
Introduction to R for econometricians

It is easy to lie with statistics, but easier to lie without

them. Fred Mosteller
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Why R
• Statisticians use R. Some econometricians are starting to use it.

• It’s a flexible statistical programming environment.

• It has lots of user-written packages, functions which are relatively easy to

modify.

• It’s free.
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Introducing R

“S is a programming language and environment for all

kinds of computing involving data. It has a simple

goal: to turn ideas into software, quickly and faith-

fully.” John M. Chambers

• S is a language for “programming with data”.

John Chambers of Bell Labs has been its main developer for more than two

decades.

• R is an Open Source system originally written by Ross Ihaka and Robert

Gentleman at the University of Auckland in about 1994.

• R is not unlike S (actually they are very similar!)

• R is now developed by a small core team, for all details see:

www.r-project.org.
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Introducing R . . . continued

Commands to R are expressions or assignments.

expression

4/3 * pi * (27)^3 : [1] 82447.96

assignment

a <- 27

Everything within the R language is an object.

Normally R objects are accessed by their name, which is made up from letters, digits

0− 9 in non-initial position, or a period, “.”, that acts like a letter. R is case sensitive.

Every object has a class.
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Introducing R . . .help & comment

getting help
All functions and data sets in R have a documentation! For information on a function or

data set,

?function-name,

which is equivalent to

help(function-name ).

To search all help pages for a specific term

help.search("term ").

Help pages can also be displayed in a HTML version, therefore

help.start().

writing comments
A line starting with # is treated as a comment and not processed.
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Introducing R . . .your workspace

Objects are normally stored in a workspace.

ls() lists all objects currently in your workspace

rm(object ) removes object from your workspace

save(object, file=path/file ) saves an object to a file

load(path/file ) loads an object from a file

save.image() saves your workspace to a file called .RData in your working directory.

Happens also if you type q("yes").

getwd() shows the path of your current working directory

setwd(path ) allows you to set a new path for your current working directory
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Introducing R . . .additional packages

The functionality of an R installation can be extended by packages. Additional packages

provide you functions, data sets, and the corresponding documentation. A growing

number of packages is available from CRAN

CRAN.r-project.org

library() shows all packages installed on your system

library(asuR) loads an already installed package (here asuR) (asuR is the package

that accompanies this course)

library(help=asuR) displays all functions, data sets, and vignettes in a package (here

asuR)

data() shows the data sets of all installed packages

data(package="asuR") shows data set(s) from a package, here asuR

data(pea) loads the data set “pea” to your workspace (therefore the package asuR has

to be loaded)
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Introducing R . . .vector

c() creates a vector of the specified elements (c for concatenate)

> genus <- c("Daphnia", "Boletus", "Hippopotamus", "Salmo", "Linaria",

+ "Ixodes", "Apis")

> species <- c("magna", "edulis", "amphibius", "trutta", "alpina",

+ "ricinus", "mellifera")

> weight <- c(0.001, 100, 3200000, 1000, 2.56, 0.001, 0.01)

> legs <- as.integer(c(0, 0, 4, 0, 0, 8, 6))

> animal <- c(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, TRUE)

length() returns the length of a vector

length(genus) : [1] 7

paste() takes two vectors and concatenates them as characters

name <- paste(genus, species)
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Introducing R . . .vector . . . continued

seq() to generate sequences of numbers

seq(from=4, to=7) : [1] 4 5 6 7

4:7 # short form of the previous

seq(from=4, to=7, by=0.5) : [1] 4.0 4.5 5.0 5.5 6.0 6.5 7.0

rep() to replicate elements of a vector

rep(c(2,4,6), times=3) : [1] 2 4 6 2 4 6 2 4 6

rep(c(2,4,6), each=3) : [1] 2 2 2 4 4 4 6 6 6

rep(c(2,4,6), times=3, each=2) : [1] 2 2 4 4 6 6 2 2 4 4 6 6 2 2 4 4 6 6
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Introducing R . . . factor

A special type of a vector that usually stores categorical variables.

factor() makes a factor out of a vector

> kingdom <- factor(c("animal", "fungi", "animal", "animal", "plant",

+ "animal", "animal"))

levels() provides a character vector with the levels of a factor

levels(kingdom) : [1] "animal" "fungi" "plant"

