Whether to Apply

Katherine B. Coffman
Manuela R. Collis
Leena Kulkarni
Whether to Apply

Katherine B. Coffman
Harvard Business School

Manuela R. Collis
Harvard Business School

Leena Kulkarni
Harvard School of Public Health

Working Paper 20-062
WHETHER TO APPLY

Katherine B. Coffman*
Manuela R. Collis
Leena Kulkarni

June 2021

Abstract: Labor market outcomes depend, in part, upon an individual’s willingness to put herself forward for different opportunities. We use laboratory and field experiments to explore gender differences in willingness to apply for higher return, more challenging work. We find that, in male-typed domains, women view themselves as less qualified for opportunities, both because of differences in self-assessments and because of uncertainty about where “the bar” is. We provide field evidence that reducing ambiguity surrounding required qualifications reduces the gender gap in willingness to apply among qualified candidates, increasing both the diversity and talent of the applicant pool.

*Corresponding author: kcoffman@hbs.edu 445 Baker Library, Harvard Business School, Boston, MA. MC: Manuela.r.collis@outlook.com . LK: lkulkarni@hsph.harvard.edu .

Acknowledgements: This work was funded by the National Science Foundation and Harvard Business School.
"Why are you not a full professor - given your eminence?"

[Silence]

"I never applied." - Donna Strickland, Nobel Laureate in Physics, 2018

I. Introduction

An important body of work documents the impact of gender bias and discrimination on women’s careers (see Riach and Rich 2002 for an overview). Women are less likely to be interviewed for high-status jobs (Fernandez and Mors 2008) and promotions (Ginther and Kahn 2009; Ibarra, Carter, and Silva 2010; Zahidi and Ibarra 2010). Evidence from the laboratory reinforces these findings, with many studies showing that employers in simulated labor markets are more likely to hire men than women for male-typed jobs (Bohnet, van Geen, and Bazerman 2016; Reuben, Sapienza, and Zingales 2014; Coffman, Exley, and Niederle 2021). Once a female worker is hired, she is subject to bias in both formal job evaluation processes (Heilman 2001) and in more informal mentoring (Ibarra, Carter, and Silva 2010). Firms are devoting significant attention to reducing these biases, with the hope of achieving greater gender diversity throughout their ranks.

Of course, when considering the sources of gender gaps in labor market outcomes, discrimination and bias are only one side of the coin. Decisions made by employees themselves also have the potential to have large impacts on gender gaps in outcomes. Candidates decide what types of education and training to pursue, which jobs to apply to, and when to put themselves up for promotion. Gender differences at these crucial decision nodes could be a factor. Indeed, social scientists have documented that occupational segregation plays an important role in explaining gender gaps in wages (Altonji and Blank 1999). Choosing an industry, however, is just one of many important choices an employee makes.

In this paper, we study the decisions of candidates about whether to apply for different opportunities. We aim to tackle the question of whether there are gender differences in how job-seekers perceive their own qualifications for different opportunities, and how this impacts their decision about whether or not to apply. These decisions are likely to be key not only at the hiring stage, but also as careers advance, presenting opportunities for promotion.

Outside of controlled experiments, many of these decisions about whether to apply may be made in the face of (anticipated) bias, making it hard to isolate the role for willingness to apply from bias. We take advantage of controlled frameworks to separate between these stories, allowing us to focus on the role of candidate perceptions and decisions, absent employer biases. We ask whether women are as likely as men to see
themselves as qualified for challenging, higher-paying positions, and whether they apply at similar rates conditional on their degree of qualification.

Past literature on gender differences provides potential reasons why qualified women may be less likely to apply. Careful laboratory evidence suggests that conditional on having the same ability, women have more pessimistic beliefs about their own ability in male-typed domains compared to men, both in objective terms (Niederle and Vesterlund 2007, Coffman 2014; Bordalo et al. 2019) and subjective terms (Exley and Kessler 2020). In the field, Murciano-Goroff (2020) finds that conditional on having the same level of skill, female software engineers are less likely to self-report that skill on their resume compared to men. This suggests that even if men and women both have the same skills and share the same view as to what is required to qualify for a given position, women may be less likely to believe they possess that qualification (holding all else equal). Even conditional on holding the same beliefs, differences in competitive preferences could also drive differences in behavior (Niederle and Vesterlund 2007), as could differences in preferences for more challenging work (Niederle and Yestrumskas 2008).

A few clever field experiments have explored some factors that impact male and female job-seekers’ probability of application. Consistent with the factors mentioned above, Flory, Leibbrandt, and List (2015) find that an opening that is framed as more male-typed, more competitive, or with more pay uncertainty deters female candidates more than male candidates. Similarly, in a field experiment with a high-skilled population, Samek (2019) finds that competitive compensation schemes deter women more so than men. Gee (2018) finds that showing job-seekers the number of other applicants increases applications from women more than men, arguably through a reduction in ambiguity. Female role models can also influence application decisions: Del Carpio and Guadalupe (2018) find that women are more likely to opt into a tech skills training program when presented with an example of a female success story. Together, this evidence suggests that decreasing perceived competitiveness and uncertainty about the desirability of the position may help to reduce gender gaps in application behavior.

Closest to our work is a simultaneous project by Abraham and Stein (2020) exploring how the language used in job postings impacts the application behavior of men and women. In a large, randomized control trial, they vary the language around how demanding and intense the required qualifications for a given position are. In particular, their treatment “softens qualifications,” removing optional qualifications from the posting and using less demanding language for remaining qualifications. They find that when qualifications are softened, more individuals apply, and it reduces the skills gap between male and female applicants. That is, in comparison to the control treatment, it is no longer case that the female applicants that apply are significantly more skilled than the male applicants. In other related work, Kuhn, Shen, and
Zhang (2020) use data on a large job ad platform and find that an explicit request for women to apply increases the number of women applying.

Our paper builds on this body of important work by attempting to understand better the decision of whether to apply, to identify the factors that may contribute to gender gaps, and to propose and test potential policy solutions. Our main hypothesis is that uncertainty surrounding whether or not an individual is qualified for an opening may produce gender gaps in willingness to apply. The idea of ambiguity as a driver of gender gaps has been proposed in other contexts, including in negotiation. Bowles, Babcock, and McGinn (2005) show that reducing situational ambiguity, for instance, about what is reasonable or appropriate, reduces gender differences in negotiation outcomes. Here, we explore whether ambiguity about how where “the bar” is – in terms of required qualifications -- affects beliefs about own qualification level and decisions to put oneself forward for different opportunities.

Consider an individual deciding whether or not to apply for an opening; she may ask herself, among other things, am I qualified for this position? The answer to this question likely depends not only on the candidate’s self-assessment of her own aptitude (what are my skills, strengths, and talents), but also on her assessment of what the bar is (that is, what level of skills, strengths, and talents is the employer looking for?). These assessments are often made under considerable uncertainty.

Past literature has already established that women may forecast their own aptitude to be lower relative to men, impacting their decisions. But, beyond that, women may also forecast a higher bar than men. Or, women, uncertain if they are above the bar, could perceive larger (reputational, psychological, or backlash-driven) costs to applying if below the bar. Each of these could produce a gender gap in application decisions, conditional on being qualified. In the latter two cases, reducing uncertainty about what the bar is could reduce a gender gap in applications among qualified candidates.

We explore this hypothesis across three controlled experiments. Our experiments span different subject populations – Ivy League students, Amazon Mechanical Turk workers, and job candidates seeking work on an employment website – and different experimental approaches. Through our use of mixed populations and mixed methods, we aim to identify phenomena and policy prescriptions that may be generalizable to a range of real world contexts of interest.

Our first experiment is a field experiment on the online labor market platform, Upwork. Serving as a potential employer, we create job opportunities to which participants can apply. In our baseline condition, we find that qualified women are significantly less likely to apply to our more demanding and more lucrative job opportunity than equally qualified men. Our treatment conditions test a simple policy intervention: we provide more clarity on what “the bar” is. We find that the gender gap in in application
rates among qualified candidates is reduced when the desired qualifications for the opportunity are less ambiguous. This creates a larger, more gender diverse pool of qualified applicants.

We follow up this field experiment with two more stylized controlled experiments, in an attempt to better understand the mechanisms at work behind our results. Across these settings, we find additional evidence that women are less likely to view themselves as well-qualified for a variety of positions. And, they forecast their chances of receiving a position, conditional on applying, more pessimistically than equally-skilled men. But, when “the bar” is clearer and more objective, both of these gender gaps are reduced. Together, our results point toward the potential of reduced ambiguity in shrinking gender gaps in beliefs and decisions in labor market contexts.

II. Growing the Pool of Qualified Applicants in the Field

Our field experiment tests the idea that less ambiguous qualifications can help to attract more (talented) female applicants. From August to November 2017, we ran a field experiment on an online employment platform called Upwork. Upwork (previously Elance-oDesk) is the largest global freelancing website (Upwork n.d.). Upwork facilitates match-making between freelance workers and potential employers. To implement our field experiment, we act as employers on Upwork, posting job advertisements, inviting a pool of workers to view and apply to our ads, and then tracking application rates. We make job offers to the most qualified workers that apply to each ad, and provide them the opportunity to complete the job for the advertised pay. Freelancers are unaware of their participation in an experiment at the time that they make the decision of whether or not to apply to the job opening.

We start with some institutional context about the setting. Freelancers who register with Upwork can advertise their services by creating a profile. This profile is publicly available and can be searched for and viewed on the Upwork website. A profile can include the following information: the freelancer’s first name and last initial, photo, state of residence, hourly rate, self-reported education, self-reported skills, self-reported work experience, number of jobs completed on Upwork, hours worked on Upwork, reviews from previous Upwork employers, and availability status.

In addition, freelancers have the opportunity to take standardized tests of their skills and aptitudes in different domains. Upwork offers hundreds of so called “Skills Tests” for free with the topics of those tests ranging from Adobe to XML (“Skills Tests” n.d.). Upworkers are encouraged to take as many tests as they would like and have the option to retake a test after 180 days. For each test, Upwork provides information on the number of freelancers who have already taken this test, and their corresponding scores. These tests essentially serve as verified evaluations of capabilities, and freelancers have the option of displaying the results of these tests on their profile.
We take advantage of these skills tests in the design and implementation of our experiment. In particular, we construct our desired qualifications around test scores on either the Management Skills Test (Wave 1 of experiment) or the Analytical Skills Test (Wave 2 of experiment). We choose these tests both because they have a relatively large number of freelancers who have taken them, and because they are stereotypically more male-typed domains. We choose to study male-typed domains to better proxy the male-typed environments that have been historically characterized by female under-representation and lack of advancement (i.e. business, STEM).

We started by identifying all available Upworkers that are residents of the United States and have displayed on their profile either the results of the Management Skills Test (Wave 1 of experiment) or the Analytical Skills Test (Wave 2 of experiment). This gives us a pool of workers that have completed a test of interest. We compiled the profile information for each of the Upworkers in this pool, creating a dataset with a wealth of information about each worker. We attempt to capture all commonly available profile features, including posted hourly rate, state, hours worked on Upwork, jobs completed on Upwork, indicator of whether they are currently available, measure of current availability (more than 30 hours/wk, less than 30, as needed), education level (indicators for profile listed a college degree, an MBA, or another graduate degree), a set of indicators for skills in different job categories, and the total number of tests they have chosen to display on their profile. On top of that, we enter into the dataset an indicator of freelancer gender.

The dataset also contains the freelancer’s score on the test of interest (either Management Skills or Analytical Skills) on a normalized 1 – 5 scale. This is a score computed by Upwork, but workers have discretion over whether to display their score. Only workers who choose to display their score appear in our dataset. We also record the number of minutes it took the freelancer to complete the test, made available by Upwork alongside the worker score. Freelancers are able to re-take these tests, if 180 days have passed since the last time they took the test. We do not observe the number of times a freelancer took the test.

1Upwork assigns each job to one of the following categories: Web/Mobile/Software Development, IT & Networking, Data Science & Analytics, Engineering & Architecture, Design & Creative, Writing, Translation, Legal, Administrative Support, Customer Service, Sales & Marketing, and Accounting & Consulting. Note that each of these categories has up to 83,000 sub-categories. We captured self-reported capabilities at the job category level.

