

Copyright © 2013 by Robert Lagerström, Carliss Y. Baldwin, Alan MacCormack, and Stephan Aier

Working papers are in draft form. This working paper is distributed for purposes of comment and
discussion only. It may not be reproduced without permission of the copyright holder. Copies of working
papers are available from the author.

Visualizing and Measuring
Enterprise Application
Architecture: An Exploratory
Telecom Case

Robert Lagerström
Carliss Y. Baldwin
Alan MacCormack
Stephan Aier

Working Paper

13-103

June 21, 2013

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 2

Visualizing and Measuring Enterprise Application Architecture:

An Exploratory Telecom Case

Robert Lagerström, Carliss Y. Baldwin, Alan MacCormack and Stephan Aier

Abstract

We test a method for visualizing and measuring enterprise application architectures. The method was

designed and previously used to reveal the hidden internal architectural structure of software applications. The

focus of this paper is to test if it can also uncover new facts about the applications and their relationships in an

enterprise architecture, i.e., if the method can reveal the hidden external structure between software applications.

Our test uses data from a large international telecom company. In total, we analyzed 103 applications and 243

dependencies. Results show that the enterprise application structure can be classified as a core-periphery

architecture with a propagation cost of 25%, core size of 34%, and architecture flow through of 64%. These

findings suggest that the method could be effective in uncovering the hidden structure of an enterprise application

architecture.

1. Introduction

Contemporary business environments are constantly evolving, requiring continual changes to the software

applications that support those businesses. Moreover, during the past decades the sheer number of those applications

has steadily grown, and they have become increasingly interdependent. As a result, the management of software

applications has become a very complex task, and many companies have found that implementing changes to their

applications architecture is increasingly difficult and expensive. What would help tremendously is a tool that would

enable them to visualize and analyze the modularity of their enterprise architecture and the degree of coupling

between the applications.

In [1], Baldwin et al. present a method based on Design Structure Matrices (DSMs) and classic coupling

measures to visualize the hidden structure of software architectures. This method has been tested on numerous

software releases for large applications (such as Linux, Mozilla, Apache, and GnuCash) but not on enterprise

architectures with a potentially large number of interdependent applications. This paper performs such a test using

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 3

data from a business unit of a large telecom company. The data consisted of a total of 103 applications and 243

directed dependencies.

We find that the telecom application architecture can be classified as core-periphery. This means that 1) there is

one cyclic group (the “Core”) of software applications that is substantially larger than the second biggest cyclic

group, and 2) the Core also makes up a large portion of the entire architecture. The analysis also shows a

propagation cost of 25%, meaning that one-fourth of the architecture may be affected when a change is made to a

randomly selected software application in the architecture. In addition, we find that the Core contains 35

applications, which embody 34% of the architecture. And lastly, the analysis uncovers that the architecture flow

through accounts for as much as 64% of the architecture, meaning that more than half of the applications are either

in, depend on, or are dependent on the Core.

The remainder of this paper is structured as follows: Section 2 presents related work; Section 3 describes the

hidden structure method; Section 4 presents the telecom case used for the analysis; Section 5 discusses the approach

and outlines future work; and Section 6 concludes the paper.

2. Related work

In this section, we first describe the most common metrics used to assess complexity in software engineering.

These metrics help analyze a single software application so that, for example, managers can estimate development

efforts or programmers can find troublesome code passages. Next we describe recent work on modularity

visualization for complex software architectures. These network approaches have emerged because many software

applications have grown into large systems containing thousands of interdependent components, making it difficult

for a designer to grasp the full complexity of the architecture. Last, we present related work on the complexity of

enterprise application architectures. Enterprise Architecture (EA), which has gained much recent attention, deals

with the complex networks of hundreds (or thousands) of interdependent applications in a company. Interestingly,

many of the problems encountered by software architects dealing with a single software system are similar to those

that occur for enterprise architects on a system-of-systems level.

2.1 Software engineering

In software engineering, metrics like Lines of Code (LOC) and Function Points (FP) have existed for many years.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 4

We present the most common measures that are specifically relevant to software complexity. According to [2],

software complexity “is the degree to which a system or component has a design or implementation that is difficult

to understand and verify.”

