to bridge the worlds of software ar-

chitecture and finance. In particular, we evaluate the relationship

between system design decisions and the costs of maintenance for

two software systems that represent different design “Archetypes”

– one possesses a Core-Periphery design, the other possesses a

Hierarchical design. We characterize system design using a net-

work analysis technique called Design Structure Matrices (DSMs)

( Steward, 1981; Eppinger et al., 1994 ). Our analysis allows us to

calculate the level of coupling for components in each system,

and thereby to identify which are more central to the design, and

which are peripheral. We then analyze the extent to which compo-

nents with different levels of network coupling generate different

maintenance costs (i.e., in terms of the activity required to fix de-

fects) in these systems. Our results allow us to speculate on the

potential value that could be released by a refactoring effort, and

to assess whether this differs between different system types. 

The paper proceeds as follows. In the next section, we review

the prior literature on Technical Debt and system design, focus-

ing on work that explores how measures of system design predict

the costs of maintenance. We then describe our methods, which

make use of Design Structure Matrices (DSMs) to understand sys-

tem structure, and measure the level of coupling between compo-

nents. Next, we introduce the context for our study and describe

the two systems that we analyze. Finally, we report our empirical

results and discuss their potential implications for both practition-

ers and academia. 

2. Literature review 

2.1. Technical debt in software systems 

In a software system, design decisions that systematically favor

short-term gains over long-term costs create what is called “tech-

nical debt” ( Cunningham, 1992; McConnell, 2007 ). These debts

arise from, among other things, poor design practices, inadequate

testing procedures, missing documentation, or excessively interde-

pendent architectures ( Brown et al., 2010; Seaman and Guo, 2011;

Kruchten et al., 2012a, 2012b; Li et al., 2015 ). The interest on these

debts comes in the form of increased costs for maintenance and

adaptation in future. For smaller software systems, these costs may

not be significant, hence not worth addressing. But as a system

grows and evolves, these costs can become substantial and an in-

creasing burden on development teams ( Eick et al., 1999 ). Evolu-

tions in the external context may also render past design choices

outdated, creating a “technological gap” between an existing de-

sign and current requirements ( Kruchten et al., 2012a ). Where such

technical debts exist, opportunities to create value through re-

design may exist, assuming the value released exceeds the cost of

taking action ( Sarker et al., 2009; Schmid, 2013 ). 

Early work in the field of technical debt focused on describ-

ing the phenomenon, and developing typologies for the different

types of debt that can affect a system ( Guo and Seaman, 2011;

Kruchten et al., 2012a; Tom et al., 2013 ). For example, Kruchten

et al., (2012a) propose a technical debt “landscape,” which divides

software improvements from a given state along two dimensions:

whether they are visible or invisible; and whether they focus on

maintainability or evolvability. Early empirical studies emphasized
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d
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nderstanding the debts associated with lower-level decisions sur-

ounding code complexity, coding style, code “smells” and poor

ystem documentation ( Brown et al., 2010 ). Tools based upon these

pproaches focus on the degree to which a software system fol-

ows, or departs from, common coding “rules” (e.g., sonarcube.org).

o make the concept of Technical Debt operational, significant ef-

orts have been made to define metrics that capture both the to-

ality of the debt in a system, as well as the drivers of different

omponents of this debt ( Seaman and Guo, 2011; Nughoro et al.,

011 ). 

More recently, attention has been given to how higher-level de-

ign decisions associated with a system’s architecture impact tech-

ical debt ( Nord et al., 2012; Kazman et al., 2015; Xiao et al., 2016 ).

s Kruchten et al., (2012a) argue, “more often than not , technical

ebt isn’t related to code and its intrinsic qualities, but to struc-

ural or architectural choices….” Of particular interest to this study,

everal authors have developed metrics to capture structural prop-

rties of software systems, to be used to evaluate architectural debt

 MacCormack et al., 2006; 2012; Nord et al., 2012; Kruchten et al.,

012b; Kazman et al., 2015 ). While the specifics of these metrics

iffer by study, they retain a common theme in that they focus on

easuring the coupling in a system. This is achieved by examining

irect and indirect dependencies between system components. 

.2. The design of complex technological systems 

A large number of studies have contributed to our understand-

ng of the design of complex systems ( Holland, 1992; Kaufman,

993; Rivkin, 20 0 0; Rivkin and Siggelkow, 2007 ). Many of these

tudies are situated in the field of technology management, explor-

ng factors that influence the design of physical or information-

ased products ( Braha et al., 2006 ). Products are complex sys-

ems in that they comprise a large number of components with

any interactions between them. The scheme by which a product’s

unctions are allocated to components is called its “architecture”

 Ulrich, 1995; Whitney et al., 2004 ). Understanding how architec-

ures are chosen, how they perform and how they can be changed

re critical topics in the study of complex systems. 

Modularity is a concept that helps us to characterize archi-

ecture. It refers to the way that a product’s design is decom-

osed into parts. While there are many definitions of modularity,

uthors tend to agree on the concepts that lie at its heart: The

otion of interdependence within modules and independence be-

ween modules ( Ulrich, 1995 ). The latter concept is referred to as

loose-coupling.” Modular architectures are loosely-coupled in that

hanges made to one component have little impact on others. The

osts and benefits of modularity have been discussed in a stream

f research that has examined its impact on complexity ( Simon,

962 ), production ( Ulrich, 1995 ), platform design ( Sanderson and

zumeri, 1995 ), process design ( MacCormack et al., 2001 ) pro-

ess improvement ( Spear and Bowen, 1999 ) and industry structure

 Baldwin and Clark, 20 0 0 ). 

Studies that seek to measure the modularity of technical sys-

ems typically focus on capturing the level of coupling that ex-

sts between different parts of a design. In this respect, the most

rominent technique comes from the field of engineering, in the

orm of the Design Structure Matrix (DSM). A DSM highlights the

nherent structure of a design by examining the dependencies that

xist between its constituent elements in a square matrix ( Steward,

981; Eppinger et al., 1994 ). These elements can represent design

asks, design parameters or the components that comprise the sys-

em. DSMs have also been used to explore the degree of align-

ent between task dependencies and project team communica-

ions ( Sosa et al., 2004 ). Recent work has extended this method-

logy to show how dependencies can be extracted automatically

rom software source code and used to understand system design
ebt and system architecture: The impact of coupling on defect- 

oi.org/10.1016/j.jss.2016.06.007 

http://dx.doi.org/10.1016/j.jss.2016.06.007


A. MacCormack, D.J. Sturtevant / The Journal of Systems and Software 0 0 0 (2016) 1–13 3 

ARTICLE IN PRESS 

JID: JSS [m5G; June 17, 2016;14:44 ] 