2 Gender determinations were done as follows. First, we made three predictions of the gender using different methods: (i) one member of the research team predicted gender based on name and photo prior to treatment assignment. Next, we predicted gender with use of the (ii) 1990 Census (IPUMs) and (iii) 1940-1970 Social Security Administration (SSA) name files. For (ii) and (iii), a name is assigned a gender if 90 percent of individuals with the freelancer’s stated name are classified as either male or female by the data source. In most cases, the three sources were in agreement. When all three methods (researcher, IPUMs, SSA) were not in agreement or when IPUMs and/or SSA produced an unclassified result, we had another researcher code the gender (blind to treatment and results, n=231). In those cases, we go with the gender given by the majority of the predictors (of the two researchers, the IPUMs, and the SSA), with a minimum of two predictors having to be in agreement. Otherwise, we drop the observation (n=9).
Having created this dataset, we reach out to each worker in our dataset via Upwork, inviting them to apply to our positions. Every invitation contains the following information. Freelancers are informed of two jobs. One job is an “intermediate level job” while the other job represents the more challenging but also better compensated “expert level job”. Both jobs require writing essay-style answers to two questions and are advertised to take one hour. We offer pay of $70 for the intermediate job and $150 for the expert job.

All participants are presented with both options and are invited to apply to either of the two jobs (the worker can choose either job to apply to, but are told that they can apply to no more than one). All freelancers receive generic information on desired characteristics of a successful applicant for the expert job that reads as follows: “We are looking for candidates with [management expertise / experience in analytical thinking], as demonstrated through education, past work experience, and test scores. Successful applicants will also have strong writing and communication skills.”

Each worker is randomly assigned to one of three treatments. In our control treatment, workers are provided with no additional information on the desired qualifications. In our positive treatment, freelancers are provided with a descriptive statement about the desired qualifications. The job description states that “we expect that most successful applicants to the expert-level job will have a [Management / Analytical] Skills test score above [3.75 / 4.05]”. In our normative treatment, freelancers are provided with a prescriptive statement about whether to apply for the expert level job. The job description states that “we invite applicants with a [Management / Analytical] Skills test score of [3.75 / 4.05] to apply for the expert-level job.” Freelancers who were interested in our positions were able to contact us to apply through the Upwork website. We then made hiring decisions using a pre-determined algorithm that assigned weights to our listed desired qualifications.3

Our treatments are informed by language that is common to application and admissions contexts. Our positive treatment reflects language used in some college and graduate school admissions. While top schools rarely issue strict cutoffs or qualifications, they often provide information on what typical scores look like for successful applicants. For instance, MIT undergraduate admissions provides the Middle 50%

3 We computed a “hiring score” ranging from 0 to 100 for each worker that was a function of the desired qualifications communicated to them within the job advertisement, assigning a weighted score based upon their experience (100 points if they completed any job on Upwork, 0 points if they have no Upwork experience, weight: 10%), education (as indicated by degrees held, 0 points for no stated education, 60 points for completed College education, 80 points for a Masters degree, 90 points for an MBA degree, 100 points for an MBA and another graduate degree, weight: 20%), and test score on the test of interest (their skills test score converted into a 100 point scale, weight: 70%). We made job offers to the two workers with the best hiring scores for each posting (two intermediate offers and two expert offers within each treatment, for each wave, for a total of 24 offers). Freelancers who receive job offers are simultaneously told of the experiment and offered the opportunity to withdraw their data. We had no freelancers request removal; 20 of the 24 workers we made offers to accepted the job and completed it for pay. Note that only workers who applied to the expert-level job were eligible for the expert-level job; we selected the best two hiring scores within the set of workers who applied to each particular posting.

In our view, both treatments increase the objectivity, specificity, and clarity of desired qualifications for the expert level job relative to the control, honing in on our key hypothesis. While the positive treatment simply describes the qualification, the normative treatment takes things a step farther: it explicitly encourages candidates with the qualification to apply. A candidate (with a test score above the threshold) worried about whether applying is the socially appropriate or right thing to do may be additionally reassured by the normative treatment. In this way, the normative treatment may be a more aggressive intervention relative to the positive treatment. By studying both, we hope to speak to a broader set of contexts and commonly used wordings in application and admissions contexts.

A few features of our design are worth noting. First, we reach out to workers rather than simply post the jobs in order to boost response rates, increasing the extent to which our ads are visible to workers and ensuring unique and random assignment to treatment. Each freelancer in our dataset is able to view and apply to a job for exactly one of the three treatments.

Second, we chose this design with two jobs because we worried that by directly contacting workers and inviting them to apply, we might already be de-biasing workers – our invitation alone might suggest to workers that indeed they are qualified for our opening. To remedy this, we use two jobs, an intermediate level job and an expert level job, and use the decision to apply to the expert level job as our outcome of interest. In this way, even if we are signaling to workers that they are likely a good fit for one of our positions because of our invitation, it is still the case that they face a less obvious decision about whether to apply to the expert level or intermediate level job.

Finally, we had to make a discretionary decision about what the right test score qualification was for our experiment. We choose to use scores within each test sample that are challenging to achieve (just under 25% of our participants have a test score at or above the stated qualification), but still allow for a reasonable sample size of participants who are “qualified” according to our test score qualification.

By construction, all workers in our sample have completed and displayed either the Management Skills or Analytical Skills test; what does this mean for selection into our sample? Upwork actively encourages their freelancers to complete skills test (Upwork 2020). Freelancers can earn points for every addition they make to their profile. Such additions can be in the form of a profile photo, employment history, or skills tests. Freelancers who have earned enough points receive a badge (“Rising Star” or “Top Rated”). From
conversations among Upwork freelancers, there seems to be some consensus that skills tests are mostly valuable to freelancers who are newer to the platform (Upwork Community 2019); freelancers take the tests to help establish a positive reputation before they have completed jobs or earned ratings on the site. We cannot find evidence that these concerns seem to be different by gender. To the extent that we are selecting on some characteristic, this selection is the same across randomly-assigned treatment condition. We also control for the total number of tests taken by the freelancer, capturing an intensive measure of this characteristic. Unfortunately, in 2019, Upwork retired skills tests; thus, at the time of drafting the paper we were unable to conduct a systematic comparison of workers with and without skills tests displayed.

Results

Table B1 in the Appendix provides descriptive statistics of the freelancers in our sample. Men and women vary in many dimensions in our sample. Women have more experience on Upwork and are more likely to advertise Writing skills, Administrative Support skills, and Customer Service skills. Men, on the other hand, post greater hourly rates (in line with work by Dubey et al. (2017) and Foong et al. (2018)) and are more likely to advertise skills in Web Development, IT, Data Science, Engineering, Design, and Accounting. This could reflect true differences in skills, though we should caution that Murciano-Goroff (2020) finds that women are less likely to advertise skills on resumes in the tech domain, even given the same level of experience and skill.

Men outperform women on average in both qualification tests – the Management Skills test (male mean 3.55, female mean 3.42, p-value from two-tailed t-test < 0.01) and the Analytical Skills test (male mean 3.73, female mean 3.57, p-value from two-tailed t-test < 0.01). And, a greater fraction of men than women are qualified for our expert level job according to their test score (i.e. have a test score greater than or equal to the stated test score threshold in our treatments).

Overall, 20% of men and 18% of women in our sample apply to one of our job postings. This aggregate rate is relatively constant across the three treatments, with 20% of men and 19% women applying in the control, 21% of men and 18% of women applying in the Positive treatment, and 20% of women and 17%

4 Of the 209 participants who apply to our position, 14 did not apply to strictly one job. For all 14 participants who either (i) failed to specify which of the two jobs they wished to apply to, or (ii) explicitly applied to both jobs, our research team contacted them via the Upwork platform after their initial application and asked them to clarify which job they were choosing to apply to. Nine of those 14 individuals specified one application decision (intermediate or expert level). Four participants remained unspecified in their choice and 1 participant remained an applicant for both jobs. We code these five workers as having applied to the intermediate job and as having applied to the expert job. Table B2 in the Appendix consists of a robustness check of the results where we drop these 14 observations. The results remain directionally unchanged. 5 Results are unchanged if we exclude their self-reported skills as dummies.
of women applying in the Normative treatment. Of the 209 participants who apply to our job postings, most (130) apply to the expert-level job.

Our main question of interest is how application rates to the expert job vary. This is the job for which we introduce random variation in the clarity of “the bar.” We expect that reduced ambiguity in desired qualifications should (weakly) increase the likelihood of qualified candidates applying to the expert job. Being better informed about where the bar is, if you are above it, should increase your willingness to apply. On the other hand, reduced ambiguity should (weakly) decrease the likelihood of unqualified candidates applying.

We first consider the rates of application to the expert job among qualified candidates – those candidates who have a test score at least as high as the test score threshold. Figure 1, Panel A demonstrates the results by gender and treatment. We see that the fraction of all qualified men who apply to the expert level job is quite steady across treatment, ranging from 19 – 23%. The reduced ambiguity does not draw in additional qualified men; qualified men apply at similar rates regardless of how much information they have about the bar. The application decisions of qualified women, however, appear more responsive to information. We observe the lowest rate of application in the control – 6% -- and the highest rate of application in the normative treatment – 29%. In terms of these raw proportions, we see suggestive evidence that reduced ambiguity about where the bar is draws in qualified women more so than qualified men.

Figure 1. Proportion of Freelancers who Apply to Expert Job, By Qualification Level
How do more clearly stated qualifications impact unqualified candidates? See Figure 1, Panel B. Again, men’s application rates are quite flat across the treatments. The rate at which women apply to the expert-level job when they are unqualified is highest in the control and lowest in the normative treatment. If anything, clearer qualifications seem to push out unqualified women more so than unqualified men.

In Table 1, we use regression analysis to explore these questions formally. We predict the decision to apply to the expert level job from treatment assignment, using the control treatment as our baseline. We control for all profile information included in our summary statistics table.\(^5\) We start by analyzing the full sample in Columns I - III. Consistent with the raw data, when we do not condition on qualification level, we see that overall our treatments have no significant impact on application rates for men or women (Column I, Column III). Of course, this may mask any competing patterns across unqualified and qualified candidates. In fact, in Column II, we show that relative to the control treatment, both the positive and normative treatment decrease application rates among unqualified candidates, while increasing them among qualified candidates. These effects are insignificant in the positive treatment, and significant in the normative treatment (we cannot reject that these effects are the same across the two qualification treatments).

In Columns IV - V, we analyze the decisions of unqualified candidates (those with test scores less than the threshold). Overall, we find that both qualification treatments decrease application rates to the expert-level job (Column IV). We estimate that unqualified men’s decisions are not significantly impacted by our treatments. For women, we estimate that, relative to the control treatment, the normative treatment deters applications from unqualified women by 9pp (p<0.01). However, in an interacted model, we cannot reject that the deterrence effect is of a similar size for men and women (Column V).

In Columns VI - VII, we focus on the main population of interest: qualified candidates. Overall, we estimate that our two qualifications treatments directionally increase the rate at which qualified candidates apply to our expert-level job. Consistent with Figure 1, we estimate that our treatments have no impact on qualified men’s decisions. Qualified men are equally likely to apply to the expert level job independent of how clearly stated the desired qualifications are. Women’s decisions, however, do vary by treatment. Note that in our control, qualified women are 20pp less likely to apply than qualified men. Both treatments directionally reduce this gap by drawing in more qualified women. Qualified women are 10pp more likely to apply in our positive treatment relative to the control (p=0.24), and 28pp more likely to apply in our normative treatment relative to the control (p<0.01).

Overall, our evidence suggests that clearer qualifications seem to improve candidate sorting into the expert job, primarily among women. Our treatments directionally increase the rate at which qualified candidates

\(^5\) Results are unchanged if we exclude their self-reported skills as dummies.
apply to our expert job, and directionally decrease the rate at which unqualified candidates apply. In addition, the share of women in the pool of qualified candidates also increases. Thus, from a firm’s perspective, the impact of the qualifications on the potential pool seems quite positive: a larger, more gender diverse pool of qualified applicants, and fewer unqualified applicants.

Table 1. Application Rates to Expert Job in the Field

<table>
<thead>
<tr>
<th></th>
<th>OLS Predicting Decision to Apply to Expert Job</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Participants</td>
</tr>
<tr>
<td>Positive</td>
<td>-0.026</td>
</tr>
<tr>
<td>Treatment</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Normative</td>
<td>-0.030</td>
</tr>
<tr>
<td>Treatment</td>
<td>(0.024)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.029</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Qualified</td>
<td>-0.057</td>
</tr>
<tr>
<td>Positive x</td>
<td>0.066</td>
</tr>
<tr>
<td>Qualified</td>
<td>(0.057)</td>
</tr>
<tr>
<td>Normative x</td>
<td>0.15***</td>
</tr>
<tr>
<td>Qualified</td>
<td>(0.056)</td>
</tr>
<tr>
<td>Female x</td>
<td>0.024</td>
</tr>
<tr>
<td>Positive</td>
<td>(0.049)</td>
</tr>
<tr>
<td>Female x Normative</td>
<td>0.0050</td>
</tr>
<tr>
<td></td>
<td>(0.048)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1083</td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.035</td>
</tr>
</tbody>
</table>

Notes: Qualified candidates are those with a test score greater than or equal to the advertised threshold. Controls are posted hourly rate, hours worked, jobs worked, total tests posted, normalized test score, time taken to complete the test, college degree dummy, MBA dummy, other graduate degree dummy, dummies for each category of availability (> 30 hrs/wk, < 30 hrs/wk, as needed), dummies for each self-reported skill, and a dummy for being in the second wave of experiment. * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
In our setting, the normative treatment has a directionally larger impact than the positive treatment, though we should note that the differences are not statistically significant. Why might the normative treatment have a larger impact on the behavior of female candidates than the positive treatment? It may be that the explicit ask – inviting someone with that score to apply – more successfully overcomes hesitations about what the social norms, employer expectations, or right course of action is. Recall that Kuhn et al (2020) also found that an explicit ask -- inviting women specifically to apply -- increased female applications in their setting. And, Bowles et al (2005) document how “strong” situations “where everyone has the same understanding of how they are supposed to respond” produce smaller gender gaps in negotiation outcomes than “weak,” more ambiguous situations. Our normative treatment may more successfully produce the type of “strong” situation that minimizes gaps in the willingness to apply context.