One of the first complexity metrics proposed and one of the most used today is McCabe's Cyclomatic

Complexity (MCC), which is based on the control structure of a software component. The control structure can be

expressed as a control graph in which the cyclomatic complexity value of a software component can be calculated

[3]. Only a year later, another well-known metric was introduced, namely, Halstead's complexity metric [4], which

is based on the number of operators (e.g., “and,” “or,” or “while”) and operands (e.g., variables and constants) in a

software component. A few years after McCabe and Halstead, the Information Flow Complexity (IFC) metric was

introduced [5]. IFC is based on the idea that a large amount of information flows is caused by low cohesion, which

in turn results in high complexity.

Another important type of metric is the coupling measure. [2] defines coupling as “the manner and degree of

interdependence between software modules. Types include common-environment coupling, content coupling, control

coupling, data coupling, hybrid coupling, and pathological coupling.” Fenton and Melton [6] have defined a

coupling measure based on the different levels of coupling, including the following: content coupling (if x refers to

the internals of y, i.e., it branches into, changes data, or alters a statement in y), common coupling (if x and y refer to

the same global variable), control coupling (if x passes a parameter to y that controls its behavior), stamp coupling

(if x passes a variable of a record type as a parameter to y, and y uses only a subset of that record), data coupling (if

x and y communicate by parameters, each one being either a single data item or a homogeneous set of data items that

does not incorporate any control element), and no coupling (if x and y have no communication, i.e. are totally

independent). The Fenton and Melton coupling metric C is pairwise calculated between components, where n =

number of dependencies between two components and i = level of highest (worst) coupling type found between

these two components, such that

ܥ ൌ ݅ 	
݊

݊ 1

All these complexity metrics have been tested and are used widely for assessing the complexity of software

components.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 5

2.2 Software architecture

To characterize the architecture of a complex system (instead of a single component), studies often employ

network representations [7]. Specifically, they focus on identifying the linkages that exist between the different

elements (nodes) in the system [8,9]. A key concept here is modularity, which refers to the way in which a system’s

architecture can be decomposed into different parts. Although there are many definitions of “modularity,” authors

tend to agree on some fundamental features: interdependence of decisions within modules and independence

between modules, and hierarchical dependence of modules on components that embody standards and design rules

[10,11].

Studies that use network methods to measure modularity typically focus on capturing the level of coupling that

exists between different parts of a system. In this respect, one of the most widely adopted techniques is the so-called

Design Structure Matrix (DSM), which illustrates the network structure of a complex system in terms of a square

matrix [12-14], where rows and columns represent components (nodes in the network) and off-diagonal elements

represent dependencies (links) between the components. Metrics that capture the level of coupling for each

component can be calculated from a DSM and used to analyze and understand system structure. For example, [15]

and [16] use DSMs and the metric “propagation cost” to compare software system architectures. DSMs have been

used to visualize architectures and measure the coupling of the internal design of single software systems.

2.3 Enterprise architecture

Although DSMs have proven valuable for architecture representation, we have yet to see them deployed in

enterprise architecture modeling. Instead, the following approaches have been used:

 [17] and [18] present a tool based on a metamodel that specifies the classes, attributes, and relationships

needed to analyze the modifiability of an enterprise architecture. The tool includes classes (such as systems,

components, documentation, change-management processes, tools, infrastructure, and change organizations)

and attributes (such as the component size, system coupling, change-management process maturity, and

team expertise). The metamodel was designed based on metrics used, for example, in COCOMO II.2000

[19], COBIT [20], and the Definition and Taxonomy for Software Maintainability [21]. Thus far, use of the

tool has focused on estimating the development costs by looking at a number of software change projects.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 6

 [22] present a modeling approach for virtual decoupling for IT/Business alignment. The approach is based

on a metamodel that contains business processes, software systems, and the relationships between them. In

this approach, the instantiated model is transformed into a graph and a clustering algorithm is applied to that

graph in order to suggest architecture changes for improving the IT/business alignment.

 [23] study the relationship between an organization’s software portfolio architecture and its ability to make

changes to it. They conclude that both the architecture and component complexities affect the flexibility of

the software portfolio.

 [24] rely on measures from disciplines like economics and anti-monopoly legislation. They propose a

definition of heterogeneity in an IT landscape as a statistical property, and their generic approach quantifies

heterogeneity in IT landscapes.

These enterprise architecture approaches all rely on coupling and complexity measures to analyze architectures.

None, however, uses DSMs to visualize the hidden structure of the architecture or to account for the indirect

dependencies among software systems when measuring coupling.