(  

t  

l  

2

2

 

(  

m  

d  

n  

d  

i  

w  

m  

D  

s  

c  

p  

s  

s  

n

 

t  

o  

a  

c  

c  

K  

6  

q  

n  

B  

d  

c  

o  

e  

i  

i  

o

2

 

u  

t  

s  

t  

i  

p  

o  

r  

1  

g  

t  

w  

n  

“  

e  

t  

i  

c  

r  

n

 

t  

n  

c  

n  

a  

r  

i  

a  

c  

t  

n  

c  

d  

e

 

t  

p  

p  

i  

X  

a  

a

3

3

 

S  

c  

S  

d  

c  

c

 

a  

c  

a  

c  

b  

a  

c  

i  

fi  

t  

t

 

t  

D  

i  

F  

t  

m  

1 Many types of dependencies can be explored in software. The systems that we 

analyze are written in C/C ++ . We looked at important relationship types in C/C ++ 

(i.e., those which might cause changes to propagate between files) including func- 

tion calls, method calls, class inheritance, global data modification, parameter set- 

ting, use of a typedef, use of a class instance, header file inclusion, and overrides. 
2 Dependencies can be extracted statically (from the source code) or dynamically 

(when the code is run). We use a static call extractor because it uses source code 

as input, does not rely on program state (i.e., what the system is doing at a point 

in time) and captures the system structure from the designer’s perspective. 
3 See https://scitools.com . Note that the company updates its products periodi- 

cally, and there may be minor differences in the results obtained when using dif- 

ferent versions of this tool on the same code base. 
 Baldwin et al., 2014; MacCormack et al., 2006 ). Metrics that cap-

ure the level of coupling for a system’s components can be calcu-

ated from a DSM, and used to analyze designs ( MacCormack et al.,

012 ). We adopt this approach in our work. 

.3. Software design, modularity and maintenance costs 

The formal study of software modularity began with Parnas

1972) who proposed the concept of “information hiding” as a

echanism for dividing code into modular units. This required

esigners to separate a module’s internal details from its exter-

al interfaces, reducing the coordination costs involved in system

evelopment and facilitating changes to modules without affect-

ng other parts of the design. Subsequent authors built on this

ork, proposing metrics to capture the level of coupling between

odules and cohesion within modules (e.g., Selby and Basili, 1988;

hama, 1995 ). Modular designs have low coupling and high cohe-

ion. This work complemented studies that sought to measure the

omplexity of a design for the purposes of predicting developer

roductivity (e.g., McCabe 1976; Halstead, 1977 ). Whereas mea-

ures of complexity focus on individual components, measures of

oftware modularity focus on the relationships between compo-

ents. These two concepts are complementary. 

Studies seeking to link measures of system design with main-

enance costs tend to focus on predicting the cost and frequency

f changes across systems. For example, Banker et al. (1993) ex-

mined 65 maintenance projects across 17 systems and found

osts increased with complexity, as measured by the average “pro-

edure” size and number of “non-local” branching statements.

emerer and Slaughter (1997) examined modification histories for

21 software modules and found enhancement and repair fre-

uency increased with module complexity, as measured by the

umber of decision paths normalized by size ( McCabe, 1976 ).

anker and Slaughter (20 0 0) examined three years of modification

ata from 61 applications and found total modification costs in-

reased with application complexity, as measured by the number

f input/output data elements per unit of functionality. And Barry

t al. (2006) examined 23 applications over 20 years and found an

ncrease in the use of standard components (a proxy for modular-

ty) was associated with a decline in the frequency and magnitude

f changes. 

.4. Intended contribution of this study 

While the studies above have made major contributions to our

nderstanding of the impact of design decisions on system costs,

hey do not consistently address several issues that are key to as-

essing the technical debt due to system architecture, and hence

he potential value of refactoring. First, most focus on the complex-

ty of the components in a system, but do not capture the cou-

ling between components, the primary driver of modularity. Sec-

nd, studies that do measure coupling tend to capture only di-

ect linkages between components (e.g., Chidambur and Kemerer,

994 ) so do not account for the potential for changes to propa-

ate via chains of indirect dependencies. Third, those that recognize

he role of indirect dependencies often use metrics from social net-

ork theory ( Dreyfus, 2009 ), which do not capture the asymmetric

ature of coupling in a technical system (i.e., a component may

depend upon” many others, but be “depended upon” by no oth-

rs). Finally, many use a cross-sectional research design in which

he system is the primary unit of analysis. Hence we do not know

f tightly coupled components within these systems incur greater

osts than others – a necessary condition to create value through

efactoring (i.e., by reducing the level of coupling for some compo-

ents). 
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d

related activity, The Journal of Systems and Software (2016), http://dx.d
To address the first concern, we characterize design in terms of

he coupling between components, while controlling for the inter-

al complexity of components. To address the second concern, we

apture data on both the direct and indirect coupling of compo-

ents, to account for the potential propagation of changes through

 system. To address the third concern, we capture data on the di-

ection of dependencies between components, to tease apart the

mpact of in-degree versus out-degree coupling ( Martin, 2002 ). To

ddress the fourth concern, we explore the relationship between

oupling and maintenance cost at the file level, allowing us to de-

ermine if there are systematic differences in cost across compo-

ents that can be reduced by a refactoring effort. Finally, to in-

rease robustness, we conduct analyses on two systems with very

ifferent designs, to increase our confidence in the ability to gen-

ralize the results. 

We note several recent studies adopt similar techniques to ours

o understand architectural debt, based upon measuring the cou-

ling between components in a DSM, albeit with differing ap-

roaches to the extraction of file level interdependencies and sort-

ng of files into categories or “design spaces”( Kazman et al., 2015;

iao et al., 2014; 2016 ). We view this convergence on a dominant

pproach to architectural debt analysis as a positive development,

nd note these perspectives produce complementary insights. 

. Research methodology 

.1. Analyzing software systems using design structure matrices 

We build on prior work that describes how to apply Design

tructure Matrix techniques to the analysis of software system ar-

hitecture ( Baldwin et al., 2014; MacCormack et al., 2006, 2012;

osa et al., 2013 ). These methods rely upon capturing the depen-

encies that exist between source files (i.e., components) and cal-

ulating measures of coupling between these files, both for each

omponent and for the system as a whole. 