The results of our field experiment suggests that reduced ambiguity about where the bar can draw in more qualified female candidates, narrowing the gender gap in applications among qualified candidates. We now turn to more controlled settings, where we can elicit more detailed data from our participants, in an attempt to shed further light on this result.

III. Impressions of Real Job Advertisements

In our field experiment, we only observe application decisions from our participants. While it seems plausible that candidate decisions are related to beliefs of how well-qualified participants think they are, we do not observe those beliefs directly. In this simple laboratory follow-up, we seek to document the beliefs potential job-seekers’ hold about how well-qualified they are for different openings. And, by varying the job advertisements, we ask how beliefs about qualification level vary with different features, including how objective, specific, and clear the desired qualifications are.

In April 2018, we constructed a random sample of real job postings from Indeed.com, representative of available online postings in the geographic area of our participants. We searched for full-time job postings in the Boston area that required a Bachelor’s degree. We performed two searches: a search of entry-level jobs and a search of mid-level jobs. Within the entry-level search, we downloaded all ads that were returned from our search and randomly selected 20; within the mid-level search, we downloaded all ads that were returned and randomly selected 30. We then read each ad selected. In cases where the ad description did not appear to fulfill our search criteria (for example, not actually being full-time, despite being returned by Indeed.com), we eliminated the ad from our sample (13 cases). In addition, a coding error omitted 9 entry-level ads from the study (no participants were randomly assigned to view them). This left us with 28 job ads: 4 entry-level and 24 mid-level. Examples of ads used in the experiment are illustrated in Figure B1 – B3 in the Appendix.
We use these ads to collect beliefs from participants at the Computer Lab for Experimental Research (CLER) at Harvard Business School. In the first part of the experiment, we collect participant impressions of how well-qualified they feel for a given job posting. The structure is as follows. Participants complete four rounds of job ad evaluation. Within each round, participants are given two minutes to view a randomly-selected ad from the set of 28. We limit participants’ time viewing the ads to ensure timely completion of the experiment, as completion in under 20 minutes was required for the laboratory format we took advantage of.

We ask three questions about perceived qualifications:

1. On a scale of 1 (Extremely Poorly Qualified) - 10 (Extremely Well Qualified), how well-qualified do you feel you are for this job?

2. Thinking of the desired skills, characteristics, and qualifications stated in the advertisement, what percent of those skills, characteristics, and qualifications do you possess?

3. More specifically, please list some of the desired skills, characteristics, and qualifications that you do possess, and some of the desired skills, characteristics, and qualifications that you do not possess.

The first question gets at our core issue: how well-qualified an individual feels for a given position. The second question provides a more quantitative assessment of those beliefs. The third question encourages participants to reflect on the qualifications for this particular ad. In Appendix Figures B4 – B7, we present some illustrative evidence on the types of responses we receive to this question, with a focus on gender differences.

We also ask two “decoy” questions of our participants:

4. On a scale of 1 - 10, with 1 being not appealing at all and 10 being extremely appealing, how appealing is this job opening to you?

5. Approximately what salary would you expect this job to offer?

We include these questions so that participants do not become solely focused on qualifications as they read additional ads in the experiment. We display the qualification questions first, followed by the decoy questions, in Rounds 1 and 3; we reverse the order in Rounds 2 and 4.

In the second part of this experiment, we collect additional data from the same set of participants about each of these 28 ads. In particular, we recognized that in analyzing the data on perceived qualifications, there were a number of ad characteristics that we would want to collect and use as controls in our analysis. Rather

6 We create four non-overlapping subsets of the 38 ads. Each bucket contains 3 – 4 entry-level jobs and 6 – 7 mid-level jobs. Within each round of this experiment, participants view one randomly-selected ad from a given bucket, ensuring that no participant sees the same ad twice in one part of the experiment.
than code these characteristics ourselves, we chose to have participants code these characteristics, ensuring no researcher bias.

The format of the second experiment is nearly identical to the first. Participants complete four rounds. Within each round, they are given 2 minutes to view one randomly-selected ad from the 28. Note that this randomization operates independently from the randomization in the first part; thus, participants could be randomly assigned the same ad in both experiments, but this was not particularly likely. They are then asked four questions about the ad:

1. *In general do you think the stereotype associated with this job is more female-typed or more male-typed? Use the slider scale below to indicate your answer, where -1 indicates extremely female-typed and 1 indicates extremely male-typed.*

2. *How prestigious would you say this job is? Use the slider scale below to indicate your answer, where 1 indicates not prestigious at all and 7 indicates extremely prestigious.*

3. *Thinking of typical Harvard undergraduates, how well-qualified do you think the average Harvard undergraduate would be for this job? Use the slider scale below to indicate your answer, where 1 indicates not at all qualified and 10 indicates extremely well-qualified.*

4. *Thinking of how the qualifications in the job advertisement were described, how specific, clear, and objective were the stated qualifications? Use the slider scale below to indicate your answer, where 1 indicates not at all clear and 10 indicates extremely specific, clear, and objective.*

We hypothesized that each of these measures could be relevant in predicting participant beliefs about how well-qualified they were. The first gets at the gender-stereotype associated with the job, speaking to the mechanism of Coffman (2014), who finds that individual self-confidence and willingness to volunteer ideas is dependent on the gender congruence of the domain. If beliefs of own aptitude are a key driver in predicting beliefs of how well-qualified someone is, we would predict that as the maleness of the job posting increased, men would feel relatively more well-qualified while women would feel relatively less well-qualified. The second question allows us to try to separate out differences in the gender stereotype attached to the job from differences in the perceived prestige of the position.

The third question allows us to better account for variation across ads in how likely it is that any participant in our sample feels qualified for that particular ad. This is important given how heterogeneous the various postings are. Finally, the fourth question speaks to the hypothesis tested in our field experiment: does the amount of ambiguity surrounding the desired qualifications matter for beliefs of how well-qualified individuals feel? In particular, does ambiguity contribute to a gender gap in these beliefs?
Results

In total 200 participants completed the two experiments as part of bundle sessions at the Computer Lab for Experimental Research at Harvard Business School, of which 197 provided information on their gender. ⁷ We provide summary statistics on our participants and our job ads in Appendix Tables B3 and B4, respectively. More than 80% of our sample identifies themselves as a current student.

We find that, on average, men view themselves as marginally more well-qualified than women in our sample. Participants rate on a 1-10 scale how well-qualified they feel they are for each of four particular job ads. On average, men rate themselves a 4.65 (2.63 SD) while women rate themselves a 4.22 (2.51 SD). This gender gap is approximately 9% of the mean of how well-qualified individuals feel.

In Table 2, we present a regression that explores the determinants of these ratings. To increase interpretability, we create z-scores for the variables that were elicited with a scale. Controlling for ad fixed effects and demographics, we estimate that women rate themselves approximately 0.18 standard deviations less qualified than men (p<0.10, Column I). In Column II, we include more information about the ads. In particular, we use the assessments provided by our participants in the second part of the experiment, as to stereotype, prestige, believed qualifications of others, and objectivity of qualifications. For each ad, we take the average of the ratings provided by all raters who saw that ad for each characteristic. ⁸ Then, we take the z-score to capture where this particular ad falls relative to the full set of ads on that characteristic. We also include a dummy for whether the ad was for an entry-level position, and dummies for the major industry sector of the ad. Controlling for these ad characteristics does not have a large impact on our estimate of the gender gap (Column II).

⁷ In addition, one participant did not provide data on their age; thus they are excluded from analyses that control for age. We obtain answers to a standard bank of (non-mandatory) demographic questions that are asked of all participants in “bundle sessions” in the laboratory. This laboratory format we used bundles our project with short projects from other researchers. These bundle sessions are administered by the laboratory and target 200 participants in a single week. The placement of our experiments with respect to these other projects was varied across session, though note that the two parts of our project are always placed in the same order (Experiment 1 and then Experiment 2, as described above) and appear consecutively, with no other projects in between.

⁸ We note that there are no significant differences in how men and women rate these ads on average in terms of stereotype, prestige, or objectivity of qualifications. And, across ads, the average male and average female ratings are highly correlated along each of these dimensions.
Table 2. The Gender Gap in Perceived Qualification for Real Job Openings

<table>
<thead>
<tr>
<th></th>
<th>OLS Predicting How Well-Qualified an Individual Feels for Job Opening (z-score)</th>
<th>OLS Predicting What Percentage of Qualifications an Individual Believes She Possesses (0 – 100 scale)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Female</td>
<td>-0.18*</td>
<td>-0.21**</td>
</tr>
<tr>
<td></td>
<td>(0.093)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>Male Stereotype (z-score)</td>
<td>-0.25***</td>
<td>-0.23**</td>
</tr>
<tr>
<td></td>
<td>(0.081)</td>
<td>(0.090)</td>
</tr>
<tr>
<td>Prestige (z-score)</td>
<td>0.090</td>
<td>0.15**</td>
</tr>
<tr>
<td></td>
<td>(0.055)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>Objectivity of Stated Qualifications (z-score)</td>
<td>-0.17***</td>
<td>-0.27***</td>
</tr>
<tr>
<td></td>
<td>(0.051)</td>
<td>(0.069)</td>
</tr>
<tr>
<td>Average Belief of How Well-Qualified Average Undergrad Would be for this Ad (z-score)</td>
<td>0.048</td>
<td>0.028</td>
</tr>
<tr>
<td></td>
<td>(0.064)</td>
<td>(0.077)</td>
</tr>
<tr>
<td>Female x Male Stereotype</td>
<td></td>
<td>-0.034</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.068)</td>
</tr>
<tr>
<td>Female x Prestige</td>
<td></td>
<td>-0.11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.072)</td>
</tr>
<tr>
<td>Female x Objectivity</td>
<td></td>
<td>0.17**</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.077)</td>
</tr>
<tr>
<td>Female x Avg. of Avg. Qualified</td>
<td></td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.079)</td>
</tr>
<tr>
<td>Entry Level Dummy</td>
<td>0.34***</td>
<td>0.34***</td>
</tr>
<tr>
<td></td>
<td>(0.12)</td>
<td>(0.12)</td>
</tr>
<tr>
<td>Ad Fixed Effects</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Demographic Controls</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Order within Session</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Observations (Clusters)</td>
<td>784 (196)</td>
<td>784 (196)</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.155</td>
<td>0.136</td>
</tr>
</tbody>
</table>

Notes: Controls are fixed effects for each ad in Columns I and IV, fixed effects for each race category, fixed effects for each education category, age, a dummy for fluent in English, and a dummy indicating where our pair of experiments fell within the session. In columns without ad fixed effects, we include dummies for major industry sector. * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.

In Column III, we interact the ad characteristics with the female indicator, to ask whether any of the characteristics of the job opening impact the gender gap in believed qualification level. We again find a role for ambiguity in shaping the gender gap. We find that more objectively stated job qualifications, as
rated by our participants, help to close the gender gap in perceived qualification level. More objectively stated qualifications directionally decrease the extent to which men feel well-qualified: we estimate that a one standard deviation increase in how objectively stated the qualifications are reduces men’s perceived qualification by 0.27 standard deviations. This effect is significantly less pronounced for women, serving to decrease the average gender gap in perceived qualification level.⁹

These results are very similar when we use the fraction of qualifications that a participant believes they possess (Columns IV – VI). On average, conditional on ad and individual characteristics, women believe they possess roughly 5pp fewer of the qualifications than men do (male average: 50%, female average: 45%, p<0.05). Again, as desired qualifications become more objective, men assess themselves to be less well-qualified on average in terms of the fraction of qualifications possessed; this effect is directionally weaker for women (p=0.12 on the interaction, Column VI). Conditional on believing they have the same fraction of qualifications, men and women rate themselves as equally well-qualified (Appendix Table B5).