3. Method description

The method used for architecture network representation is based on and extends the classic notion of coupling.

Specifically, after identifying the coupling (dependencies) between the elements in a complex architecture, the

method analyzes the architecture in terms of hierarchical ordering and cycles, enabling elements to be classified in

terms of their position in the resulting network.

In a Design Structure Matrix (DSM), each diagonal cell represents an element (node), and the off-diagonal cells

record the dependencies between the elements (links): If element i depends on element j, a mark is placed in the row

of i and the column of j. The content of the matrix does not depend on the ordering of the rows and columns, but if

the elements in the DSM are rearranged in a way that minimizes the number of dependencies above the main

diagonal, then dependencies that remain there will show the presence of cyclic interdependencies (A depends on B,

and B depends on A) which cannot be reduced to a hierarchical ordering. The rearranged DSM would then reveal

significant facts about the underlying structure of the architecture that cannot be inferred from standard measures of

coupling or from the architect’s view alone. In the following subsections, a method that makes this “hidden structure”

visible is presented and metrics that can be used to compare architectures and track changes in architecture

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 7

structures over time are described. (Note: A more detailed method description can be found in “Hidden Structure:

Using Network Methods to Map System Architecture” by Baldwin et al. [1].)

3.1 Identify the direct dependencies between elements

The architecture of a complex system can be represented as a directed network composed of elements (nodes)

and directed dependencies (links) between them. Figure 1 contains an example (taken from [15]) of an architecture

that is shown both as a directed graph and a DSM. This DSM is called the “first-order” matrix to distinguish it from

a visibility matrix (defined below).

Figure 1. A directed graph and Design Structure Matrix (DSM) example.

3.2 Compute the visibility matrix

If the first-order matrix is raised to successive powers, the result will show the direct and indirect dependencies

that exist for successive path lengths. Summing these matrices yields the visibility matrix V (Figure 2), which

denotes the dependencies that exist for all possible path lengths. The values in the visibility matrix are binary,

capturing only whether a dependency exists and not the number of possible paths that the dependency can take [15].

The matrix for N=0 (i.e., a path length of zero) is included when calculating the visibility matrix, implying that a

change to an element will always affect itself.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 8

Figure 2. Visibility matrix for example in Figure 1.

3.3 Construct measures from the visibility matrix

Several measures are constructed based on the visibility matrix V. First, for each element i in the architecture, the

following are defined:

 VFIi (Visibility Fan-In) is the number of elements that directly or indirectly depend on i. This number can be

found by summing the entries in the ith column of V.

 VFOi (Visibility Fan-Out) is the number of elements that i directly or indirectly depends on. This number

can be found by summing the entries in the ith row of V.

In Figure 2, element A has VFI equal to 1, meaning that no other elements depend on it, and VFO equal to 6,

meaning that it depends on all other elements in the architecture.

To measure visibility at the architecture level, Propagation Cost (PC) is defined as the density of the visibility

matrix. Intuitively, propagation cost equals the fraction of the architecture affected when a change is made to a

randomly selected element. It can be computed from Visibility Fan-In (VFI) or Visibility Fan-Out (VFO):

Propagation Cost =
∑ ிூ
ಿ
సభ

ேమ
 =	

∑ ிை
ಿ
సభ

ேమ
	.

3.4 Identify and rank cyclic groups

The next step is to find the cyclic groups in the architecture. By definition, each element within a cyclic group

depends directly or indirectly on every other member of the group. So the elements are sorted, first by VFI

descending then by VFO ascending. Next one proceeds through the sorted list, comparing the VFIs and VFOs of

A B C D E F

A 1 1 1 1 1 1

B 0 1 0 1 0 0

C 0 0 1 0 1 1

D 0 0 0 1 0 0

E 0 0 0 0 1 1

F 0 0 0 0 0 1

V=∑Mn ; n=[0,4]

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 9

adjacent elements. If the VFI and VFO for two successive elements are the same, they might be members of the

same cyclic group. Elements that have different VFIs or VFOs cannot be members of the same cyclic group, and

elements for which ni=1 cannot be part of a cyclic group at all. However elements with the same VFI and VFO could

be members of different cyclic groups. In other words, disjoint cyclic groups may, by coincidence, have the same

visibility measures. To determine whether a group of elements with the same VFI and VFO is one cyclic group (and

not several), simply inspect the subset of the visibility matrix that includes the rows and columns of the group in

question and no others. If this submatrix does not contain any zeros, then the group is indeed one cyclic group.