There are many types of dependency between source files in

 software system ( Shaw and Garlan, 1996; Dellarocas, 1996 ). To

apture important dependencies, we use a commercial tool called

 “Call Graph Extractor” ( Murphy et al., 1998 ), which takes source

ode as input, and outputs dependencies, including those that exist

etween functions, classes and global data. 1 2 Rather than develop

 call-graph extractor, we tested several commercial products that

ould process source code written in different languages, capture

ndirect dependencies (i.e., those that flow through intermediate

les), run in an automated fashion and output data in a format

hat could be input to a DSM. A product called Understand, dis-

ributed by Scientific Toolworks, was chosen for use. 3 

The dependency information output from a call-graph extrac-

or can be aggregated at the source file level and displayed in a

SM. For example, if FunctionA in SourceFile1 “calls” FunctionB

n SourceFile2, then SourceFile1 depends upon (or “uses”) Source-

ile2; hence a binary dependency is marked in location (1, 2) in

he DSM. This highlights the fact that a change to SourceFile2

ight impact SouceFile1. Critically however, this does not imply
ebt and system architecture: The impact of coupling on defect- 
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Fig. 1. Directory structure and architectural view of linux v0.01. 

Directed Graph Direct DSM Visibility DSM

A B C D E F
A 0 1 1 0 0 0
B 0 0 0 1 0 0
C 0 0 0 0 1 0
D 0 0 0 0 0 0
E 0 0 0 0 0 1
F 0 0 0 0 0 0

A B C D E F
A 1 1 1 1 1 1
B 0 1 0 1 0 0
C 0 0 1 0 1 1
D 0 0 0 1 0 0
E 0 0 0 0 1 1
F 0 0 0 0 0 1

Fig. 2. Example in graphical and DSM form (direct and visibility DSMs). 
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that SourceFile2 depends upon SourceFile1; the dependency is not

symmetric unless code in SourceFile2 calls a function in Source-

File1. Dependencies are directed, and DSMs provide a representa-

tion of the directed graph. 

We display data in a DSM using the Architectural View . This

view groups each source file into a series of nested clusters defined

by the directory structure, with boxes drawn around each layer in

the hierarchy. To illustrate, we show the Directory Structure (left)

and Architectural View (right) for Linux v0.01 in Fig. 1 . This system

comprises six subsystems, three of which contain only one compo-

nent and three of which contain between 11–18 components. In

the Architectural view, each “dot” represents the existence of one

or more dependencies between two components (i.e., source files).

3.2. Measuring component coupling in software systems 

In order to assess system structure, we measure the degree

to which components are coupled to each other. In particular,

we capture all direct and indirect dependencies a component pos-

sesses with other components, a concept known as “Visibility”

( Sharman and Yassine, 2004; Warfield, 1973 ). To account for the

fact that software dependencies are asymmetric we calculate sep-

arate visibility measures for dependencies that flow into a compo-

nent (“Fan-In”) versus those that flow out from it (“Fan-Out”). 

To illustrate, consider the example depicted in Fig. 2 in graphi-

cal and DSM forms. Element A depends upon (“uses”) elements B

and C. In turn, element C depends upon element E, hence a change

to element E may have a direct impact on C, and an indirect impact

on A, with a “path length” of two. Similarly, a change to element

F may have a direct impact on element E, and an indirect impact

on elements C and A, with a path length of two and three, re-

spectively. The Visibility DSM displays all of the direct and indi-
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d

related activity, The Journal of Systems and Software (2016), http://dx.d
ect dependencies between components in the system. It is found

y computing the transitive closure of the direct dependency DSM.

By definition, each component depends on itself; hence we insert

ependencies on the diagonal of the visibility DSM.) 

Measures of component coupling are derived from the Visibil-

ty DSM. Visibility Fan-In (VFI) is obtained by summing down the

olumns for each component; Visibility Fan-Out (VFO) is obtained

y summing along the rows for each component. The density of

he Visibility DSM, defined as the system’s Propagation Cost, can

e used to compare the mean level of coupling across different

ystems ( MacCormack et al., 2006 ). Intuitively, this measure cap-

ures the fraction of a system’s elements that could potentially be

ffected, when a change is made to a single element chosen at

andom. 

.3. Dividing components into categories and classifying system type 

The components of a software system can be divided into dif-

erent categories based upon their levels of coupling, revealing

tructural patterns that may not be apparent from the Architec-

ural view. In particular, Baldwin et al. (2014) describe how sorting

omponents by their levels of fan-in and fan-out visibility helps to

eveal both design cycles and design hierarchy . 

Design cycles occur when a group of components are mutu-

lly interdependent, meaning that each depends on all others, ei-

her directly or indirectly. For example, if file A depends on file B,

nd file B depends on file A, these components are part of a cy-

le. Changing either one could potentially affect the performance

f the other. The components in a cycle possess the same lev-

ls of both Fan-In and Fan-Out visibility, given that they are in-

erconnected. Design cycles can therefore be detected by inspec-

ion of the visibility measures for all the components in a system
ebt and system architecture: The impact of coupling on defect- 
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Fig. 3. Example system showing architectural (left) and “core-periphery” (right) views. 
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t  
 Baldwin et al., 2014 ). The largest design cycle (i.e., largest “cyclic

roup”) is referred to as the system’s Core. 

Design hierarchy refers to a specific ordering of components in

 system, such that dependencies flow in a uniform direction. For

xample, if file A depends on file B, and file B depends on file C,

here is a natural ordering of these components. Specifically, all

omponents depend on C, either directly or indirectly. Hence file

 belongs at the “top” of the hierarchy, given changes to C can po-

entially impact all other files. Similarly, file A is at the bottom of

he hierarchy, given it can be changed with no impact on other

les. 

Prior work shows that software systems can be classified into

ifferent types, based upon the relative size of the largest cyclic

roup of components ( Baldwin et al., 2014 ). Core-Periphery systems

ave a large, dominant, cyclic group of components (the “Core”)

omprising more than 5% of the system. Multi-core systems also

ossess a large cyclic group comprising more than 5% of the sys-

em, but in addition, possess other cyclic groups of comparable

ize. Finally, Hierarchical systems possess either no cyclic groups,

r small cyclic groups, the largest of which do not exceed the 5%

hreshold. 

The components in a system can be divided into groups, based

pon their levels of coupling, and used to analyze system struc-

ure and performance. In Core-Periphery systems, components are

ivided into four groups based upon comparisons to the visibility

f Core components (i.e., those in the largest cyclic group). Shared

omponents have higher VFI, but lower VFO; Control components

ave higher VFO, but lower VFI; and Peripheral components have

oth lower VFI and lower VFO. 