IV. Simulating the Application Decision in a Controlled Experiment

So far, we have documented a gender gap in the rate at which qualified candidates applied to a more lucrative opening in the field. And, we have seen that when confronted with a variety of real world job advertisements in laboratory, women indicate feeling less well-qualified for those openings than men do, on average. In both settings, more ambiguity about “the bar” in terms of desired qualifications seems to increase gender gaps. In this final experiment, we attempt to put those pieces together, examining both beliefs and application decisions in a simulated labor market in an online experiment. We exogenously vary the level of ambiguity in stated qualifications surrounding a promotion opportunity, and explore its impact on gender gaps in beliefs and behavior.

Overview of Design

We conduct our experiment on Amazon Mechanical Turk (MTurk).¹⁰ The general structure of the experiment is as follows. Before we run the main experiment, which we call the “worker experiment,” we

⁹ While not a focus of our project, one could ask how our two decoy questions – what the expected salary would be and how appealing the opening is – predict how well-qualified an individual feels. In particular, one could ask whether differential expectations of wages lead to differences in feelings of how well-qualified one is, or application behavior (Neal and Johnson (1996)). We trim the salary data to exclude the bottom 5% and top 5% of estimates. We find that (i) there are no gender differences in wage expectations in our data, and (ii) salary estimates are not a significant predictor of how well-qualified an individual feels. But, individuals do indicate feeling significantly more qualified for more appealing openings: a one standard deviation increase in the appeal of the opening corresponds to a 0.6 standard deviation increase in how well-qualified an individual feels. Neither of these effects vary by gender.

¹⁰ The study was restricted to workers with a United States based IP address who had completed at least 100 tasks (called Human Intelligence Tasks, or HITs) and had an approval rating by previous MTurk requesters of at least
recruit 10 MTurk employers to make contingent hiring decisions. We use these contingent decisions to later incentivize worker decisions, and to inform the crafting of qualifications in the main worker experiment. Next, we move to the “worker experiment.” In Round 1 of the worker experiment, we collect data on participant aptitude in a diagnostic test and elicit participant beliefs about their aptitudes. Then, we confront workers with a decision; they are asked to decide whether to apply for a promotion for Round 2 of the experiment. We also directly elicit their perceived probability of promotion conditional on applying. Then, participants complete Round 2. Finally, on the back end, after the completion of the “worker experiment,” the researchers use random matching to allocate workers from the main experiment to employers from the preliminary employer experiment to determine outcomes and payoffs. We provide a visual overview of the “worker experiment” in Figure 2. This is followed by a detailed description of each stage.

Round 1

In Round 1 of the worker experiment, participants take an assessment test that covers general science, arithmetic reasoning, math knowledge, mechanical comprehension, and assembling objects. We draw the questions from the Armed Services Vocational Aptitude Battery (ASVAB). These questions have a simple multiple-choice format, several of the categories we use are rather difficult to quickly “Google” answers to, and they cover stereotypically male-typed domains, matching our field setting. Participants have 5 minutes to answer up to 30 questions. All 30 questions appear on the same page and can be answered in any order. If Round 1 is chosen for payment, participants receive $0.20 per question answered correctly.

Beliefs of Round 1 Performance

After completing Round 1, each participant is asked to guess their score—how many problems she solved correctly in Round 1—and how they rank relative to other MTurkers who are completing the HIT. They receive $0.10 if they guess their score correctly and $0.10 if they guess their bucket of rank correctly (bottom 5%, bottom 20%, bottom 40%, middle 20%, top 40%, top 20%, top 5%).

We note that all workers are then randomized into one of three feedback conditions: receiving either no feedback on Round 1 performance, a signal equal to their true score 60% of the time, or a signal equal to their true score 90% of the time. We then elicit posterior beliefs of Round 1 score from participants in each of the two noisy feedback conditions. This noisy feedback intervention and its impact on beliefs is the focus of a different paper, Coffman, Collis, and Kulkarni (2021). For our purposes, the only important thing to note is that our measure of beliefs of Round 1 score in our analysis below will be the posterior beliefs of these participants: the beliefs they hold after receiving the information. In principle, this could work
against us finding large gender gaps in beliefs or application decisions. But, Coffman, Collis, and Kulkarni (2021) show that gender gaps in prior and posterior beliefs in this setting are actually quite similar, suggesting the inclusion of this feedback treatment is not significantly impacting our conclusions in a meaningful way.

Application Decision

Participants are told that they will soon have a chance to participate in a second round of ASVAB problem-solving. Again, they will have 5 minutes to answer up to 30 ASVAB questions, but these questions will be more difficult on average than the questions in Round 1. In this way, Round 1 performance is predictive of Round 2 performance, but there is additional uncertainty due to the increased difficulty. If Round 2 is chosen for payment, the default option is that they will receive $0.20 per problem solved correctly.

Prior to completing Round 2, they have to make a decision about whether they want to apply for an “expert-level promotion”. This “expert-level promotion” is an increase in compensation. Participants are presented with two options about how to be paid for Round 2 performance. Importantly, within each option, the problems faced in Round 2 are identical. Participants are explicitly told that the set of questions will be the same regardless of the option they chose. They simply choose how to be compensated:

“Option 1: Accept the novice job. If you choose this option and Round 2 is chosen for payment, you will get a Round 2 completion payment of $2 on top of the $0.20 per problem solved correctly in Round 2.”

“Option 2: Apply for the expert-level job. If you choose this option and you are chosen to be promoted to the expert-level job, you will get a promotion bonus plus an extra $0.20 per problem solved correctly in Round 2, for a total of $0.40 per problem solved correctly. However, if you apply for the expert-level job and you are not promoted, you will only earn the $0.20 per problem solved correctly. You would not earn a Round 2 promotion bonus.”

Participants complete a price list, choosing between Option 1 (accepting the novice job) and Option 2 (applying for the expert-level job) over a range of possible promotion bonuses. Within the price list, we vary the size of the promotion bonus from $0 to $6, in increments of $0.50. Participants are aware that one row of the price list will be randomly-selected as the decision-that-counts, and that we will use their decision in that row to determine their application decision and associated payoffs. In Figure 3, we reproduce the price list used to elicit these decisions (full materials are available in Appendix A).
Figure 2. Design of Worker Experiment

Baseline Performance (Round 1)
Quiz with 30 ASVAB questions and a 5-minute timer.

Belief Elicitation (Round 1)
Report believed absolute and relative performance in Round 1.

Explanation of Round 2 and Promotion Opportunity

Qualifications
Generic language plus information on modal employer threshold required for promotion.

No Qualifications
Generic language.

Decision to Apply for Promotion
Decision: Either apply to the Novice Job or to the Expert Job.

Apply to Novice Job
$2 for sure, plus $0.20 per problem solved correctly

Apply to Expert Job
• If promoted, Promotion Bonus plus $0.40 per problem solved correctly
• If not promoted, just $0.20 per problem solved correctly

Belief Elicitation (Round 2)
Report believed absolute performance in Round 2 and believed probability that a worker with their Round 1 score would be promoted.

Job Performance (Round 2)
Quiz with 30 more challenging ASVAB questions and a 5-minute timer.

Demographic Questions
Report basic demographic questions. Report preferences about risk and willingness to have payments depend on others’ choices.
While choosing to apply for promotion outside of our experiment typically entails applying both for higher compensation and different, more challenging work, we hold fixed the nature of the work. While this sacrifices some external validity, it comes with a number of advantages. First, by ensuring that all participants complete the same Round 2 problems, we can measure the returns to being promoted for each participant, absent any selection. Second, we can rule out explanations for not applying for promotion related to a distaste or disinterest in doing the work (i.e. if women apply for promotion less than men, it cannot be because they simply want to avoid doing harder problems). This way, we can better focus on our main channel of interest: beliefs.

<table>
<thead>
<tr>
<th>Promotion Bonus of $0</th>
<th>Accept novice job (Receive $0.20 per correct answer plus $2)</th>
<th>Your Decision</th>
<th>Apply for expert-level job (Receive $0.40 per correct answer plus Promotion Bonus IF PROMOTED: Receive $0.20 per correct answer IF NOT PROMOTED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Promotion Bonus of $0.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $1.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $1.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $2.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $2.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $3.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $3.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $4.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $4.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $5.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $5.50</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
<tr>
<td>Promotion Bonus of $6.00</td>
<td>○</td>
<td>○</td>
<td>○</td>
</tr>
</tbody>
</table>

Figure 3. Price List Used to Elicit Application Decisions

Note that we build in an opportunity cost of applying for the promotion: a worker who chooses to apply for the expert-level job forgoes the $2 completion payment given to workers who choose Option 1, the novice job. Thus, a worker who applies for but does not receive the expert-level job earns less than a worker who simply accepts the novice job. This creates the incentive to apply for the expert-level job only if the worker believes she has sufficient probability of receiving it. In addition, because receiving the promotion entails a higher per-problem solved correctly wage ($0.40 versus $0.20), the returns to applying for and receiving the promotion are larger for more talented participants. We believe both of these features reflect many promotion opportunities outside of the laboratory.
We also structure the promotion opportunity in a way that mimics some of the uncertainty about the probability of receiving the promotion that would be present in the field. In particular, we wanted the probability of receiving the promotion to both be tied to individual performance in Round 1 (mimicking the role of resume, prior experience, and potential), but also dependent on the discretion of a potential “employer” with only imperfect knowledge of the candidate’s true capacity for success. To achieve this, we recruited 10 other MTurk workers in a separate experiment to serve as employers. We recruit these employers in advance of running the worker experiment, and we ask them to make contingent decisions about what types of workers they would choose to “promote.” We explain the worker experiment to them.

We told the employers that they would be randomly paired with one worker who applied for the expert-level promotion. If they chose to hire that worker, they would receive $0.25 for each problem solved correctly by that worker in Round 2. If not, they would receive a $1.25 fixed payment. Of course, at the time of the employer experiment, no workers had yet been recruited to complete the experiment. So, we ask employers to make contingent decisions, and we use these contingent decisions to execute their hiring decisions once the full worker experiment had been run. We show employers a series of possible Round 1 performances (i.e. 3 problems solved correctly, 4 problems solved correctly, etc.), and we ask whether they would want to hire a worker with that Round 1 performance. The employers are not provided with any other information such as gender. They make a series of binary decisions, covering all possible Round 1 scores.

We use these employer decisions to execute promotion decisions for all workers who apply to the expert-level promotion. Workers who apply are divided evenly and randomly among the 10 employers. Then, each employer’s contingent decisions are used to determine whether each worker is promoted or not.\footnote{That is, suppose a worker has a Round 1 score of “7” and applies for the expert-level promotion. She would be randomly paired with one of the 10 employers and we would look at whether that employer was willing to hire a worker with a Round 1 score of “7”. If the employer was willing, she would be hired for the promotion. If the employer was not willing, she would not be promoted. And, one of the matched workers for each employer is randomly selected to determine the employer’s payoffs. Employers are aware of this payment rule. Both workers and employers have complete information on this process. See Appendix A for full instructions.}

\textit{Treatment Intervention}

Our key treatment variation is varying how ambiguous the desired requirements for promotion are for workers, between-subject. In our control treatment, “No Qualifications”, we provide workers with a short information section entitled, “Should I apply?”. We remind them of the details of Round 2 and we tell them about the incentives employers faced when making their hiring decisions. Employees are told that the only information provided to the employer is their Round 1 score.
Participants in our “Qualifications” treatment receive the same language, but with one additional sentence that aims to reduce ambiguity about the bar: “While we can make no guarantees regarding your particular application, most employers indicated that they required a Round 1 score greater than 10 in order to be willing to promote a worker.” We argue that the key question workers must wrestle with is, “what test score do I need in order to get promoted?” Relative to the “No Qualifications” treatment, we argue that workers in the “Qualifications” treatment have a clearer, more specific, and more objective answer to this key question, reducing ambiguity as to where the bar is.

Beliefs about Promotion
After completing their application decisions, we ask participants how many problems they expect to solve correctly in Round 2, allowing us to calculate what their believed returns to promotion are conditional on being promoted. They receive $0.10 if they guess their Round 2 score exactly correctly. The second, unincentivized question asks participants what they believe the probability is that someone with their Round 1 score would be promoted, conditional on applying. This speaks directly to their beliefs of how well-qualified they are.

Round 2
Participants then complete the Round 2 problems. Following Round 2, they answer brief demographic questions about themselves: gender, education level, race, and whether they attended high school in the United States. They then complete a series of risk preference questions. Finally, they answer two questions about their decisions on MTurk in general, indicating whether they are reluctant to have their payments on MTurk specifically depend on chance or on the decisions of other MTurkers. This allows us to speak to whether their application decisions in our experiment might be distorted by an MTurk-specific skepticism about having payments be less transparent.