Internally a factor is stored as a set of codes and an attribute giving the corresponding

levels.

unclass(kingdom) : [1] 1 2 1 1 3 1 1

: attr(,"levels")

: [1] "animal" "fungi" "plant"
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Introducing R . . .data.frame

Used to store data. It is a list of variables, all of the same length, possibly of different

types.

data.frame() a function to generate data frames
> bio <- data.frame(name = I(paste(genus, species)), weight_g = weight,

+ leg_no = legs, animal = animal, kingdom = kingdom)

names() displays the names of the variables in a data frame

row.names() displays the row names

str() a useful summary of the structure of a data frame

summary() provides a summary of all variables in a data frame

attach() makes the variables of a data frame accessible by their name

detach() the inverse

write.table() to write a data frame to a text file
> write.table(bio, file = "~/temp/bio.txt", row.names = FALSE,

+ sep = "\t")

read.table() to read a data frame from a text file
> bio.new <- read.table(file = "~/temp/bio.txt", header = TRUE,

+ sep = "\t", row.names = "name", colClasses = c("character",

+ "numeric", "integer", "logical", "factor"))
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Introducing R . . .matrix & array

A matrix has all its arguments of the same type and always two dimensions. An array is

like a matrix but with a flexible number of dimensions.

matrix() a function to create a matrix from a vector

rbind() takes vectors and binds them as rows together

cbind() takes vectors and binds them as columns together

> mat <- matrix(1:12, nrow = 3, ncol = 4, byrow = TRUE)

> mat1 <- matrix(c(1, 5, 9, 2, 6, 10, 3, 7, 11, 4, 8, 12), nrow = 3,

+ ncol = 4)

> mat2 <- rbind(c(1:4), c(5:8), c(9:12))

> mat3 <- cbind(c(1, 5, 9), c(2, 6, 10), c(3, 7, 11), c(4, 8, 12))

dim() returns the dimensions

dimnames() to give a name to the columns and rows

> dimnames(mat) <- list(c("first row", "second row", "last row"),

+ paste("c_", 1:4, sep = ""))
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Introducing R . . . list

A list is a collection of components that can be from different classes and of different

length.

> organisms <- list(animals = list(genera = c("Daphnia", "Hippopotamus",

+ "Salmo", "Ixodes", "Apis"), publications = 110), plants = list(genera = "Linaria",

+ publications = 50), fungi = "Boletus")

$ to extract components by their name

organisms$animals$genera : [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"

# a character vector of length five

[[ to extract a component by its position

organisms[[1]][[1]] : [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"

# a character vector of length five

[ to extract a sub-vector

organisms[[1]][1] : $genera

: [1] "Daphnia" "Hippopotamus" "Salmo" "Ixodes" "Apis"

# a list of length one
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Introducing R . . . function

function-name <- function(argument1, argument2, ... ){

function.body

}

An example for calculating the t value according to

(X̄1 − X̄2)− (µ1 − µ2)

Sp
√

1
n1

+ 1
n2

∼ tn1+n2−2 with, S2
p =

(n1 − 1)S2
1 + (n2 − 1)S2

2

n1 + n2 − 2

> my.t <- function(mean1, mean2, s1, s2, n1, n2, mu.diff = 0) {

+ s.pooled <- ((n1 - 1) * s1^2 + (n2 - 1) * s2^2)/(n1 + n2 -

+ 2)

+ t <- ((mean1 - mean2) - (mu.diff))/(sqrt(s.pooled * (1/n1 +

+ 1/n2)))

+ cat(round(t, 2))

+ cat(paste(": compare to a t dist. with", n1 + n2 - 2, "df \n"))

+ }

The function can then be called with, e.g.,

my.t(mean1=24, mean2=18, s1=3, s2=4, n1=34, n2=50) : 7.43; compare to t-dist. 82 df
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Reading in data
R is able to read data from many formats.

read.table() to read a data frame from a text file

> bio.new <- read.table(file = "~/temp/bio.txt", header = TRUE,

+ sep = "\t", row.names = "name", colClasses = c("character",

+ "numeric", "integer", "logical", "factor"))

read.dta() to read a data frame from a Stata file, Stata files automatically have

headers.