Fig. 3 shows how components of a system can be reordered in

 DSM, based upon these four groupings, to reveal hidden struc-

ure (i.e., design cycles and design hierarchy). On the left, the Ar-

hitectural view shows the nested directory structure of the sys-

em, in alphabetical order (the boxes indicate directories and sub-

irectories). Files are listed both down the vertical and across the

orizontal axes. Each “dot” represents a dependency between two

les (designated by the row and column). On the right, the Core-

eriphery view re-arranges files into four categories – Shared, Core,

eriphery, and Control – by comparing their visibility measures to

he visibility measures of the largest cyclic group of components.

he resulting DSM has a “lower-diagonal” form ( Steward, 1981 ).

hat is, most dependencies are below the diagonal. Dependencies

hat remain above the diagonal denote the presence of cyclic de-

endencies (e.g., A calls B and B calls A). 

d  
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In Core-Periphery systems, dependencies flow from Control

omponents through Core components, to Shared components. Pe-

ipheral components lie outside the main “flow of control” (i.e.,

hey may depend on Shared components but not on Core or Con-

rol components). Prior work suggests many systems have a Core-

eriphery design, with the Core encompassing, on average, 16% of

omponents ( Baldwin et al., 2014 ). 

In Hierarchical systems, the relatively small size of the Core

eans that component groupings based upon the four categories

escribed above are unbalanced in terms of size, creating chal-

enges for statistical analyses. Furthermore, if a system contains

everal smaller cycles of comparable size, the identity of the largest

yclic group may change from version to version, making the clas-

ification of components unstable as a system evolves. To address

hese issues, the components in hierarchical systems can be di-

ided into four groups based upon comparisons to the Median lev-

ls of both Fan-In and Fan-Out Visibility ( Baldwin et al., 2014 ). In

uch systems, components with high VFI and high VFO are known

s Central components (to distinguish them from Core compo-

ents). The remaining three groups follow the logic above, and are

alled Shared-M, Control-M and Peripheral-M . Fig. 4 displays DSMs

or a hierarchical system, with the left side showing the Core-

eriphery view (constructed as described above), and the right side

howing the Median view (where components are classified ac-

ording to the median level of fan-in and fan-out visibility, but or-

ered in the same way as before). 

. Empirical data and measurement approach 

.1. Source of empirical data 

We identified two firms that developed large software systems

f similar size, but which possessed different system designs. One

ystem possessed a “Hierarchical” design (system H), the other

ossessed a “Core-Periphery” design (system C). In order to analyze

he relationship between design decisions and maintenance costs,

e identified systems where we could track maintenance efforts to

pecific source files. Both the firms in our study used version con-

rol systems in which developers submit “patches” against files to

mplement changes to the software. Both firms also employed bug-

racking systems to store information about defects from the time

hey are found to the time they are fixed. Critically, both firms re-

ained a consistent link between version control systems and bug-

racking systems, allowing us to track the relationship between a

efect and the specific files changed to fix it. Finally, for both sys-
ebt and system architecture: The impact of coupling on defect- 
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Fig. 4. Hierarchical system showing “core-periphery” (left) and “median” (right) views. 

Fig. 5. Example of activity to fix a defect. 
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tems, we had access to the total number of hours spent performing

maintenance activities. 4 

Both system H (the hierarchical system) and system C (the

Core-Periphery system) had been in development for over 10 years

and comprised around 20,0 0 0 files – primarily a mixture of C and

C ++ source files and header files. We examined maintenance logs

for both systems for a three-year period after a major release in

mid-2007. We captured only development activity that was cor-

rective in nature. 5 Scripts to extract file-based metrics, and infor-

mation from the bug-tracking and version control systems were

developed and run against the source code, version control and

defect-tracking systems. These scripts were developed to encrypt

or anonymize sensitive information. 

4.2. Measuring “defect-related activity”

A software defect goes through multiple stages in its life. It is

introduced, possibly released into the field, discovered, corrected,

and then that correction is validated. Development activity that

arises to correct defects can be measured after-the fact by examin-

ing bug tracking and development logs. For both systems, the de-

velopers maintaining them used processes to ensure that correc-

tive code changes made to each file were traceable to the entries

in a bug tracking system. We used these logs to compute a metric

called “defect related activity,” for each file over the period. Fig. 5
4 See Appendix A for details on how data was extracted for each system. 
5 New feature development for system H was undertaken in a separate “branch”

of the code base where development of the next major release proceeded inde- 

pendently. New feature development for system C was excluded by examining only 

defects that could be traced to the mid-2007 release of the software. 
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hows an example of defect-related activity for a defect in system

. 

In this example, a defect was corrected by modifying two

ource files (A and B). When the defect was discovered, “User 12”

ubmitted identifying information into the bug tracking system.

User 15” then performed the work to repair the bug, submitting

atches to two files (A and B) on two separate occasions to cor-

ect the issue. The new version of the software was then validated

nd merged into production by “User 17.” To maintain consistency

cross both systems, we measure only the repair activity to fix a

efect (i.e., we excluded the tasks of submission and validation).

n this example, files A and B each experienced 2 pieces of ‘defect

elated activity’ to fix this defect. (Note the amount of defect re-

ated activity is always higher than the number of defects, given

ultiple files may be patched, on multiple occasions, to fix it). In

ur work, we correlate the defect-related activity for each file with

easures of coupling for the file, as well as a variety of control

ariables shown to predict maintenance effort s in prior studies. 

.3. Descriptive statistics 

Table 1 contains descriptive data for each system. While both

ystems contain a similar number of source files, they differ in the

umber of source lines of code. System H has around 5 million

ines of code with a mean of 246 lines per file. System C has over

 million lines of code, with a mean of 435 lines per file. Hence

n our analyses, we note that it is important to control for perfor-

ance differences driven by file size. 

In system H, we identified 317 bugs that could be traced di-

ectly to files present in the 2007 release, accounting for 2909

ieces of defect-related activity. Of the 20,270 files in system H,
ebt and system architecture: The impact of coupling on defect- 
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Fig. 6. The architectural views for system H (left) and system C (right). 

Table 1 

Descriptive statistics for systems. 

System H System C 

Files in System 20,270 19,225 

Total Lines of Code 4,989,956 8,371,591 

Defects in Period 317 3510 

Files with Defects 1107 3249 

Defect Related Activity 2909 11,228 
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Table 2 

Distribution of files by core-periphery cat- 

egory. 