Results
The experiment was conducted in May 2018 with 1,502 workers. Table B6 in the Appendix provides summary statistics on the workers. We control for the demographic variables collected in the analysis that follows. Men outperform women on average in Round 1: 10.96 versus 9.65 problem solved correctly (p<0.001). Men on average rank in the 54th percentile, while women rank in the 46th percentile on average.

12 Indeed, this threshold is informed by employer decisions. A Round 1 score of 10 is the lowest score at which at least 5 of the 10 employers in our employer experiment were willing to hire a worker.
Note that given the employer decisions and candidate performance, the average chance of receiving the promotion, conditional on applying, is 44%.

Beliefs and Decisions

We start by exploring our control treatment, where participants receive less guidance on where the bar is for promotion. We ask every participant to estimate their chances of being promoted, conditional on applying. We find that women’s beliefs of their probability of being promoted are significantly lower than men’s. Women believe they have a 39% chance of being promoted on average, while men believe they have a 48% chance of being promoted. In Table 3, we use regression analysis to probe this. When we condition on true aptitude, as measured by Round 1 performance, women believe they are significantly less likely to be promoted conditional on applying (Table 3, Column I, 7pp, p<0.01). Of course, conditional on Round 1 performance, true likelihood of being promoted is the same.

Table 3. Gender Differences in Believed Probability of Promotion

<table>
<thead>
<tr>
<th></th>
<th>OLS Predicting Believed Probability of Promotion (0 – 100pp)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>No Qualifications Treatment</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Female</td>
<td>-7.17***</td>
</tr>
<tr>
<td></td>
<td>(1.64)</td>
</tr>
<tr>
<td>Round 1 Score</td>
<td>1.78***</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
</tr>
<tr>
<td>Belief of Rd. 1 Score</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief of Rd. 1 Rank</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>759</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.175</td>
</tr>
</tbody>
</table>

Notes: Controls are fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US, as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal). * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Why do women feel they are less likely to be promoted conditional on applying? Part of it seems related to beliefs about own aptitude. Indeed, we find gender differences in self-assessments. Conditional on Round 1 performance and demographic characteristics, women believe they performed significantly worse on average than men. A woman believes she scored 0.7 points worse than a man, conditional on having the same true score, \(p<0.01 \), and believes she places 7.2pp worse in the distribution of performers \(p<0.01 \) (see Appendix Table B7). In Table 3, Column II, we control for absolute beliefs of own ability and ask whether they explain the gender gap in believed probability of promotion. While beliefs of own aptitude are predictive of beliefs about promotion probability, they do not explain much of the gender gap, which remains 6pp \(p<0.01 \).

In Column III, we ask whether beliefs of relative ability explain the gender gap. When we control for beliefs of relative ability, we see more explanatory power, suggesting they capture something important about this decision (Column III). This is worth noting, given that this is not a competitive environment (one candidate’s decision to apply or ability to receive the promotion has no impact on another’s). But, it seems reasonable that a person who believes their performance compares quite favorably to others will also view themselves as having a good chance of being promoted. In this way, beliefs of relative ability may reflect a mix of both beliefs about self and beliefs about what the bar is, hinting at whether the individual feels “good enough.”

Next we consider our key behavioral outcome: willingness to apply for promotion at different wages. Conditional on applying, the average minimum promotion bonus at which men and women apply is nearly identical: 264 cents for men and 260 cents for women. But, significantly more women than men choose to never apply (22% of women and 16% of men, \(p=0.04 \)). From this point forward, we will code the decision to never apply as a minimum promotion bonus willingness to accept of 650 cents, 50 cents more than the maximum promotion bonus we offered. With this coding, the average min. promotion bonus required to induce a man to apply is 325 cents, while for women it is 344 cents \(p=0.21 \).

Table 4 predicts the minimum promotion bonus at which someone was willing to apply for promotion for our No Qualifications treatment.\(^{13}\) Conditional on Round 1 performance, women demand directionally larger promotion bonuses in order to apply, but the difference is not significant (Column I). We have focused on beliefs of how well-qualified one is, but conceptually, there are several other factors that could also influence willingness to apply in this setting. In particular, risk preferences and expected returns to promotion (i.e. beliefs of Round 2 score) may matter. In Column II, we add these factors to the regression

\(^{13}\) In Appendix Table B8, we replicate this analysis using only the 696 participants in the control treatment who made monotonic choices. The results are quite similar.
to explore the role they play in shaping application decisions. As expected, each of these factors predict willingness to apply. Finally, in Column III, we include each of these factors and its interaction with the female indicator, asking whether any of these factors are more predictive for women than men. While we estimate that beliefs of Round 2 score and risk preferences are similarly important for men and women, we find that the effect of believed probability of promotion on the decision to apply is nearly twice as large for women as for men.

One question is why we observe a gender gap in believed probability of promotion but no corresponding gender gap in application rates. It could be that there are other meaningful factors that influence application decisions that we are not capturing, or that we are measuring these decisions with too much noise. We also collected data on a few other explanations. For instance, 29% of men and 25% of women reported that they would never choose to have their payment on MTurk depend upon the decisions of someone else if they had a choice, suggesting they would be highly reluctant to apply for promotion at any price, for reasons independent of our experiment. When asked on a 1-7 scale how reluctant they would be to have their payment depend upon chance or the decisions of others, with 7 being extremely reluctant, the average response is similar for men and women (4.4 and 4.5, respectively). Both of these measures are predictive of application decisions, although their inclusion does not change the estimated gender gap.

In sum, when there are no clearly stated qualifications for promotion, women believe they are significantly less likely to be promoted than men are, conditional on applying. This gender gap is partially explained by beliefs of own ability, and in particular relative ability. We estimate that, conditional on ability, women are directionally less willing to apply, but the gender gap is not significant.
Table 4. Willingness to Apply for Promotion

<table>
<thead>
<tr>
<th>OLS Predicting Minimum Acceptable Promotion Bonus</th>
<th>No Qualifications Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Female</td>
<td>9.57</td>
</tr>
<tr>
<td></td>
<td>(15.4)</td>
</tr>
<tr>
<td>Round 1 Score</td>
<td>-9.51***</td>
</tr>
<tr>
<td></td>
<td>(1.71)</td>
</tr>
<tr>
<td>Believed Probability of Promotion</td>
<td>-2.40***</td>
</tr>
<tr>
<td></td>
<td>(0.34)</td>
</tr>
<tr>
<td>Took Common</td>
<td>-76.5***</td>
</tr>
<tr>
<td>Risk Gamble</td>
<td>(14.2)</td>
</tr>
<tr>
<td>Beliefs of Round 2 Score</td>
<td>-4.73*</td>
</tr>
<tr>
<td></td>
<td>(2.53)</td>
</tr>
<tr>
<td>Female x Belief of Round 2 Score</td>
<td>-1.53**</td>
</tr>
<tr>
<td></td>
<td>(0.67)</td>
</tr>
<tr>
<td>Controls Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>759</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.044</td>
</tr>
</tbody>
</table>

Notes: Controls are fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US, as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal). * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Does Reducing Ambiguity Narrow the Gender Gap?

In Table 5, we ask how more information on where the bar is impacts believed probability of promotion. We predict the worker’s perceived chances of being promoted from her treatment assignment, controlling for her demographics, her true Round 1 score, her beliefs about her performance, and her risk preferences. We find that, on average, our treatment significantly reduces men’s beliefs about their chances of being promoted (by approximately 3.5pp). For women, however, a clearer bar directionally increases their beliefs of being promoted (see Table 5, Column I). Note that this is true controlling for individual beliefs of own ability and risk preferences, suggesting that the mechanism is indeed operating through better communicating where the bar is (see Column II), not through changing beliefs of own ability. Thus, overall, more information significantly reduces the gender gap in believed probability of promotion.

Of course, we expect heterogeneous effects depending upon whether a participant actually possesses the desired qualification (or believes she possesses the desired qualification). So, in Columns II – V, we split the sample across unqualified and qualified participants. We do this both by actual Round 1 score (i.e. true score above the threshold, Columns II and IV), and believed Round 1 score (i.e. believed score above the threshold, Columns III and V).

As we expect, the qualifications treatment reduces the believed probability of being promoted significantly among the unqualified group. This reduction is directionally larger for men than women (see Columns II and III). Among qualified participants, the reduction in the gender gap achieved by the stated qualifications is significant. Men’s beliefs about their likelihood of receiving the promotion are directionally lower in the treatment than in the control, while qualified women’s beliefs increase significantly, eliminating the gender gap completely.

But, once again, when we turn to the behavioral measure of the minimum promotion bonus at which a participant was willing to apply for promotion, these results do not hold. Table 6 replicates Table 5, but using the behavioral dependent variable. We estimate no significant impact of the qualifications on unqualified participants, nor any gender differences among these participants. Among qualified participants, the effects are also quite noisily estimated; if anything, it seems that the treatment directionally increases the gender gap in willingness to apply.

14 If we use 11 rather than 10 as the cutoff score (reflecting a different reading of the stated qualifications required), results are qualitatively similar. See Appendix Table B9.

15 In Appendix Table B10, we repeat this analysis using only those participants who made monotonic choices.
Table 5. The Impact of Clearly Stated Qualifications on Believed Probability of Promotion

<table>
<thead>
<tr>
<th>Qualification</th>
<th>All Participants</th>
<th>Unqualified Participants (Round 1 score < 10)</th>
<th>Unqualified Participants (Believed Round 1 score < 10)</th>
<th>Qualified Participants (Round 1 score ≥10)</th>
<th>Qualified Participants (Believed Round 1 score ≥10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>Qualification</td>
<td>-3.55***</td>
<td>-4.47**</td>
<td>-5.54***</td>
<td>-2.09</td>
<td>-0.21</td>
</tr>
<tr>
<td>Treatment</td>
<td>(1.32)</td>
<td>(2.04)</td>
<td>(1.76)</td>
<td>(1.71)</td>
<td>(1.97)</td>
</tr>
<tr>
<td>Female</td>
<td>-2.31*</td>
<td>-2.25</td>
<td>-2.15</td>
<td>-2.52</td>
<td>-3.68</td>
</tr>
<tr>
<td></td>
<td>(1.38)</td>
<td>(1.97)</td>
<td>(1.71)</td>
<td>(1.92)</td>
<td>(2.34)</td>
</tr>
<tr>
<td>Female x Qual.</td>
<td>3.88**</td>
<td>2.19</td>
<td>2.93</td>
<td>5.44**</td>
<td>6.12*</td>
</tr>
<tr>
<td>Treatment</td>
<td>(1.92)</td>
<td>(2.80)</td>
<td>(2.42)</td>
<td>(2.62)</td>
<td>(3.20)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1502</td>
<td>706</td>
<td>920</td>
<td>796</td>
<td>582</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.429</td>
<td>0.285</td>
<td>0.306</td>
<td>0.408</td>
<td>0.340</td>
</tr>
</tbody>
</table>

Notes: Controls are Round 1 score, beliefs of Round 1 score – absolute and relative, beliefs of Round 2 score, risk preferences, fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal). * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Table 6. The Impact of Clearly Stated Qualifications on Willingness to Apply

<table>
<thead>
<tr>
<th>OLS Predicting Minimum Promotion Bonus at Which Applied</th>
<th>All Participants</th>
<th>Unqualified Participants (Round 1 score < 10)</th>
<th>Unqualified Participants (Believed Round 1 score < 10)</th>
<th>Qualified Participants (Round 1 score ≥10)</th>
<th>Qualified Participants (Believed Round 1 score ≥10)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>Qualification -8.70</td>
<td>-10.1</td>
<td>7.20</td>
<td>-10.4</td>
<td>-32.5*</td>
<td></td>
</tr>
<tr>
<td>Treatment (14.2)</td>
<td>(24.4)</td>
<td>(20.8)</td>
<td>(16.7)</td>
<td>(18.2)</td>
<td></td>
</tr>
<tr>
<td>Female -4.33</td>
<td>1.74</td>
<td>7.57</td>
<td>-11.1</td>
<td>-23.4</td>
<td></td>
</tr>
<tr>
<td>(14.9)</td>
<td>(23.7)</td>
<td>(20.2)</td>
<td>(18.8)</td>
<td>(21.5)</td>
<td></td>
</tr>
<tr>
<td>Female x Qual. 12.7</td>
<td>20.7</td>
<td>-8.56</td>
<td>8.17</td>
<td>52.1*</td>
<td></td>
</tr>
<tr>
<td>Treatment (20.7)</td>
<td>(33.6)</td>
<td>(28.6)</td>
<td>(25.6)</td>
<td>(29.4)</td>
<td></td>
</tr>
<tr>
<td>Controls Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Observations 1502</td>
<td>706</td>
<td>920</td>
<td>796</td>
<td>582</td>
<td></td>
</tr>
<tr>
<td>Adjusted R-squared 0.099</td>
<td>0.043</td>
<td>0.061</td>
<td>0.090</td>
<td>0.069</td>
<td></td>
</tr>
</tbody>
</table>

Notes: Controls are Round 1 score, beliefs of Round 1 score – absolute and relative, beliefs of Round 2 score, risk preferences, fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal).
* indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.