> library(foreign)

> mydata <- read.dta("C:/WINDOWS/Desktop/blah.dta")

read.csv() to read a data frame from a csv file
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indexing
Many data manipulations in R rely on indexing. Indexing is used to address a subsets of

vectors, matrices, or data frame. The general form for using an index is

object[index-vector ] .

Indexing is used to select a subset of an object,

new.object <- object[index-vector ] ,

to replace a subset of an object,

object[index-vector ] <- new.element ,

or to sort an object (see below for an example).

On the following pages we will see what types the index-vector can take (for vectors

and data frames & matrices respectively).

The examples below always apply to the following vector object

> x <- c(11, 44, 33, NA, 22)
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indexing . . .vectors

logical vector

• must be of the same length as the vector

• values corresponding to TRUE are included; corresponding to FALSE are omitted

(NA inserts an NA at the corresponding position)

x[c(TRUE, FALSE, FALSE, FALSE, TRUE)] : [1] 11 22

x[!is.na(x)] : [1] 11 44 33 22

x[x>=33] : [1] 44 33 NA

x[(x==33 | x==44) & !is.na(x)] : [1] 44 33

vector of positive integers (factors)

• the values of the integers must be smaller or equal to the length of the vector

• the corresponding elements are selected and concatenated in the order they

were selected

• for factors as index vector (works like: x[unclass(factor)])

x[c(1,2,5)] : [1] 11 44 22

x[1:3] : [1] 11 44 33

x[order(x)] : [1] 11 22 33 44 NA
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indexing . . .vectors . . . continued

vector of negative integers

• the absolute values of the integers must be smaller or equal to the length of the

vector

• the corresponding elements are excluded

x[c(-1,-2,-5)] : [1] 33 NA

vector of character strings

• only applies if object has names

• the corresponding elements are selected and concatenated in the order they

were selected

names(x) <- c("first", "largest", "middle", "non.available", "second")

x[c("largest", "first")]

: largest first

: 44 11
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indexing . . .data frames and matrices

Columns in a data frame are often selected with the $ operator

bio$names # equivalent to bio[,"names"]

Data frames and matrices can be indexed by giving two indices ([rows,columns ]).

bio[bio$animal, ] # all rows where animal is TRUE

bio[bio$weight_g>1, "name"] # name of all organisms heavier >1g
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indexing . . .data frames and matrices . . . continued

An array (and therefore also a matrix) can be indexed by a m× k matrix. Each of the m

rows of this matrix is used to select one element.

> mat <- matrix(1:9, ncol=3) : [,1] [,2] [,3]

: [1,] 1 4 7

: [2,] 2 5 8

: [3,] 3 6 9

select <- rbind(c(2,1),c(3,1),c(3,2))

mat[select] : [1] 2 3 6

If you extract elements from a data frame or a matrix, the result is coerced to the lowest

possible dimension. This default behavior can be changed by adding drop=FALSE,

bio[,"kingdom"] # returns a vector

bio[,"kingdom", drop=FALSE] # returns a data frame
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Regressions
Let’s consider the simplest case. Suppose we have a data frame called byu containing

columns for age, salary, and exper. We want to regress various forms of age and

exper on salary. A simple linear regression might be

> lm(byu$salary ~ byu$age + byu$exper)

or alternately:

> lm(salary ~ age + exper,data=byu)

as a third alternative, we could “attach” the dataframe, which makes its columns

available as regular variables

> attach(byu)

> lm(salary ~ age + exper)
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Regressions . . .More

Using lm() results in an abbreviated summary being sent to the screen, giving only the

β coefficient estimates. For more exhaustive analysis, we can save the results in as a data

member or “fitted model”

> result <- lm(salary ~ age + exper + age*exper,data=byu)

> summary(result)

> myresid <- result$resid

> vcov(result)

To do a different model as an example:

> salary$agesq <- (salary$age)^2

> result <- lm(salary ~ age + agesq + log(exper) + age*log(exper),data=byu)
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Regressions . . .Models With Factors/Groups

When a variable included in a regression is of type factor, the requisite dummy variables

are automatically created. For example, if we wanted to regress the adoption of personal

computers (pc) on the number of employees in the firm (emple) and include a dummy for

each state (where state is a vector of two letter abbreviations), we could simply run the

regression

> summary(lm(pc~emple+state))