System H System C 

Shared 1319 558 

Core 582 4961 

Peripheral 11,579 1949 

Control 3262 9840 

Isolates 3528 1917 

TOTAL FILES 20,270 19,225 
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6 Note that both systems exhibit a “small world” phenomenon common to many 

natural and engineered systems ( Barabasi, 2009 ). Every pair of nodes that is con- 

nected via a chain of dependencies can be found in fewer than 7 steps (i.e., the 

longest path length between any two connected files is only 7 steps). 
107 (5.6%) experienced some defect related activity in the period.

n system C, we identified 3510 bugs that could be traced directly

o files present in the 2007 release, accounting for 11,228 pieces of

efect-related activity. Of the 19,225 files in system C, 3249 (16.9%)

xperienced some defect related activity in the period. Hence files

n system C were three times more likely to experience defects as

les in system H. 

. Empirical results 

.1. Characterizing system architecture 

Fig. 6 displays the direct dependency DSM for both systems, 

isplayed using the Architectural View. The density of the DSM for

ystem H (0.02%) is lower than for system C (0.04%). However, it is

ifficult to know from this data alone whether these two systems

ossess different structural properties, in terms of the level and

attern of indirect dependencies between components. This ques-

ion is answered by propagating the matrix of direct dependencies

o identify the pattern of indirect linkages between files. 

In Fig. 7 , we show the Core-Periphery View for both systems.

We split out components that are not connected to any others in

ach system, which we call Isolates). In this view, the differences in

ystem structure become clear. In the Core-Periphery view, above

iagonal points denote cyclical dependencies ( Sosa et al., 2007 ).

ystem H has very few cyclical dependencies and a small Core

2.9% of the system). It is a Hierarchical system. System C has a

arge number of cyclical dependencies and a very large Core (25.8%

f the system). It is a Core-Periphery system. We note also the dif-

erence in Propagation Cost between systems. System H has a prop-

gation cost of 2.2%, meaning each component is connected, on av-

rage, to only a small number of other components. System C has

 propagation cost of 22.2% meaning that each component is con-

ected, on average, to many others. Compared to similar metrics
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d
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eported in other studies of software systems, these figures lie at

pposite ends of a continuum ( Baldwin et al., 2014 ). The compo-

ents in system H are very loosely-coupled, on average, compared

o other systems. In contrast, the files in system C are very tightly-

oupled, on average, compared to other systems. 6 These two sys-

ems represent a “matched pair” with which to explore the rela-

ionship between coupling and defect-related activity. 

Table 2 shows the distribution of components across the five

ategories (Shared, Core, Periphery, Control and Isolates). As prior

ork suggests, the allocation of components to categories in sys-

em H is very unbalanced, given it is Hierarchical in nature, and

as only a small Core. In fact, 75% of system components are clas-

ified as Peripheral or Isolates, which lie outside the main flow of

ontrol for the system. 

Given this fact, we conduct further analysis for this system

sing Median levels of visibility, as recommended in prior work

 Baldwin et al., 2014 ). For statistical purposes, the use of medians

nsures a more equal distribution of files to different categories,

hich increases the robustness and generalizability of results.

ig. 8 shows a comparison of the Core-Periphery and Median views

or system H. 

.2. Descriptive analysis 

Table 3 shows the level of defect related activity (DRA) for each

ystem, split by the four categories associated with different levels

f coupling. Our primary hypothesis is that files with higher lev-
ebt and system architecture: The impact of coupling on defect- 
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Fig. 7. The core-periphery views for system H (left) and system C (right). 

Fig. 8. The core-periphery (left) and median (right) views for system H. 

Table 3 

Defect-related activity by category for each system. 

System H Files DRA % DRA Files with DRA % Files with DRA 

Isolate 3528 7 0 .24% 7 0 .2% 

Periph-M 2555 25 0 .86% 15 0 .6% 

Shared-M 3948 304 10 .45% 126 3 .2% 

Control-M 3918 540 18 .56% 189 4 .8% 

Central 6321 2033 69 .89% 770 12 .2% 

All Files 20,270 2909 100 .00% 1107 5 .5% 

System C Files DRA % DRA Files with DRA % Files with DRA 

Isolate 1917 210 1 .87% 56 2 .9% 

Periph 1949 189 1 .68% 113 5 .8% 

Shared 558 53 0 .47% 36 6 .5% 

Control 9840 3811 33 .94% 1556 15 .8% 

Core 4961 6965 62 .03% 1488 30 .0% 

All Files 19,225 11,228 100 .00% 3249 16 .9% 
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els of coupling have a higher probability of experiencing defects,

and generate a greater amount of defect-related activity, in both

hierarchical and core-periphery systems. The descriptive data be-

low support these hypotheses. 

Consider first, the data for system H. Peripheral-M and Iso-

late files comprise 30% of the system, but experience only 32 of

the 2909 pieces of defect related activity (i.e., 1.1%). Furthermore,
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d
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efect-related activity is isolated to only 22 of the files in these

wo categories (0.4%), meaning over 60 0 0 files experience zero

efects . This contrasts with components in the ‘Central’ category,

hich generate 2033 pieces of defect related activity (70% of all

uch activity) despite comprising only 31% of files. Furthermore,

ver 12% of files in the Central category experience a defect dur-

ng the study period. 
ebt and system architecture: The impact of coupling on defect- 
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Table 4 

The probability of experiencing a defect (logit model). 

Logit System H 1 2 

Intercept –3 .26121 ∗∗∗ –5 .39875 ∗∗∗

C-File 0 .27725 ∗∗∗ 0 .34005 ∗∗∗

Lines of Code 0 .0 0 056 ∗∗∗ 0 .0 0 042 ∗∗∗

Cyclomatic Complexity 0 .00795 ∗∗∗ 0 .00448 ∗∗∗

Isolate – –1 .06850 ∗∗∗

Shared-M – 1 .88786 ∗∗∗

Control-M – 1 .92061 ∗∗∗

Central – 2 .980 0 0 ∗∗∗

Psuedo R-Squared 0 .057 0 .148 

Logit System C 1 2 

Intercept –2 .68624 ∗∗∗ –3 .28895 ∗∗∗

C-File 1 .01408 ∗∗∗ 0 .88257 ∗∗∗

Lines of Code 0 .0 0 028 ∗∗∗ 0 .0 0 022 ∗∗∗

Cyclomatic Complexity 0 .01958 ∗∗∗ 0 .01481 ∗∗∗

Isolate – –0 .90617 ∗∗∗

Shared – 0 .24153 

Control – 0 .69669 ∗∗∗

Core – 1 .34561 ∗∗∗

Psuedo R-Squared 0 .088 0 .122 
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Table 5 

The amount of defect related activity (OLS regression 

model). 