The cyclic groups found via this algorithm are referred to as the “cores” of the system. The largest cyclic group

(the “Core”) plays a special role in the architectural classification scheme, described next.

3.5 Classification of architectures

The method of classifying architectures is motivated in [1] and was discovered empirically. Specifically,

Baldwin et al. found that a large percentage of the architectures they analyzed contained four distinct types of

elements: 1) one large cyclic group, called the “Core,” 2) “Control” elements that depend on other elements but are

not themselves used by many, 3) “Shared” elements that are used by other elements but do not depend on that many

other, and 4) “Periphery” elements that are not used by or depend on a large group of other elements.

From those empirical results, a core-periphery architecture was defined as one containing a single cyclic group

of elements that is dominant in two senses: it is large relative to the architecture as a whole, and it is substantially

larger than any other cyclic group. The empirical work also showed that not all architectures fit into the category of

core-periphery. Some architectures (called “multi-core”) have several similarly sized cyclic groups rather than one

dominant one. Others (called “hierarchical”) have only a few extremely small cyclic groups.

Based on the large dataset of software architectures analyzed in [1], the first classification boundary is set

empirically to assess whether the largest cyclic group contains at least 5% of the total elements. Architectures that

do not meet this test are labeled “hierarchical.” Next, within the set of large-core architectures, a second

classification boundary is applied to assess whether the largest cyclic group contains at least 50% more elements

than the second largest cyclic group. Architectures that meet the second test are labeled “core-periphery”; those that

do not (but have passed the first test) are labeled “multi-core.” Figure 3 summarizes the classification scheme.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 10

Figure 3. Architectural classification scheme.

3.6 Classification of elements

The elements of a core-periphery architecture can be divided into four basic groups:

 “Core” elements are members of the largest cyclic group and have the same VFI and VFO, denoted by VFIC

and VFOC, respectively.

 “Control” elements have VFI < VFIC and VFO ≥ VFOC.

 “Shared” elements have VFI ≥ VFIC and VFO < VFOC.

 “Periphery” elements have VFI < VFIC and VFO < VFOC.

Together the Core, Control, and Shared elements define the flow through of the architecture. (Note: For the

classification of elements in hierarchical and multi-core architectures, see [1].)

3.7 Visualizing the architecture

Using the above classification scheme, a reorganized DSM can be constructed that reveals the “hidden structure”

of the architecture by placing elements in the order Shared, Core, Periphery, and Control down the main diagonal of

the DSM, and then sorting within each group by VFI descending then VFO ascending.

4. Telecom case

We now apply the described method to a real-world example using data from a business unit of a U.S.

telecommunications supplier with global operations. The company (from here on referred to as “Telecom”) has

multibillion-dollar revenues and belongs to the Fortune 500. The business unit produces, configures, and sells

professional radio systems to corporate and public-sector clients worldwide. A subset of the data was used

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 11

previously in a study on virtual decoupling for IT/business alignment [22].

4.1 Identifying the direct dependencies between the software applications

The Telecom dataset contains 103 software applications and 243 direct dependencies. We can represent that

architecture as a directed network, with the applications as nodes and directed dependencies as links, and then

convert that network into a DSM. Figure 4 contains what we call the “architect’s view," with dependencies indicated

by dots. We also placed dots along the main diagonal, implying that each software application is dependent on itself.

Figure 4. The Telecom DSM - architect's view.

The squares in Figure 4 represent business layers found in the company’s architecture descriptions. In order,

from top left, we find “Bid & Quote,” “Finance,” “Operation,” and “Rollout.” Within these larger squares, smaller

squares highlight different types of applications within each layer.

From the DSM, we calculate the Direct Fan-In (DFI) and Direct Fan-Out (DFO) measures by summing the rows

and columns for each software application respectively. Table 1 shows, for example, that Software Application 1

(SA1) has a DFI of 2, indicating that one other application depends on it, and a DFO of 1, indicating that it depends

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 12

only on itself.