What can we make of these results? When no clearly stated qualifications are given for promotion, we find that women believe they have a significantly lower chance of being promoted than men. This is true even conditional on measured performance and measured beliefs about performance. Adding more information on the qualifications required for promotion helps to reduce this gap. In particular, more clearly stated qualifications reduce men’s beliefs about their probability of being promoted, particularly unqualified men, while directionally boosting qualified women’s perceived chances. In this way, qualifications are effective at reducing observed gender gaps in believed chances of success.

However, this does not translate into significant differences in application behavior. Application decisions in our experiment, while correlated with believed probability of promotion, are also predicted by other factors. While some of these other factors might be externally relevant, such as risk preferences, others seem much less likely to be so, such as worries about having others’ determine their payoffs on MTurk.
V. Discussion

A large literature explores the factors that contribute to gender gaps in labor market outcomes. Within this rich literature, however, supply-side decisions focused on when individuals choose to put themselves forward for different opportunities are understudied. This paper tackles this important question, asking whether there are gender differences in application decisions.

Across three complementary contexts, we explore the extent to which men and women view themselves as qualified for a given opportunity. We see evidence that, on average, women view themselves to be less well-qualified than men, women forecast themselves to have a lower probability of receiving the position conditional on applying than equally talented men, and in the field, qualified women apply at lower rates than qualified men.

We show that exogenously reducing ambiguity about the required qualifications for a position can help to close the gender gap in beliefs and, in our field setting, application rates among talented candidates. Our results suggest that there may be soft touch employer interventions that can improve the diversity of their applicant pool in male-typed domains, helping to draw in qualified female candidates. This seems like a promising and low-cost path to explore.

In future work, it would be useful to consider behavior also in more female-typed domains, to understand whether the patterns we observe generalize. This is an interesting question for further study. It could be that it is not women, in general, who are less likely to apply, but rather that individuals are less likely to apply in more gender incongruent areas.

Of course, many hiring decisions are substantially more complicated than those studied in our experiments, and may involve evaluating candidates across a range of dimensions, some qualitative and some quantitative. Our policy suggestion is most obvious to translate for quantitative dimensions: better or more clearly specifying desired years of experience, minimum GRE score, number of projects successfully completed in the past, etc. Assuming that indeed the employer has a bar in mind for these dimensions (that is, they only want to hire people above that bar), it seems that our type of intervention could be helpful. Candidates below that bar should be less likely to apply, and the employer may draw in qualified people who, for example, didn't realize that "extensive experience" meant X years. Assuming that performance on these quantitative dimensions is not systematically negatively correlated with more qualitative dimensions, better sorting on at least one dimension should weakly improve the pool of applicants.

While our experiments primarily analyzed quantitative cases where it was straightforward to specify a bar, our argument is that more general forms of ambiguity reduction around desired qualifications could produce
similar effects, in line with Experiment 1. Consider a less quantitative example from hiring and promotion criteria within academia. Many universities demand scholarly excellence. In some cases, little more is said. In other cases, more specificity, objectivity, and/or clarity is provided. For instance, consider this language around tenure criteria at the University of Houston (https://perma.cc/JZ9P-GKPQ):

The candidate is expected to have a monographic book of sufficiently high quality and originality to serve as proof of the candidate's capacity for engaging in intellectually challenging interaction with peers, colleagues and students. At a minimum, the candidate should have a book accepted for publication, completed except possibly for minor revisions, by a reputable press. The candidate is expected to have had published or accepted for publication a minimum of four (4) articles/book chapters, excluding book reviews that demonstrate on-going research indicative of the candidate's successful transition from the postgraduate level of scholarship to that of the level expected of tenured faculty. Preference in this category will be given to articles published in or accepted by first-tier, refereed professional journals (in printed, on-line or other electronic medium) and book chapters published by reputable presses.

In our view, this illustrates that even in a complex setting where setting a single, quantitative bar would be infeasible, it may still be possible to meaningfully reduce ambiguity around desired qualifications, helping to better sort candidates.

While extrapolating from one context to others always presents challenges, we think our results are likely to offer useful lessons for many real world settings of interest, particularly because of our multi-method, multi-population approach. We observe common themes across controlled experimental settings with Ivy League undergraduates and Amazon Mechanical Turk workers and in a field experiment on an employment website. This suggests that our findings are not a function of a particular feature of any single experiment or sample. An important next step could be studying these questions in a more traditional, salaried employment setting. While candidates in these contexts are likely to have more experience with job application processes, one could also imagine this being a setting where learning is particularly difficult. If qualified candidates choose not to apply, they miss out not only on the job, but also on the opportunity for feedback about the bar.

VI. References

A. Appendix

Experiment Materials (under separate cover):

https://drive.google.com/file/d/17XGTRn-Ukle-gG8CRtsRbUfPmCaO-y_P/view?usp=sharing
A. Appendix

Table B1. Summary Statistics for Upwork Field Experiment Freelancers

<table>
<thead>
<tr>
<th>Panel A: All Freelancers in Dataset</th>
<th>Men</th>
<th>Women</th>
<th>(p)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested Hourly Rate</td>
<td>44.0</td>
<td>30.8</td>
<td><0.001</td>
</tr>
<tr>
<td>Hours Worked on Upwork</td>
<td>323</td>
<td>562</td>
<td>0.07</td>
</tr>
<tr>
<td>Jobs Worked on Upwork</td>
<td>13.7</td>
<td>15.6</td>
<td>0.49</td>
</tr>
<tr>
<td>Total Tests Displayed</td>
<td>6.18</td>
<td>7.32</td>
<td>0.002</td>
</tr>
<tr>
<td>Available Less than 30hrs/wk</td>
<td>0.18</td>
<td>0.22</td>
<td>0.12</td>
</tr>
<tr>
<td>Available More than 30hrs/wk</td>
<td>0.44</td>
<td>0.41</td>
<td>0.50</td>
</tr>
<tr>
<td>Available as Needed</td>
<td>0.37</td>
<td>0.34</td>
<td>0.36</td>
</tr>
<tr>
<td>College Degree</td>
<td>0.74</td>
<td>0.72</td>
<td>0.53</td>
</tr>
<tr>
<td>MBA Degree</td>
<td>0.14</td>
<td>0.08</td>
<td>0.001</td>
</tr>
<tr>
<td>Other Graduate Degree</td>
<td>0.20</td>
<td>0.21</td>
<td>0.47</td>
</tr>
<tr>
<td>Web/Mobile/Software Development</td>
<td>0.20</td>
<td>0.08</td>
<td><0.001</td>
</tr>
<tr>
<td>IT & Networking</td>
<td>0.08</td>
<td>0.005</td>
<td><0.001</td>
</tr>
<tr>
<td>Data Science & Analytics</td>
<td>0.18</td>
<td>0.11</td>
<td>0.001</td>
</tr>
<tr>
<td>Engineering & Architecture</td>
<td>0.04</td>
<td>0.01</td>
<td><0.001</td>
</tr>
<tr>
<td>Design & Creative</td>
<td>0.19</td>
<td>0.15</td>
<td>0.09</td>
</tr>
<tr>
<td>Writing</td>
<td>0.32</td>
<td>0.45</td>
<td><0.001</td>
</tr>
<tr>
<td>Translation</td>
<td>0.05</td>
<td>0.06</td>
<td>0.41</td>
</tr>
<tr>
<td>Legal</td>
<td>0.05</td>
<td>0.05</td>
<td>0.77</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>0.25</td>
<td>0.48</td>
<td><0.001</td>
</tr>
<tr>
<td>Customer Service</td>
<td>0.04</td>
<td>0.11</td>
<td><0.001</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td>0.15</td>
<td>0.16</td>
<td>0.89</td>
</tr>
<tr>
<td>Accounting & Consulting</td>
<td>0.22</td>
<td>0.13</td>
<td><0.001</td>
</tr>
<tr>
<td>Analytical Skills Score</td>
<td>3.73</td>
<td>3.57</td>
<td><0.001</td>
</tr>
<tr>
<td>Time Taken on Analytical Test</td>
<td>50.5</td>
<td>48.05</td>
<td>0.08</td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Skills Score</td>
<td>3.55</td>
<td>3.42</td>
<td><0.001</td>
</tr>
<tr>
<td>Time Taken on Management Test</td>
<td>19.79</td>
<td>20.65</td>
<td>0.14</td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion Qualified by Test Score</td>
<td>0.29</td>
<td>0.18</td>
<td><0.001</td>
</tr>
<tr>
<td>Proportion in Analytical Skills Dataset</td>
<td>0.41</td>
<td>0.45</td>
<td>0.2</td>
</tr>
<tr>
<td>(N)</td>
<td>531</td>
<td>552</td>
<td></td>
</tr>
</tbody>
</table>
Panel B: Restricted to “Qualified” Freelancers

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requested Hourly Rate</td>
<td>48.9</td>
<td>39.3</td>
<td><0.05</td>
</tr>
<tr>
<td>Hours Worked on Upwork</td>
<td>304</td>
<td>540</td>
<td>0.14</td>
</tr>
<tr>
<td>Jobs Worked on Upwork</td>
<td>11.8</td>
<td>22.0</td>
<td><0.05</td>
</tr>
<tr>
<td>Total Tests Displayed</td>
<td>6.62</td>
<td>7.62</td>
<td>0.29</td>
</tr>
<tr>
<td>Available Less than 30hrs/wk</td>
<td>0.14</td>
<td>0.20</td>
<td>0.26</td>
</tr>
<tr>
<td>Available More than 30hrs/wk</td>
<td>0.36</td>
<td>0.36</td>
<td>0.99</td>
</tr>
<tr>
<td>Available as Needed</td>
<td>0.49</td>
<td>0.40</td>
<td>0.18</td>
</tr>
<tr>
<td>College Degree</td>
<td>0.84</td>
<td>0.84</td>
<td>0.91</td>
</tr>
<tr>
<td>MBA Degree</td>
<td>0.21</td>
<td>0.16</td>
<td>0.25</td>
</tr>
<tr>
<td>Other Graduate Degree</td>
<td>0.28</td>
<td>0.28</td>
<td>0.93</td>
</tr>
<tr>
<td>Web/Mobile/Software Development</td>
<td>0.16</td>
<td>0.13</td>
<td>0.53</td>
</tr>
<tr>
<td>IT & Networking</td>
<td>0.07</td>
<td>0.010</td>
<td><0.05</td>
</tr>
<tr>
<td>Data Science & Analytics</td>
<td>0.21</td>
<td>0.19</td>
<td>0.67</td>
</tr>
<tr>
<td>Engineering & Architecture</td>
<td>0.07</td>
<td>0.02</td>
<td><0.10</td>
</tr>
<tr>
<td>Design & Creative</td>
<td>0.17</td>
<td>0.15</td>
<td>0.64</td>
</tr>
<tr>
<td>Writing</td>
<td>0.34</td>
<td>0.46</td>
<td>0.05</td>
</tr>
<tr>
<td>Translation</td>
<td>0.04</td>
<td>0.14</td>
<td><0.01</td>
</tr>
<tr>
<td>Legal</td>
<td>0.05</td>
<td>0.04</td>
<td>0.81</td>
</tr>
<tr>
<td>Administrative Support</td>
<td>0.22</td>
<td>0.47</td>
<td><0.001</td>
</tr>
<tr>
<td>Customer Service</td>
<td>0.02</td>
<td>0.06</td>
<td><0.10</td>
</tr>
<tr>
<td>Sales & Marketing</td>
<td>0.18</td>
<td>0.18</td>
<td>0.91</td>
</tr>
<tr>
<td>Accounting & Consulting</td>
<td>0.29</td>
<td>0.20</td>
<td>0.10</td>
</tr>
<tr>
<td>Analytical Skills Score</td>
<td>4.35</td>
<td>4.30</td>
<td>0.20</td>
</tr>
<tr>
<td>Time Taken on Analytical Test</td>
<td>47.9</td>
<td>48.1</td>
<td>0.97</td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Skills Score</td>
<td>3.96</td>
<td>3.95</td>
<td>0.58</td>
</tr>
<tr>
<td>Time Taken on Management Test</td>
<td>19.7</td>
<td>19.6</td>
<td>0.97</td>
</tr>
<tr>
<td>(minutes)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Proportion in Analytical Skills Dataset</td>
<td>0.33</td>
<td>0.41</td>
<td>0.16</td>
</tr>
<tr>
<td>N</td>
<td>154</td>
<td>102</td>
<td></td>
</tr>
</tbody>
</table>
Table B2. Replication of Table 1 excluding the 14 observations who applied to both jobs initially