OLS Regression System H 1 2 

Intercept 0 .02959 ∗∗∗ –0 .01078 ∗

C-File 0 .00463 ∗∗∗ 0 .01181 ∗∗∗

Lines of Code 0 .0 0 010 ∗∗∗ 0 .0 0 0 09 ∗∗∗

Cyclomatic Complexity 0 .00107 ∗∗∗ 0 .0 0 085 ∗∗∗

Isolate – –0 .00596 

Shared-M – 0 .03319 ∗∗∗

Control-M – 0 .02209 ∗∗∗

Central – 0 .10078 ∗∗∗

Adjusted R-Squared 0 .059 0 .080 

OLS Regression System C 1 2 

Intercept 0 .05266 ∗∗∗ –0 .00565 

C-File 0 .13997 ∗∗∗ 0 .11559 ∗∗∗

Lines of Code 0 .0 0 0 04 ∗∗∗ 0 .0 0 0 04 ∗∗∗

Cyclomatic Complexity 0 .00561 ∗∗∗ 0 .00488 ∗∗∗

Isolate – –0 .03523 ∗∗

Shared – 0 .01835 

Control – 0 .04167 ∗∗∗

Core – 0 .24686 ∗∗∗

Psuedo R-Squared 0 .106 0 .140 
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7 Note in this analysis, we have combined the activity in Isolate and Peripheral 

categories. 
Similar results are seen in system C. Periperal and Isolate files

ccount for 20% of this system’s components, yet only 3.6% of

efect-related activity. In contrast, Core files account for 26% of

ystem components, but 62% of defect-related activity. Over the

eriod, 30% of Core files experience a defect, compared to 5.8% for

eripheral files. 

.3. Predictive analysis 

While the descriptive data above provide illustrations of the po-

ential impact of coupling in these systems, they do not show that

hese measures are statistically significant. In particular, it might

e the case that the overall pattern of activity we see in each cat-

gory is driven by one or two outliers that experience large levels

f defect-related activity. Furthermore, it is possible that the large

ifferences in activity might be related instead to differences in the

ize or complexity of files in each category, and not their coupling.

ence, we develop statistical models for each system, to under-

tand whether component coupling is a predictor of defect-related

ctivity. 

Table 4 shows a series of logit models predicting the probabil-

ty of a file experiencing a defect over the study period in each

ystem. Table 5 shows a series of OLS regression models predict-

ng the amount of defect-related activity in each system. (We use

he log of defect-related activity, given this measure is skewed, and

runcated at zero). In these models, we control for the number of

ines of code (LOC) in a file, as well as its cyclomatic complexity.

ith respect to the latter, we calcuate the cyclomatic complexity

or all functions and methods within a file, and then use the max-

mum figure observed within a file. We also include a control for

/C ++ files (i.e., those with the extension .c or .cpp) as opposed

o header files (i.e., .h) to control for the fact that the latter play a

ifferent role in a software system, and are typically less complex.

n each table, model 1 provides results for control variables, and

odel 2 adds predictor variables (i.e., Core/Central, Shared, Control,

tc.). In model 2, the baseline is for a Peripheral file (i.e., dummy

ariables are included for Shared, Central/Core, Control and Isolate

les). 

The control variables are positive and significant for both mod-

ls and both systems. Files with more lines of code, greater maxi-

um cyclomatic complexity, and C/C ++ files have a higher proba-

ility of defects, and experience a greater amount of defect-related

ctivity. The models based upon controls alone explain 5.7% of the

ariation in the likelihood of experiencing a defect for system H,
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d
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nd 8.8% of the variation in the likelihood of experiencing a defect

or system C. The models based upon controls alone explain 5.9%

f the variation in the amount of defect-related activity for system

, and 10.6% of the variation in the amount of defect-related activ-

ty for system C. 

In models that add predictor variables to the controls, we find

 strong association between files that possess high levels of cou-

ling and both i) the likelihood of experiencing a defect, as well

s ii) the overall amount of defect-related activity. In system H,

hared-M, Control-M and Central files all have a higher probabil-

ty of experiencing defects than Peripheral files, and all experience

ore defect related activity. Peripheral files with zero external cou-

ling (Isolates) have a lower probability of experiencing defects

han other peripheral files, but similar levels of defect-related ac-

ivity. In system C, the results are broadly similar, with one excep-

ion. In this system, the dummy for Shared files is not significant

n either model. Hence Shared files perform similarly to Periph-

ral files, with respect to the probability of experiencing a defect,

nd the overall amount of defect-related activity. This lends some

upport to the notion that the use of shared files represents good

esign practice, at least in Core-Periphery systems. 

.4. Financial analysis 

We obtained resource-allocation data for the 3-year period be-

ween May 2007 and April 2010. We had access to the total hours

evoted to corrective maintenance for both systems as a whole.

e used a standard cost of $100/hour to estimate the fully loaded

ost of this activity. We then distributed this cost across cate-

ories, based upon the level of defect-related activity observed in

ach (the assumption being that, on average, each piece of defect-

elated activity “costs” the same). We divided the total mainte-

ance costs in each category by the total number of lines of code

n each. The results, in Table 6 , suggest a cost per line of code per

ear, by category, to maintain each system. 7 

For system H, we find each line of code in a Central file

osts over 15 times as much to maintain as a line of code in a

eripheral-M file. For system C, we find each line of code in a Core

le costs around three times as much as a Peripheral file. We note

he Core-Periphery system costs on average, three times more per
ebt and system architecture: The impact of coupling on defect- 
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Table 6 

Cost per line of code by component category. 

System H LOC DRA Cost of Activity Cost/LOC Cost/LOC/Year 

Peripheral-M 617,621 32 $86,480.30 $0 .14 $0 .05 

Shared-M 637,536 304 $821,562.87 $1 .29 $0 .45 

Control-M 1,520,086 540 $1459,355.10 $0 .96 $0 .33 

Central 2,214,097 2033 $5494,201.72 $2 .48 $0 .86 

All Files 4,989,340 2909 $7861,60 0.0 0 $1 .58 $0 .55 

System C LOC DRA Cost of Activity Cost/LOC Cost/LOC/Year 

Peripheral 700,616 399 $1432,916.71 $2 .05 $0 .71 

Shared 82,475 53 $190,337.31 $2 .31 $0 .80 

Control 3,825,163 3811 $13,686,329.78 $3 .58 $1 .25 

Core 3,763,337 6965 $25,013,195.20 $6 .65 $2 .31 

All Files 8,371,591 11,228 $40,322,779.00 $4 .82 $1 .68 
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line of code per year to maintain, compared to the Hierarchical

system. Care must be taken in interpreting these results however,

given these figures, unlike the statistical models presented ear-

lier, do not control for differences in cyclomatic complexity across

categories. 