Call:

lm(formula = pc ~ emple + state)

Residuals:

Min 1Q Median 3Q Max

-1.7543 -0.5505 0.3512 0.4272 0.5904

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.572e-01 6.769e-02 8.232 <2e-16 ***

emple 1.459e-04 1.083e-05 13.475 <2e-16 ***

stateAL -4.774e-03 7.382e-02 -0.065 0.948

stateAR 2.249e-02 8.004e-02 0.281 0.779

...
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stateWY 1.200e-01 1.041e-01 1.153 0.249

---

Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
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Regressions . . .Quantile Regression with Sparse Matrix

Ordinary least squares regression methods produce an estimate of the expectation of the

dependent variable conditional on the independent. Fitted values, then, are an estimate

of the conditional mean. If instead of the conditional mean we want an estimate of the

expected conditional median or some other quantile, we use the rq() command from the

quantreg package. The syntax is essentially the same as lm() except that we can specify

the parameter tau, which is the quantile we want (it is between 0 and 1). By default,

tau=.5, which corresponds to a median regression—another name for least absolute

deviation regression.

The advantage of R with quantile regression is that it allows sparse matrix. This makes

some infeasible quantile regressions doable now.

Example: To run a quantile regression of firm sizes on some dummies variables, on a data

set with about 12 million observations.

• Load the libraries:

library(SparseM)

library(quantreg)

library(MASS)
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Regressions . . .Quantile Regression with Sparse Matrix -
continued

• Compress the design matrix into sparse matrix:

x <- cbind(othe,priv,forei,collect,prov,yea,q3a,q3b,q4b,q4a2,priv.q3b,fore.q3b,coll.q3b, priv.q3a, fore.q3a, coll.q3a, priv.q4b)

sparsex <- as.matrix.csr(x)

• Compress the design matrix into sparse matrix:

rq1.int005 <- rq.fit.sfn(as.matrix.csr(sparsexxx), emp,tau=0.05)
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Time Series
Suppose we are interested in estimating an ARIMA model for store sales, and we are not

sure what ARIMA structure it has. One way to do it is to compare the model fitness

statistics (AIC or BIC) to select model.

library(nlme)

attach(sales_store1)

store1.cat.sales.arma00.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, method='ML')
store1.cat.sales.arma01.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=0, q=1), method='ML')
store1.cat.sales.arma02.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=0, q=2), method='ML')
store1.cat.sales.arma10.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=1, q=0), method='ML')
store1.cat.sales.arma11.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=1, q=1), method='ML')
store1.cat.sales.arma12.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=1, q=2), method='ML')
store1.cat.sales.arma20.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=2, q=0), method='ML')
store1.cat.sales.arma21.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=2, q=1), method='ML')
store1.cat.sales.arma22.gls <- gls(cat_sales_t ~ cat_sales_c + open + pre_open + open_trend_int, correlation=corARMA(p=2, q=2), method='ML')
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Time Series . . .Ljung-Box test

To test whether the residual is serial-correlated, Ljung-Box test can be run as:

Box.test(residuals(store1.cat.sales.arma00.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma01.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma02.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma10.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma11.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma12.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma20.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma21.gls), type="Ljung")

Box.test(residuals(store1.cat.sales.arma22.gls), type="Ljung")

Xiang Ao, HBS, uses asuR, with permission of thomas.fabbro@unibas.ch 28
28



Time Series . . .Unit Root test and cointegration test

To test whether the depedent variable is nonstationary, Phillips-Perron test can be run as:

library(tseries)

attach(sales_store1)

pp.test(cat_sales_t)

To test whether the depedent variable and one of the independent variable are

cointegrated, Phillips-Ouliaris test can be run as:

library(tseries)

attach(sales_store1)

store1.dir.sales.co <- po.test(cbind(total_directsales_t, total_directsales_c), demean=TRUE, lshort=TRUE)
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graphics
The graphics system of R is very powerful. You can get a sample gallery with

demo(graphics).

A very large gallery with many complex examples is at

http://addictedtor.free.fr/graphiques/.

Xiang Ao, HBS, uses asuR, with permission of thomas.fabbro@unibas.ch 30
30