4.2 Computing the visibility matrix and constructing the coupling measures

The next step is to derive the visibility matrix by raising the first-order matrix (the architect’s view) to successive

powers, such that both the direct and all the indirect dependencies appear. The Visibility Fan-In (VFI) and Visibility

Fan-Out (VFO) measures can then be calculated by summing the rows and columns in the visibility matrix for each

respective software application. Table 1 shows that Software Application 1 (SA1) has a VFI of 55, indicating that 55

other applications directly or indirectly depend on it, and a VFO of 1, again indicating that it depends only on itself.

Table 1. A sample of Telecom Fan-In and Fan-Outs.

Software
application

DFI DFO VFI VFO

SA1 2 1 55 1
SA2 2 2 54 2
SA3 2 3 53 48
SA4 14 13 53 48
SA5 4 2 53 48
SA6 1 4 1 49
SA7 15 17 53 48
… … … … …
SA103 1 1 1 1

Using the VFI and VFO measures, we can calculate the propagation cost of the Telecom architecture:

Propagation Cost =
∑ ிூ
భబయ
సభ

ଵଷమ
	=

∑ ிை
భబయ
సభ

ଵଷమ
 = 25%

A propagation cost of 25% means that one-fourth of the architecture may be affected when a change is made to a

randomly selected software application.

4.3 Identifying cyclic groups and classifying the architecture

To identify cyclic groups, we first ordered the list of software applications based on VFI descending and VFO

ascending. We could then identify three possible cyclic groups: two groups each containing two software

applications (VFI=54/VFO=2 and VFI=2/VFO=49) and one large group containing 35 applications

(VFI=53/VFO=48). When inspecting the visibility submatrices of these possible clusters, we found that the groups

containing two applications were not cyclic. In other words, these applications had ended up with the same VFI and

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 13

VFO by coincidence. The possible cluster with 35 software applications, however, proved to be a cyclic group,

which we labeled as “Core.” In Table 1, software applications 3, 4, 5, and 7 are all part of the Core. Because the

Core makes up 34% of the architecture and because there are no other clusters, the architecture is classified as core-

periphery, according to the classification scheme discussed earlier (Figure 5).

Figure 5. Telecom architecture classification.

4.4 Classifying the software applications and visualizing the architecture

After identifying applications that belong to the Core, the next step is to classify the remainder of the software as

Shared, Periphery, or Control. To do so, we compare the VFI and VFO of each application with the VFIC and VFOC

of the Core applications. Thirteen applications have a VFI that is equal to or larger than the VFIC and a VFO that is

smaller than the VFOC, classifying them as Shared. Thirty-seven software applications have VFI and VFO numbers

that are smaller than the Core, classifying them as Periphery. And 18 applications have a VFI that is smaller than the

VFIC and a VFO that is equal to or larger than the VFOC, classifying them as Control. Table 2 summarizes those

results.

Table 2. Telecom software applications classification.

Classification No. of % of total
Shared 13 12.6%
Core 35 34.0%
Periphery 37 35.9%
Control 18 17.5%

By sorting the original DSM using the different classifications, we can uncover the hidden structure of the

architecture. First, the applications are sorted in the order of Shared, Core, Periphery, and Control. Then, within each

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 14

group the applications are ordered by VFI descending and VFO ascending.

Figure 6. Telecom rearranged DSM.

From Figure 6, which shows the rearranged DSM, we see a large cyclic group of software applications, which

appear in the second block down the main diagonal. Each element in this group both depends on and is depended on

every other member of the group. These “Core” applications account for 34% of the elements. Furthermore, the

Core, the applications depending on it (“Control”), and those it depends on (“Shared”), account for 64% of the

architecture. The remaining applications are “Periphery,” in that they have few relationships with other applications.

5. Discussion and research outlook

As presented in [1], the hidden structure method was designed based on empirical regularity from cases

investigating large complex software systems. All those cases were focused on one software system at a time,

independent of its surrounding environment, analyzing the dependencies between its source files. In other words,

that work considered the internal coupling of a system. In this paper, the same method is tested on the dependencies

between software applications; i.e., the current work considers the external coupling between applications.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 15

For the Telecom case, the method revealed a hidden structure (thus presenting new facts) similar to those cases

on software architecture investigated in previous studies. And the method also helped classify the architecture as

core-periphery using the same rules and boundaries as in the previous cases. However, because this is only one set

of data from one business unit, additional studies are needed.