5.5. Projecting the potential cost savings from refactoring efforts 

Our results suggest that system architecture decisions are asso-

ciated with significant differences in maintenance costs. This gives

rise to the question of whether refactoring efforts might be worth-

while, which have the aim of reducing the level of coupling for

some components, and hence lowering costs. To speculate on the

potential benefits of such actions, we draw on prior work that

highlights the impact of system redesign efforts in terms of the

ability to reduce component coupling. In particular, MacCormack

et al. (2006) and Baldwin et al. (2014) show that a refactoring of

the Mozilla web browser software led to a reduction of 50% in the

number of highly coupled Core components. 

With respect to system H, we noted earlier that the largest

cyclic group of components in this system (i.e., the Core) com-

prised only 582 components. In such a system, the benefits from

a refactoring effort that halved the number of such components

would appear to be small. Alternatively, one might take the view

that such an effort could reduce the coupling level of Central com-

ponents, to the point where 50% of these components experience

the same cost as Shared-M or Control-M components (i.e., a reduc-

tion from $0.86 per LOC per year to between $0.33-$0.45 per LOC

per year). Assuming 1.1 million lines of code were affected (see

Table 6 ), such a move might reduce annual maintenance costs by

around $50 0,0 0 0 (i.e., 6.5% of total costs). 

For system C, assuming a refactoring effort achieved similar re-

sults to that observed in Mozilla, 50% of the Core components

could be moved to either the Shared or Control categories and

hence experience a substantial decline in cost (i.e., from $2.31 per

LOC per year to between $0.80-$1.25 per LOC per year). Assuming

1.9 million lines of code were affected (see Table 6 ), such a move

might reduce annual maintenance costs by around $240 0,0 0 0 (i.e.,

6.0% of total costs). While these estimates are clearly speculative,

the difference in magnitude between the two systems is notable.

We conclude that in these two equally sized systems, refactor-

ing appears to present a much larger opportunity for the Core-

Periphery system than it does the Hierarchical system. 

We note that our projections represent a broad, top down ap-

proach to assessing the potential value of refactoring, based upon

the assumption that refactoring could achieve similar outcomes to

prior observed effort s. We do this merely to demonstrate that tech-

niques such as these can be used to identify places where large

amounts of value creation might be possible via refactoring. How-
Please cite this article as: A. MacCormack, D.J. Sturtevant, Technical d
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ver, for systems of the size we analyze, the realization of such

alue is unlikely to happen via a single major refactoring event

complete replacement is not a viable strategy for the systems in

ur study). Rather, this value is likely to be realized only via long-

erm effort s to modularize the system. Our methods provide guid-

nce for where one might start in such a process – for example,

radually moving pieces of common functionality out of the Core,

nd structuring these as, say, Shared components. Indeed, such an

ffort was begun in system C prior to the end of the period we

nalyze. A senior developer managing this effort informed us: 

“The system had grown in a somewhat uncontrolled fashion for

two decades. During this time the organization had grown sub-

stantially too. After a while, it became increasingly apparent that

we had architectural issues that were making it hard for teams

to be productive and leading to quality problems. So we had to

ask some hard questions about how to regain control. A complete

rewrite was tempting but would have been impossible - too dis-

ruptive to our release schedule and our customers, and a huge in-

vestment with an uncertain outcome. So we had to refactor, but

we could only do this in an incremental fashion.”

“We kicked off a “componentization” effort to refactor the archi-

tecture, with the explicit goal of breaking links, driving modular-

ity into the codebase, and getting a handle on dependencies and

APIs. We are using frameworks, assessment and visualization tools

to give each developer team the information it needs to understand

the system and how to break it apart. Developers can now take lo-

cal action and coordinate with neighbors to clean up regions of the

code. When every team finishes, we’ll be left with a system that is

much more architecturally sound. The effort is ongoing - it’ll never

really be complete because business needs and technologies change

- but we’ve made good progress.”

“In terms of outcomes, a number of teams whose code has been

broken out into modular components have reported that their

productivity has more than tripled. Side effects happen less of-

ten, compile times are down, and testing and integration are

much easier. Developers can focus on their actual jobs, without

being as concerned about what’s going on in the rest of the

codebase.”

We note that in order to assess whether it is worth paying

own architectural debt by refactoring a design, managers must

lso assess the costs of these efforts (i.e., the costs of either a sin-

le, large refactoring event, like was done for the Mozilla browser,

r frequent, smaller, ongoing, componentization effort s, as is un-

erway for system C). Without such data, we cannot know the true

eturn on investment (ROI) from refactoring. We believe our meth-

ds can be extended to produce such estimates, which is a subject

f ongoing research. However, we note recent research has made
ebt and system architecture: The impact of coupling on defect- 
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rogress in this field, evaluating the costs and benefits of refactor-

ng based upon an assessment of the before and after (“desired”)

tates of a design using network analysis techniques similar to our

wn ( Kazman et al., 2015 ). We believe the ideal approach to un-

erstanding refactoring ROI likely combines data from both a top

own approach (i.e., using empirical data on the structural impact

f past refactoring efforts) as well as a bottom up approach (i.e.,

ocusing on specific characteristics of the design that is to be refac-

ored). 

. Discussion 

This paper makes a distinct contribution to the emerging liter-

ture on Technical Debt in software systems, and in particular to

he notion that significant debts may be related to system archi-

ecture. In particular, we show that components with higher levels

f coupling are associated with higher costs of maintenance in two

ystems that possess very different structures; one being a Hierar-

hical design, and the other being a Core-Periphery design. These

ifferences are highlighted through three separate analyses. First,

 descriptive analysis, second a predictive analysis, and third, a fi-

ancial analysis. 

Our results have important implications for managers. They

ighlight the importance of design decisions made early in the life

f a software system. Decisions about levels of component cou-

ling are typically based upon challenges faced in the current ver-

ion of a design. Yet our results reveal the long-lasting nature of

hese choices. Tightly coupled components cost significantly more

o maintain many years after a system is introduced. The challenge

or a developer is that these long-term costs are neither easy to

alculate nor as salient as the near-term benefits that may stem

rom an approach to design that is more expedient in the short

erm, and which may involve greater levels of coupling. 