<table>
<thead>
<tr>
<th></th>
<th>OLS Predicting Decision to Apply to Expert-Level Job</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All Participants</td>
</tr>
<tr>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Positive</td>
<td>-0.025</td>
</tr>
<tr>
<td>Treatment</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Normative</td>
<td>-0.016</td>
</tr>
<tr>
<td>Treatment</td>
<td>(0.023)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.028</td>
</tr>
<tr>
<td></td>
<td>(0.021)</td>
</tr>
<tr>
<td>Qualified</td>
<td>-0.051</td>
</tr>
<tr>
<td></td>
<td>(0.045)</td>
</tr>
<tr>
<td>Positive x</td>
<td>0.075</td>
</tr>
<tr>
<td>Qualified x</td>
<td>(0.055)</td>
</tr>
<tr>
<td>Normative x</td>
<td>0.15***</td>
</tr>
<tr>
<td>Qualified x</td>
<td>(0.054)</td>
</tr>
<tr>
<td>Female x</td>
<td>0.025</td>
</tr>
<tr>
<td>Positive x</td>
<td>(0.047)</td>
</tr>
<tr>
<td>Female x</td>
<td>-0.0025</td>
</tr>
<tr>
<td>Normative x</td>
<td>(0.046)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1069</td>
</tr>
<tr>
<td>Adj. R-squared</td>
<td>0.037</td>
</tr>
</tbody>
</table>

Notes: Qualified candidates are those with a test score greater than or equal to the advertised threshold. Controls are posted hourly rate, hours worked, jobs worked, total tests posted, normalized test score, time taken to complete the test, college degree dummy, MBA dummy, other graduate degree dummy, dummies for each category of availability (> than 30 hrs/wk, < than 30 hrs/wk, as needed), dummies for each self-reported skill, and a dummy for being in the second wave of experiment. * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Table B3. Summary Statistics for Laboratory Participants for Real Job Ads Study

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>P-value from test of proportions</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>0.28</td>
<td>0.32</td>
<td>0.51</td>
</tr>
<tr>
<td>Black</td>
<td>0.16</td>
<td>0.11</td>
<td>0.34</td>
</tr>
<tr>
<td>Asian</td>
<td>0.35</td>
<td>0.34</td>
<td>0.93</td>
</tr>
<tr>
<td>Latino</td>
<td>0.08</td>
<td>0.07</td>
<td>0.90</td>
</tr>
<tr>
<td>Multiracial</td>
<td>0.12</td>
<td>0.09</td>
<td>0.48</td>
</tr>
<tr>
<td>Middle East</td>
<td>0.01</td>
<td>0.01</td>
<td>0.89</td>
</tr>
<tr>
<td>Is a Student</td>
<td>0.80</td>
<td>0.87</td>
<td>0.22</td>
</tr>
<tr>
<td>Average Age</td>
<td>23.93</td>
<td>23.81</td>
<td>0.78</td>
</tr>
<tr>
<td>Highest obtained Education</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>0.12</td>
<td>0.05</td>
<td>0.05</td>
</tr>
<tr>
<td>Some College</td>
<td>0.30</td>
<td>0.29</td>
<td>0.80</td>
</tr>
<tr>
<td>Bachelor’s Degree</td>
<td>0.36</td>
<td>0.49</td>
<td>0.06</td>
</tr>
<tr>
<td>Advanced Degree</td>
<td>0.21</td>
<td>0.18</td>
<td>0.51</td>
</tr>
<tr>
<td>Humanities Major</td>
<td>0.10</td>
<td>0.18</td>
<td>0.14</td>
</tr>
<tr>
<td>Social Science Major</td>
<td>0.25</td>
<td>0.29</td>
<td>0.53</td>
</tr>
<tr>
<td>STEM Major</td>
<td>0.50</td>
<td>0.44</td>
<td>0.41</td>
</tr>
<tr>
<td>Is fluent in English</td>
<td>0.99</td>
<td>0.99</td>
<td>0.89</td>
</tr>
<tr>
<td>Order of Experiment within Session</td>
<td>0.48</td>
<td>0.50</td>
<td>0.81</td>
</tr>
</tbody>
</table>
Table B4. Summary Statistics on Job Ads for Real Job Ads Study

Panel A: Data on Bureau of Labor Statistics Sector for Ads

<table>
<thead>
<tr>
<th>BLS Sector</th>
<th>Percent of Ads</th>
</tr>
</thead>
<tbody>
<tr>
<td>Educational Services</td>
<td>7</td>
</tr>
<tr>
<td>Financial Activities</td>
<td>7</td>
</tr>
<tr>
<td>Health Care and Social Assistance</td>
<td>21</td>
</tr>
<tr>
<td>Information</td>
<td>14</td>
</tr>
<tr>
<td>Leisure and Hospitality</td>
<td>11</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>7</td>
</tr>
<tr>
<td>Professional and Business Services</td>
<td>25</td>
</tr>
<tr>
<td>State and Local Government</td>
<td>4</td>
</tr>
<tr>
<td>Transportation and Warehousing</td>
<td>4</td>
</tr>
</tbody>
</table>

Panel B: Summary of Participant Assessments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Min. Value</th>
<th>25th pctl</th>
<th>75th pctl</th>
<th>Max. Value</th>
<th>Mean</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Level Well-Qualified</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>10</td>
<td>4.41</td>
</tr>
<tr>
<td>Ad Level Male Stereotype</td>
<td>-0.26</td>
<td>-0.12</td>
<td>0.2</td>
<td>0.5</td>
<td>0.070</td>
</tr>
<tr>
<td>Ad Level Prestige</td>
<td>2.86</td>
<td>3.44</td>
<td>4.14</td>
<td>4.82</td>
<td>3.856</td>
</tr>
<tr>
<td>Ad Level Objectivity</td>
<td>5.14</td>
<td>6.37</td>
<td>7.38</td>
<td>7.7</td>
<td>6.857</td>
</tr>
<tr>
<td>Ad Level Avg. Qualified</td>
<td>4.57</td>
<td>5.44</td>
<td>6.64</td>
<td>7.23</td>
<td>6.077</td>
</tr>
</tbody>
</table>
Table B5. Perceived Qualification for Real Job Openings Conditional on Self-Assessed Fraction of Qualifications Possessed

<table>
<thead>
<tr>
<th>OLS Predicting How Well-Qualified an Individual Feels for Job Opening</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>-0.02 (0.11)</td>
</tr>
<tr>
<td>Fraction of Qualifications that a Participant Believes They Possess</td>
<td>0.08**** (0.002)</td>
</tr>
<tr>
<td>Ad Fixed Effects</td>
<td>Yes</td>
</tr>
<tr>
<td>Demographic Controls</td>
<td>Yes</td>
</tr>
<tr>
<td>Order of Experiment within Session</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.80</td>
</tr>
<tr>
<td>Clusters (Obs.)</td>
<td>196 (784)</td>
</tr>
</tbody>
</table>

Notes: Controls are fixed effects for each race category, fixed effects for each education category, age, a dummy for majoring in humanities, a dummy for majoring in social science, a dummy for majoring in STEM, and a dummy for fluent in English. * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Table B6. Summary Statistics on Workers in the Online Simulated Labor Market

Panel A: All Participants

<table>
<thead>
<tr>
<th></th>
<th>Men</th>
<th>Women</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>0.80</td>
<td>0.81</td>
<td>0.65</td>
</tr>
<tr>
<td>Black</td>
<td>0.06</td>
<td>0.09</td>
<td>0.08</td>
</tr>
<tr>
<td>Asian</td>
<td>0.10</td>
<td>0.06</td>
<td>0.01</td>
</tr>
<tr>
<td>Attended HS in US</td>
<td>0.98</td>
<td>0.96</td>
<td>0.05</td>
</tr>
<tr>
<td>HS Only</td>
<td>0.11</td>
<td>0.085</td>
<td>0.06</td>
</tr>
<tr>
<td>Some College/Assoc.</td>
<td>0.36</td>
<td>0.37</td>
<td>0.86</td>
</tr>
<tr>
<td>Bachelors</td>
<td>0.39</td>
<td>0.40</td>
<td>0.76</td>
</tr>
<tr>
<td>Advanced Degree</td>
<td>0.14</td>
<td>0.15</td>
<td>0.36</td>
</tr>
<tr>
<td>Rd. 1 Score</td>
<td>10.96</td>
<td>9.65</td>
<td><0.001</td>
</tr>
<tr>
<td>Rd. 2 Score</td>
<td>8.44</td>
<td>7.14</td>
<td><0.001</td>
</tr>
<tr>
<td>Prop. Assigned to Qualifications Treatment</td>
<td>0.49</td>
<td>0.50</td>
<td>0.78</td>
</tr>
<tr>
<td>N</td>
<td>798</td>
<td>704</td>
<td></td>
</tr>
</tbody>
</table>

Panel B: Qualified Workers Only

<table>
<thead>
<tr>
<th></th>
<th>Qualified Men</th>
<th>Qualified Women</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>0.82</td>
<td>0.86</td>
<td>0.15</td>
</tr>
<tr>
<td>Black</td>
<td>0.04</td>
<td>0.05</td>
<td>0.44</td>
</tr>
<tr>
<td>Asian</td>
<td>0.11</td>
<td>0.07</td>
<td>0.03</td>
</tr>
<tr>
<td>Attended HS in US</td>
<td>0.98</td>
<td>0.97</td>
<td>0.16</td>
</tr>
<tr>
<td>HS Only</td>
<td>0.09</td>
<td>0.06</td>
<td>0.17</td>
</tr>
<tr>
<td>Some College/Assoc.</td>
<td>0.32</td>
<td>0.29</td>
<td>0.26</td>
</tr>
<tr>
<td>Bachelors</td>
<td>0.42</td>
<td>0.47</td>
<td>0.12</td>
</tr>
<tr>
<td>Advanced Degree</td>
<td>0.17</td>
<td>0.18</td>
<td>0.76</td>
</tr>
<tr>
<td>Rd. 1 Score</td>
<td>14.0</td>
<td>13.2</td>
<td><0.01</td>
</tr>
<tr>
<td>Rd. 2 Score</td>
<td>9.73</td>
<td>8.55</td>
<td><0.001</td>
</tr>
<tr>
<td>Prop. Assigned to Qualifications Treatment</td>
<td>0.50</td>
<td>0.53</td>
<td>0.44</td>
</tr>
<tr>
<td>N</td>
<td>460</td>
<td>336</td>
<td></td>
</tr>
</tbody>
</table>

Notes: p-values from binary variables are from two-tailed test of proportions. Comparisons of Round 1 and Round 2 scores use two-tailed t-tests.
Table B7. Believed Performance by Gender in the Online Simulated Labor Market

<table>
<thead>
<tr>
<th>OLS Predicting Believed Performance</th>
<th>I Pre-Signal Belief of Absolute Score</th>
<th>II Pre-Signal Belief of Relative Performance</th>
<th>III Post-Signal Belief of Absolute Score</th>
<th>IV Post-Signal Belief of Round 2 Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>-0.70**** (0.16)</td>
<td>-0.07**** (0.01)</td>
<td>-0.72**** (0.15)</td>
<td>-0.58**** (0.15)</td>
</tr>
<tr>
<td>True Round 1 Score</td>
<td>0.59**** (0.02)</td>
<td>0.02**** (0.00)</td>
<td>0.76**** (0.02)</td>
<td>0.46**** (0.02)</td>
</tr>
<tr>
<td>Demographic Controls</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Signal Treatment</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Qualification Treatment</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.45</td>
<td>0.23</td>
<td>0.64</td>
<td>0.38</td>
</tr>
<tr>
<td>Observations</td>
<td>1,502</td>
<td>1,502</td>
<td>1,502</td>
<td>1,502</td>
</tr>
</tbody>
</table>

Notes: Controls are their true Round 1 Score, fixed effects for each race category, fixed effects for each education category, a dummy for attendance of High School in the US, fixed effects for the Signal treatment versions (60 versus 90 percent to see true Round 1 Score as signal), fixed effects for Qualification treatment versions (no, vague, or clearly stated qualifications). * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Table B8. Replication of Table 4 with Monotonic Participants Only