Compared to other complexity, coupling, and modularity measures, the hidden structure method considers not

only the direct network structure of an architecture but also takes into consideration the indirect dependencies

between applications. Both these features provide important input for management decisions. For instance,

applications that are classified as Periphery or Control are probably easier (and less costly) to modify because of the

lower probability of a change spreading and affecting other applications. In contrast, applications that are classified

as Shared or Core are more difficult to modify because of the higher probability of changes spreading to other

applications. This information can be used in change management, project planning, risk analysis, and so on.

From Table 1, we see that software applications 1, 2, 3, 5, and 6 all have low Direct Fan-In (DFI) and Direct

Fan-Out (DFO) numbers. As such, those applications might be considered as low risk when implementing changes

(compared to applications 4 and 7, which have high DFI and DFO values). But if we also look at the Visibility Fan-

In (VFI) and Visibility Fan-Out (VFO) numbers, which measure indirect dependencies, we see that applications 3

and 5 both belong to the Core of the architecture. Thus any change to one of those might spread to many other

applications (even though they have few direct dependencies). The same goes for applications 1 and 2, which are

classified as Shared. Therefore, we argue that the hidden structure method, which considers indirect dependencies,

provides more valuable information for decision-making.

In our experience, we have found that many companies working with enterprise modeling have architecture

blueprints that describe their application portfolio. Often, these are described using entity-relationship diagrams with

boxes and arrows. When the entire application architecture is visualized using this type of model, the result is often a

chaotic, messy picture that is difficult to interpret. Typically these models depict somewhat of a “spaghetti”

architecture, with many applications and dependencies. This representation can be directly translated to the

architect’s view DSM (cf. Figure 4). But this visualization does not really provide that much information either other

than that applications are depending on each other in a complex network. With this representation (and the entity-

relationship model), we can trace a dependency between two applications, which then can be used for decision-

making (compare with the discussion above on DFI/DFO versus VFI/VFO measures). However, if we instead use

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 16

the hidden structure method and rearrange the DSM, as in Figure 6, we can actually see what applications are

considered to be Core, Shared, Control, and Periphery. This gives us more insight about the structure of the

architecture. Core applications are spread out across the business processes and they vary between small, very

specific tools to large, central ERP systems and data warehouses. Without the hidden structure method, an architect

would have difficulty uncovering this type of complex architecture.

Measures such as the propagation cost, the architecture flow through, and the size of the core can be useful when

trying to improve an architecture. Future scenarios can be compared in terms of these metrics.

A first step in future research is to test the hidden structure method with more enterprise application architectures.

This will provide valuable input either supporting the method as currently constructed or with improvement

suggestions for future versions. Another step would be to extend the application area. Future research could involve

tests with a “complete” enterprise architecture model, considering many different types of elements such as business

processes and roles, software applications and services, and databases and servers. One hypothesis is that business

layer elements typically are classified as Control, infrastructure elements as Shared, and software elements as Core.

This, however, remains to be tested. If the hidden structure method does enable the useful visualization and

classification of complete enterprise architecture descriptions, then it could be deployed to analyze the quality of a

particular architecture and possibly help improve that quality in terms of the removal or addition of elements and

dependencies.

Both in the previous work by Baldwin et al. and in this case, it can be seen that many architectures have a single

large Core. A limitation of the hidden structure method is that it only shows which elements (in this case, software

applications) belong to the Core but does not help in describing the structure of that Core. Thus, future research

might extend the hidden structure method with a sub-method for that purpose. That sub-method could help identify

the elements within the Core that are most important in terms of dependencies and cluster growth. The hypothesis is

that there are some elements in a Core that bind the group together or that make the group grow faster. As such,

removing these elements or reducing their dependencies (either to or from them) may decrease the size of the Core

and thus the complexity of the architecture. Identifying these elements also helps pinpoint where the Core is most

sensitive to change.

We have also seen in previous work with enterprise application architectures that these often contain non-

directed dependencies, thus forming symmetric matrices that have special properties and behave differently than

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 17

those matrices containing directed dependencies. This could, for instance, be due to the nature of the link itself (as in

social networks) or, as in most cases we have seen, due to imprecision in data (often because of the high costs of

data collection). For companies, the primary concern is whether two applications are connected. The direction of the

dependency is secondary. In one of our cases, the company had more than a thousand software applications but did

not have an architecture model or application portfolio describing those applications. For that firm, collecting

information about what applications it had and what those applications did was of primary importance. That process

was costly enough, and consequently the directions of the dependencies between the applications were not a priority.