Importantly, prior work has demonstrated that rather than be-

ng an explicit managerial choice in response to system require-

ents, the level of modularity in a system can be affected by

actors outside the influence of individual managers. For exam-

le, MacCormack et al. (2012) compared software systems with the

ame size and function, but which had been developed through

ifferent organizational forms (i.e., open source communities ver-

us commercial firms). They found the architecture of each system

mirrored” the design of the organization from which it came –

oosely-coupled open source communities developed software with

reater levels of modularity than collocated teams inside commer-

ial firms. The implication is that even with the best of intentions,

evelopers left to their own devices often create tightly-coupled,

ard to maintain designs, unless organizational constraints dictate

therwise. However, the good news is that there ought to be ample

pportunity to improve these designs, without affecting function-

lity. The question is whether it is cost effective to invest in such

ndertakings? 

On that front, the results of our study suggest, “it depends.” In

rojecting the financial benefits from refactoring (based upon out-

omes of past refactoring efforts) we note substantial differences

n value creation potential that appear to be related to the two

istinctly different types of system we analyze. The value is much

arger for the Core-Periphery system we study, given the Core of

his system comprises almost 50 0 0 mutually interdependent com-

onents (presenting a huge challenge to any developer trying to

ake a change to these components). But even with this large po-

ential for value creation, the decision about refactoring ultimately

omes down to the costs of such an effort, and the manner in

hich it could be executed. We provide qualitative evidence that

n this scenario, refactoring might be achievable only via frequent,

mall, incremental componentization efforts, which aim to contin-

ously improve system structure. 
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Several limitations of our study must be considered in assessing

he generalizability of our results. We examine only two systems,

lbeit with very different designs and from two different firms. We

annot be sure that the findings would apply to other firms or sys-

ems. While we examine the costs of system design across 40,0 0 0

omponents, this sample and the results it generates may reflect

diosyncratic practices and design choices of these firms. Second,

e have measured maintenance efforts by capturing the level of

efect-related activity – in essence, the number of patches made

o files to fix defects. However, the work involved to complete each

atch is likely to vary according to the level of coupling for files.

n this respect, we may be underestimating the true costs of high

oupling (i.e., if patches to Core files consume more effort than

atches to Peripheral files). Finally, while we speculate about the

alue that could be released via refactoring efforts, such actions

ave significant costs and other (often unintended) consequences

n system performance. Decisions about whether to refactor a sys-

em require not only the detailed empirical data that we provide,

ut also a robust assessment of refactoring costs and risks before

t could be known if such actions would be optimal. 

Our study generates a number of avenues for future work. First,

t provides a benchmark for future studies that seek to examine

he relationship between measures of architecture and the costs

ssociated with maintenance and adaptation. Second, it provides

ethods for evaluating the technical debt associated with software

rchitecture, which could be verified via future empirical studies

cross a larger number of contexts and systems. Finally, while we

ocus only on the costs associated with corrective maintenance, a

ignificant amount of the value from refactoring is likely to come

rom an increase in developer productivity when responding to

ew requirements. It is our hope that the methods we describe can

rovide a springboard for undertaking such enquiries. 

. Conclusion 

Our work contributes to the emerging literature on technical

ebt, and in particular to studies which focus on those debts asso-

iated with system architecture. In particular, we show that mea-

ures of coupling, which capture a file’s position within the net-

ork of system dependencies, are a strong predictor of subsequent

le maintenance costs. We show this relationship is consistent

cross two software systems with very different designs; one has a

Hierarchical design”, the other has a “Core-periphery” design. Our

ork is distinctive and departs from prior work in that we use a

easure of coupling that captures the direct and indirect depen-

encies each component has in a system, as well as the direction

f these dependencies. These data can be used to classify the role

f each file in the system, and hence to identify how changes may

ropagate through the system. 

The paper contributes to work that seeks to understand the po-

ential value that can be released via architectural refactoring ef-

orts that “pay down” architectural debt. Specifically, we combine

nancial data on the costs of maintaining components in different

rchitectural categories, with empirical data on the outcomes of

rior refactoring efforts, to project the value that could be released

n each system. The results suggest greater value would come from

efactoring the core-periphery system, which possesses a large core

f almost 50 0 0 mutually interdependent files. However, given the

ize and complexity of this system, the realization of this value

ould likely require a long-term commitment to modularize the

ystem via frequent, small, incremental componentization efforts.

ur methods provide guidance for which files one might target in

uch a process (i.e., Core files). And we provide anecdotal evidence

rom a senior developer in this system that this approach is prov-

ng useful in paying down architectural debts. 
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Appendix A. Further details of the data capture methods for 

the two systems 

For system H, we wrote scripts to extract information from the

version control system, relating to patches applied to fix defects

(new feature development occurred in a separate branch of the

code). Fig. 5 shows an example of the type of data available. Each

patch to a file was associated with a unique bug ID and a user. We

captured three years of data after a major release. A total of 518

bug IDs were identified, resulting in 12,040 pieces of defect related

activity. Of these, 7124 (60%) could be traced to source files present

in the major release. (The balance was associated with files where

names had changed, which we could not track given the firm ran

scripts remotely to maintain confidentiality; and new files added

as a result of maintenance effort s post release). We removed activ-

ity related to “submit” and “validate” tasks, as these were adminis-

trative tasks associated with opening and closing bugs in the sys-

tem (and we did not have comparable data for system H). For sys-

tem H, the firm had a dedicated maintenance team, and thus could

track person-hours. The firm provided aggregate data to us on the

total number of hours the maintenance team spent on defect fix-

ing effort s. We used a st andard fully loaded cost for a developer to

calculate the dollar cost of this activity. We were given access to

one source code snapshot to analyze the system architecture. File

names and directory path were anonymized to ensure confidential-

ity, but in a way that maintained the consistency of these names

across source code and version control systems. 

In system C, we had direct access to the version control system,

so had more flexibility in how we gathered data. In a similar man-

ner to above we mined the version control system to identify file

patches to fix defects associated with the same bug ID. In this sys-

tem, developers could write patches to fix defects or to add new

features (as well as a number of other reasons). We captured data

only on patches identified as defect fixes. And we limited this data

only to defects that were present in the code that existed as of the

start of the three-year period in 2007. (In system C, there was a

data field that asked developers to identify the specific version of

the code to which a defect related). This was the code snapshot

that we analyzed to capture measures of the product architecture

for prediction. 

For system C, there was no distinction between developers who

worked on new features versus those that maintained code. How-

ever, we had access to all commits made by all developers over

the period, as well as the number of lines of source code commit-

ted in each patch. Hence we calculated the aggregate productivity

(i.e., SLOC/month) for developers over the period, split by category

(Core, Periphery etc.) and activity (i.e., defect fix versus new fea-

ture). We then estimated the total number of hours required for all

commits related to fixing defects, using the total number of source

lines of code added/deleted, combined with data on developer pro-

ductivity when fixing defects. 
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