<table>
<thead>
<tr>
<th></th>
<th>OLS Predicting Minimum Promotion Bonus at Which Applied No Qualifications Treatment</th>
<th>MONOTONIC PARTICIPANTS ONLY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>Female</td>
<td>9.97</td>
<td>5.06</td>
</tr>
<tr>
<td></td>
<td>(14.8)</td>
<td>(14.7)</td>
</tr>
<tr>
<td>Round 1 Score</td>
<td>-12.5***</td>
<td>-8.28***</td>
</tr>
<tr>
<td></td>
<td>(1.63)</td>
<td>(2.03)</td>
</tr>
<tr>
<td>Beliefs of Rd. 2 Score</td>
<td>-9.06***</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.62)</td>
<td></td>
</tr>
<tr>
<td>Took Common</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Gamble</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Believed Prob. Of Promotion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belief of Rd. 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Gamble</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Female x Believed Prob. Of Prom.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>696</td>
<td>696</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.094</td>
<td>0.108</td>
</tr>
</tbody>
</table>

Notes: Controls are fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US, as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal). * indicates p<0.10, ** indicates p<0.05, ***indicates p<0.01, ****indicates p<0.001.
Table B9. Replication of Table 5 with Round 1 Score Threshold of 11

OLS Predicting Believed Probability of Promotion

<table>
<thead>
<tr>
<th></th>
<th>All Participants</th>
<th>Unqualified Participants (Round 1 score < 11)</th>
<th>Unqualified Participants (Believed Round 1 score < 11)</th>
<th>Qualified Participants (Round 1 score ≥11)</th>
<th>Qualified Participants (Believed Round 1 score ≥11)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
<td>III</td>
<td>IV</td>
<td>V</td>
</tr>
<tr>
<td>Qualification</td>
<td>-3.55***</td>
<td>-4.90***</td>
<td>-5.21***</td>
<td>-1.41</td>
<td>-0.37</td>
</tr>
<tr>
<td>Treatment</td>
<td>(1.32)</td>
<td>(1.84)</td>
<td>(1.62)</td>
<td>(1.89)</td>
<td>(2.26)</td>
</tr>
<tr>
<td>Female</td>
<td>-2.31*</td>
<td>-2.74</td>
<td>-3.08*</td>
<td>-1.73</td>
<td>-2.38</td>
</tr>
<tr>
<td></td>
<td>(1.38)</td>
<td>(1.81)</td>
<td>(1.60)</td>
<td>(2.16)</td>
<td>(2.77)</td>
</tr>
<tr>
<td>Female x Qual.</td>
<td>3.88**</td>
<td>4.28*</td>
<td>3.94*</td>
<td>3.49</td>
<td>6.71*</td>
</tr>
<tr>
<td>Treatment</td>
<td>(1.92)</td>
<td>(2.55)</td>
<td>(2.24)</td>
<td>(2.94)</td>
<td>(3.84)</td>
</tr>
<tr>
<td>Controls</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Observations</td>
<td>1502</td>
<td>706</td>
<td>920</td>
<td>796</td>
<td>582</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
<td>0.429</td>
<td>0.285</td>
<td>0.306</td>
<td>0.408</td>
<td>0.340</td>
</tr>
</tbody>
</table>

Notes: Controls are Round 1 score, beliefs of Round 1 score – absolute and relative, beliefs of Round 2 score, risk preferences, fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal). * indicates p<0.10, ** indicates p<0.05, *** indicates p<0.01, **** indicates p<0.001.
Table B10. Replication of Table 6 with Monotonic Participants Only

<table>
<thead>
<tr>
<th>OLS Predicting Minimum Promotion Bonus at Which Applied</th>
</tr>
</thead>
<tbody>
<tr>
<td>MONOTONIC PARTICIPANTS ONLY</td>
</tr>
<tr>
<td>All Participants</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>Qualification</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Female</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Female x Qual.</td>
</tr>
<tr>
<td>Treatment</td>
</tr>
<tr>
<td>Controls</td>
</tr>
<tr>
<td>Observations</td>
</tr>
<tr>
<td>Adjusted R-squared</td>
</tr>
</tbody>
</table>

Notes: Controls are Round 1 score, beliefs of Round 1 score – absolute and relative, beliefs of Round 2 score, risk preferences, fixed effects for each race category, fixed effects for each education category, and a dummy for attended high school in the US as well as dummies for each feedback treatment (no signal, 60% signal, 90% signal).

* indicates p<0.10, ** indicates p<0.05, *** indicates p<0.01, **** indicates p<0.001.
Marketing Representative
SP Plus Corporation 533 reviews - Boston, MA 02110

Job Function - Prepare financial reports, developed budgets, and performed variance analysis in accordance with business plan expectation. Compile periodic financial reporting packages for senior management. Oversee general accounting functions, including AR/AP account reconciliation, and cash management. Administer all financial management systems, evaluating and integrating new applications.

Responsibilities

MAIN RESPONSIBILITIES

• Develop an acute understanding of SP+ core services as well as the clients, challenges, opportunities, and key business processes of the parking industry.
• Work with the team to develop innovative, actionable marketing strategies to acquire new business as well as retain existing business more effectively.
• Responsible for tasks and deliverables that are integral to the company’s business development and expansion.
• Conduct market research that captures data on target market demographics, competitor initiatives, and industry trends.
• Create and send client/tenant letters (rate increases, sales letters, update letters to tenants, letters requested by the client).
• Coordinate, implement and manage various marketing initiatives (marketing programs, direct mailings, telemarketing campaigns, e-mail campaigns, website and mobile promotions, paid search campaigns, social media and partnership marketing) to achieve business objectives.
• Develop and maintain marketing collateral (brochures, flyers, handouts, signage, coupons and sales letters).
• Analyze marketing results/trends and make recommendations for improvement/implementation.
• Generate monthly marketing activity reports, charts and statistical tables.
• Implement annual marketing plans and develop marketing budgets accordingly.
• Interact with internal and external vendors.
• Research marketing media opportunities - print, radio, billboard, cross promotions, web site advertising and links.
• Report progress of marketing goals and strategies to Senior Manager and Client.
• Handle customer inquiries from yelp.
• Coordinate amenity programs and customer appreciation days.
• Networks with property managers/garage clients and attend trade association/neighborhood meetings as assigned.

Qualifications

MINIMUM QUALIFICATIONS

• 5+ years of marketing and/or account management experience is preferred.
• Bachelor Degree, preferably in Business or Marketing.
• Solid marketing background.
• Solid customer service skills are a must.
• Computer literate to include Microsoft Excel, Word, and PowerPoint.
• Knowledge in Adobe Illustrator, Photoshop and Acrobat is a plus.
• Motivated self-starter who works well with minimal direction.

SP+ is an equal opportunity employer committed in policy and practice to recruit, hire, train, and promote, in all job classifications, without regard to race, color, religion, sex, age, national origin, citizenship status, marital status, sexual orientation, veteran status, disability or other classes protected by federal or state law. SP+ does not tolerate harassment of or retaliation against any employee or applicant on the basis of these characteristics, or because the individual exercised his or her EEO rights.

Source: Indeed.com, only page 1 displayed here
Client Service Associate
Fanning Personnel - Boston, MA 02116
$65,000 a year

Registered Investment Advisor west of Boston seeking a Client Service Associate! Will work closely with Senior Executive, prospective clients and existing clients in every aspect of the process and relationship management. The individual in this role will also act as the point of contact for client account maintenance and compliance requests. This person will serve as an integral component in client service and client management. To $65K + Profit Sharing

The Client Service Associate will:

- Communicate clearly via phone, email and written correspondence to establish and maintain quality client relationships
- Prepare detailed portfolio analysis of current client and potential client holdings
- Provide clients with the necessary documentation to create, transfer and maintain accounts
- Facilitate the timely, accurate transfer of client assets
- Maintain confidential client personal and account information in CRM Database
- Work closely with Operations to produce Quarter End Client Reporting
- Handle compliance related tasks
- Complete ad-hoc special projects as assigned

The Client Service Associate possesses the following qualifications:

- Bachelor’s degree
- Minimum 3 years’ experience in financial services industry preferred
- Excellent customer service, communication, writing and interpersonal skills
- Advanced computer skills in Microsoft Excel, Word, PowerPoint
- CRM and portfolio accounting database experience a plus
- Ability to multitask with great attention to detail

Job Type: Full-time
Salary: $65,000.00 /year

Experience:

- Client Service: 3 years (Required)

Education:

- Bachelor’s (Required)

20 hours ago • Save Job

Apply Now
Please review all application instructions before applying to Fanning Personnel.

Source: Indeed.com, only page 1 displayed here
Figure B3. Example 3 of Job Ad in Laboratory Study

Compensation Survey Associate
Pearl Meyer & Partners, LLC. - Wellesley, MA

Looking for an opportunity to gain exposure to the compensation area of human resources, play an important role as part of Pearl Meyer’s Compensation Survey Team, and work with a very impressive portfolio of clients?

This unique and challenging role offers a chance to wear many hats. The Survey Team at Pearl Meyer publishes approximately 30 surveys annually on employee compensation, benefits and human resources practices. We are seeking candidates who thrive on working in a team environment with an aptitude for multitasking. From client management and engagement to data analysis, this role offers full exposure to the survey publication cycle.

As a Compensation Survey Associate, you will:

- Assist Survey Project Managers throughout the survey cycle including data analysis, report peer review, and client meeting coordination.
- Manage an assigned group of compensation survey clients. This includes assisting clients throughout the survey submission process, reviewing individual client data to ascertain data integrity, and advising clients regarding questions pertaining to survey report outputs.
- Maintain client databases and generate reports as needed.

The Survey Team at Pearl Meyer offers motivated employees the opportunity for career growth through extensive educational, training, and development opportunities. We offer a career ladder with opportunity for upward career movement.

This position may offer the occasional opportunity for travel in spring and fall for those who desire.

Additional Information:

All candidates must be authorized to work in the U.S.

Pearl Meyer is an EEO employer.

Requirements

Applicants should have a strong orientation towards client management and data analysis.

This role is deadline driven and requires strong attention to detail. The ability to work in a collaborative, team environment is needed. Ideal candidates will have an interest in, or prior exposure to, the field of compensation and a desire to further their knowledge through Pearl Meyer’s many training and educational opportunities.

Additional requirements and expectations include:

- A Bachelors degree
- Proficiency in Microsoft Excel
- Solid organizational and analytical skills
- The ability to work as an effective and reliable team member
- The ability to handle and safeguard confidential and sensitive information
- Working knowledge of Microsoft Windows environment and intermediate ability with MS Word and PowerPoint
- Experience using compensation surveys is desired but not required

Source: Indeed.com, only page 1 displayed here
Figures B4 to B7 show the normalized frequency of the top 10 mentioned words for men and the top 10 mentioned words for women in the laboratory study with real job ads. The number in brackets next to each skill indicates the gender ratio. To arrive at the first graph, we do the following. We collected all the skills men mentioned to have when they were given entry-level job ads. We cleaned this qualitative data to derive only the stem of each skill. This means we derive the root of each word, where for example “managing,” “manage,” and “managed” all become “manag.” This approach will remove some of the meaning but will help us better understand which skills participants mentioned. We do the cleaning and stemming with the help of the R-packages “tm” (text mining) and “SnowballC” (text stemming). Given the strong left-skewed nature of the distribution, where there are a large number of skills which have been mentioned only once, we decided to limit the analysis to the 100 most often mentioned skills for men and the 100 most often mentioned skills for women. To compare men and women, we then normalized all the 100 most frequently mentioned skills. The normalized measure is a simple z-score.

The graphs show the 10 most frequently mentioned skills by gender. To make that graph more informative, we contrast these normalized frequencies with the normalized frequencies of the other gender. For the first graph, this means we go through the same cleaning and normalizing procedure for the 100 most often mentioned skills for women as we went through for men’s responses. We then add the normalized frequency for women to each of the men’s top 10 mentioned skills. This creates a contrasting bar for the bars of main interest. If there is no contrasting bar, it means that the skill was not on the list of the 100 most frequently mentioned skills for the other gender.

The number in brackets next to each skill indicates the gender ratio. It takes the normalized frequency of that skill (calculated as a simple Z-score) and compares it to the normalized frequency of the other gender (calculated as a simple Z-score). There are cases where the skill was not among the 100 most frequently mentioned skills for the contrasting gender. Those cases are labeled as “NA.”
Figure B4. Frequently mentioned words for *possessed* skills for entry-level openings
Figure B5. Frequently mentioned words for non-possessed skills for entry-level openings

Entry-Level Job Ads
Skills Men say they don't have (normalized)

Entry-Level Job Ads
Skills Women say they don't have (normalized)
Figure B6. Frequently mentioned words for *possessed* skills for advanced openings

Advanced-Level Job Ads

Skills Men say they have (normalized)

Advanced-Level Job Ads

Skills Women say they have (normalized)
Figure B7. Frequently mentioned words *non-possessed* skills for advanced openings