A lack of tool support is one reason for the high costs associated with data collection. In prior the work of

Baldwin et al. [1], the analysis of internal coupling in a software system was supported by a tool that explored the

source files and created a dependency graph automatically. In the enterprise architecture domain, however, such

useful practical tools generally do not exist. Consequently, data collection requires considerable time. The most

common methods are interviews and surveys of people (often managers) with already busy schedules. As such,

future work needs to be directed towards data collection support in the enterprise architecture domain. Some work

has already been done but is limited in either scope or application, as described in [25,26].

For the hidden structure method to be useful in practice, it needs to be incorporated into existing or future

enterprise architecture tools. Most companies today already use modeling tools like Rational System Architect [27],

BiZZdesign Architect [28], TrouxView [29], ARIS 9 [30], and MooD Business Architect [31] to describe their

enterprise architecture. Thus, having a stand-alone tool that supports the hidden structure method is not feasible or

very cost efficient. Moreover, if the method is integrated with current tools, companies can then perform a hidden

structure analysis by re-using their existing architecture descriptions. The modeling software Enterprise Architecture

Analysis Tool (EAAT) [32,33] is currently implementing the hidden structure method, and future studies will use it.

Last, but not least, the most important future work is to test the VFI/VFO metrics and the element classification

(Shared, Core, Periphery, and Core) with performance outcome metrics. Doing so will help prove that the method is

actually useful in architectural work. Currently, we can argue its benefits only with respect to other existing methods.

6. Conclusions

Although our method is used only in one case, the results suggests that it can reveal new facts about the

architecture structure on an enterprise application level, equal to past results in the initial cases of single software

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 18

system. The analysis reveals that the hidden external structure of the software applications at the Telecom business

unit can be classified as core-periphery with a propagation cost of 25%, architecture flow through of 64%, and core

size of 34%. For the Telecom company, the architectural visualization and the computed coupling metrics can

provide valuable input when planning architectural change projects (in terms of, for example, risk analysis and

resource planning). In future work, we plan to provide more evidence supporting the usefulness of the hidden

structure method, both by testing it with more software application architectures and by extending the scope to

include additional complete enterprise architecture models consisting of elements such as business processes and

infrastructure. Also, we plan to test the method outcome (architecture classification and fan-in/fan-out metrics) with

performance outcome metrics such as change cost.

10. References

[1] C. Baldwin, A. MacCormack, and J. Rusnak, "Hidden Structure: Using Network Methods to Map System Architecture",

Harvard Business School Working Paper, No. 13–093, May 2013.

[2] IEEE Standards Board, "IEEE Standard Glossary of Software Engineering Technology", Technical report, the Institute of

Electrical and Electronics Engineers, Sep. 1990.

[3] T. McCabe, "A Complexity Measure", IEEE Transactions on Software Engineering, vol. 2, no. 4, pp. 308–320, 1976.

[4] M. Halstead, "Elements of Software Science", Operating and Programming Systems Series, Elsevier Science Inc, 1977.

[5] S. Henry, D. Kafura, "Software Structure Metrics Based on Information Flow", IEEE Transactions on Software Engineering,

vol. 7, no. 5, pp. 510–518, 1981.

[6] N. Fenton and A. Melton, "Deriving Structurally Based Software Measures", Journal of Systems and Software, vol. 12, no. 3,

pp. 177–187, 1990.

[7] A. L. Barabási, "Scale-Free Networks: A Decade and Beyond", Science, vol. 325, no. 5939, pp. 412-413, 2009.

[8] H. A. Simon, "The Architecture of Complexity", in Proc. of the American Philosophical Society, vol. 106, no. 6, pp. 467-482,

1962.

[9] C. Alexander, "Notes on the Synthesis of Form", Harvard University Press, 1964.

[10] C. Mead and L. Conway, "Introduction to VLSI Systems", Addison-Wesley Publishing Co., 1980.

[11] C. Baldwin and Kim Clark, "Design Rules, Volume 1: The Power of Modularity", MIT Press, 2000.

[12] D. Steward, "The Design Structure System: A Method for Managing the Design of Complex Systems", IEEE Transactions

on Engineering Management, vol. 3, pp. 71-74, 1981.

[13] S. D. Eppinger, D.E. Whitney, R.P. Smith, and D.A. Gebala, "A Model-Based Method for Organizing Tasks in Product

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 19

Development", Research in Engineering Design, vol. 6, no. 1, pp. 1-13, 1994.

[14] M. Sosa, S. Eppinger, and C. Rowles, "A Network Approach to Define Modularity of Components in Complex Products",

Transactions of the ASME, vol 129, pp. 1118-1129, 2007.

[15] A. MacCormack, C. Baldwin, and J. Rusnak, "Exploring the Duality Between Product and Organizational Architectures: A

Test of the "Mirroring" Hypothesis", Research Policy, vol. 41, no. 8, pp. 1309-1324, 2006.

[16] M. LaMantia, Y. Cai, A. MacCormack, and J. Rusnak, "Analyzing the Evolution of Large-Scale Software Systems using

Design Structure Matrices and Design Rule Theory: Two Exploratory Cases", in Proc. of the 7th Working IEEE/IFIP Conference

on Software Architectures (WICSA7), 2008.

[17] R. Lagerström, P. Johnson, and M. Ekstedt, "Architecture Analysis of Enterprise Systems Modifiability – A Metamodel for

Software Change Cost Estimation", Software Quality Journal, vol. 18, no. 4, pp. 437–468, 2010.

[18] M. Österlind, R. Lagerström, and P. Rosell, "Assessing Modifiability in Application Services Using Enterprise Architecture

Models – A Case Study", in Proc. of the Trends in Enterprise Architecture Research (TEAR) and Practice-Driven Research on

Enterprise Transformation (PRET) workshop, Springer Berlin Heidelberg, pp. 162-181, 2012.

[19] B. Boehm, R. Madachy, and B. Steece, "Software Cost Estimation with COCOMO II", Prentice Hall PTR, 2000.

[20] The IT Governance Institute, "Control Objectives for Information and Related Technology (COBIT) ", vol. 4.1, Technical

Report, 2007.

[21] P. Oman, J. Hagemeister, and D. Ash, "A Definition and Taxonomy for Software Maintainability", Technical Report,

Software Engineering Lab, 1992.

[22] S. Aier and R. Winter, "Virtual Decoupling for IT/Business Alignment – Conceptual Foundations, Architecture Design and

Implementation Example", Business & Information Systems Engineering, vol. 1, no. 2, pp. 150-163, 2009.

[23] D. Dreyfus and G. Wyner, "Digital Cement: Software Portfolio Architecture, Complexity, and Flexibility", in Proc. of

Americas Conference on Information Systems (AMCIS), Association for Information Systems, 2011.

[24] T. Widjaja, J. Kaiser, D. Tepel, P. Buxmann, "Heterogeneity in IT Landscapes and Monopoly Power of Firms: A Model to

Quantify Heterogeneity", in Proc. of International Conference on Information Systems (ICIS 2012), Orlando, USA, 2012.

[25] H. Holm, M. Buschle, R. Lagerström, and M. Ekstedt, "Automatic Data Collection for Enterprise Architecture Models",

Software & Systems Modeling, Online first, 2012.

[26] M. Buschle, S. Grunow, F. Matthes, M. Ekstedt, M. Hauder, and S. Roth, "Automating Enterprise Architecture

Documentation using an Enterprise Service Bus", in Proc. of the 18th Americas Conference on Information Systems (AMCIS),

2012.

[27] IBM, Rational System Architect, www.ibm.com/software/products/us/en/ratisystarch, accessed May 2013.

[28] BiZZdesign, BiZZdesign Architect, www.bizzdesign.com/tools/bizzdesign-architect, accessed May 2013.

Visualizing and Measuring Enterprise Application Architecture June 21, 2013

 20

[29] Troux solutions, TrouxView™ Enterprise Portfolio Management, www.troux.com, accessed May 2013.

[30] Software AG, ARIS 9, www.softwareag.com/corporate/products/aris_platform, accessed May 2013.

[31] MooD International, MooD Business Architect, www.moodinternational.com/moodplatform, accessed May 2013.

[32] Industrial Information and Control Systems - the Royal Institute of Technology, The Enterprise Architecture Analysis Tool,

www.ics.kth.se/eaat, accessed May 2013.

[33] M. Buschle, J. Ullberg, U. Franke, R. Lagerström, and T. Sommestad, "A Tool for Enterprise Architecture Analysis using

the PRM Formalism", in Information Systems Evolution, pp. 108-121, 2011.

