Filter Results
:
(209)
Show Results For
-
All HBS Web
(763)
- Faculty Publications (209)
Show Results For
-
All HBS Web
(763)
- Faculty Publications (209)
Page 1 of
209
Results
→
- 2023
- Article
Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse
By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
As machine learning models are increasingly being employed to make consequential decisions in real-world settings, it becomes critical to ensure that individuals who are adversely impacted (e.g., loan denied) by the predictions of these models are provided with a means...
View Details
Pawelczyk, Martin, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci, and Himabindu Lakkaraju. "Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse." International Conference on Learning Representations (ICLR) (2023).
- 2022
- Working Paper
Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development
Predictive model development is understudied despite its importance to modern businesses. Although prior discussions highlight advances in methods (along the dimensions of data, computing power, and algorithms) as the primary driver of model quality, the value of tools...
View Details
Keywords:
Analytics and Data Science
Yue, Daniel, Paul Hamilton, and Iavor Bojinov. "Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development." Harvard Business School Working Paper, No. 23-029, December 2022.
- 2022
- Working Paper
Improving Human-Algorithm Collaboration: Causes and Mitigation of Over- and Under-Adherence
By: Maya Balakrishnan, Kris Ferreira and Jordan Tong
Even if algorithms make better predictions than humans on average, humans may sometimes have “private” information which an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by...
View Details
Keywords:
Cognitive Biases;
Algorithm Transparency;
Forecasting and Prediction;
Behavior;
AI and Machine Learning;
Analytics and Data Science;
Cognition and Thinking
Balakrishnan, Maya, Kris Ferreira, and Jordan Tong. "Improving Human-Algorithm Collaboration: Causes and Mitigation of Over- and Under-Adherence." Working Paper, December 2022.
- 2022
- Working Paper
The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives
By: Ariel Dora Stern
For those who follow health and technology news, it is difficult to go more than a few days without reading about a compelling new application of Artificial Intelligence (AI) to health care. AI has myriad applications in medicine and its adjacent industries, with...
View Details
Keywords:
AI and Machine Learning;
Health Care and Treatment;
Governing Rules, Regulations, and Reforms;
Technological Innovation;
Medical Devices and Supplies Industry
Stern, Ariel Dora. "The Regulation of Medical AI: Policy Approaches, Data, and Innovation Incentives." NBER Working Paper Series, No. 30639, December 2022.
- November 2022 (Revised December 2022)
- Case
Replika AI: Monetizing a Chatbot
By: Julian De Freitas and Nicole Tempest Keller
In early 2018, Eugenia Kuyda, co-founder and CEO of San Francisco-based chatbot Replika AI, was deciding how to monetize the app she had built. Launched in 2017, Replika was a consumer AI “companion app” developed by a team of AI software engineers originally based in...
View Details
- November 2022 (Revised January 2023)
- Case
Hugging Face: Serving AI on a Platform
By: Shane Greenstein, Daniel Yue, Kerry Herman and Sarah Gulick
It is fall 2022, and open-source AI model company Hugging Face is considering its three areas of priorities: platform development, supporting the open-source community, and pursuing cutting-edge scientific research. As it expands services for enterprise clients, which...
View Details
Keywords:
Community;
Open-source;
AI and Machine Learning;
Product Development;
Networks;
Service Delivery;
Research;
Governance;
Business and Stakeholder Relations;
Information Industry;
Technology Industry;
United States
Greenstein, Shane, Daniel Yue, Kerry Herman, and Sarah Gulick. "Hugging Face: Serving AI on a Platform." Harvard Business School Case 623-026, November 2022. (Revised January 2023.)
- 2022
- Article
A Human-Centric Take on Model Monitoring
By: Murtuza Shergadwala, Himabindu Lakkaraju and Krishnaram Kenthapadi
Predictive models are increasingly used to make various consequential decisions in high-stakes domains such as healthcare, finance, and policy. It becomes critical to ensure that these models make accurate predictions, are robust to shifts in the data, do not rely on...
View Details
Shergadwala, Murtuza, Himabindu Lakkaraju, and Krishnaram Kenthapadi. "A Human-Centric Take on Model Monitoring." AAAI Conference on Human Computation and Crowdsourcing (HCOMP) (2022).
- November 2022
- Article
A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups
By: Anjali M. Bhatt, Amir Goldberg and Sameer B. Srivastava
When the social boundaries between groups are breached, the tendency for people to erect and maintain symbolic boundaries intensifies. Drawing on extant perspectives on boundary maintenance, we distinguish between two strategies that people pursue in maintaining...
View Details
Keywords:
Culture;
Machine Learning;
Natural Language Processing;
Symbolic Boundaries;
Organizations;
Boundaries;
Social Psychology;
Interpersonal Communication;
Organizational Culture
Bhatt, Anjali M., Amir Goldberg, and Sameer B. Srivastava. "A Language-Based Method for Assessing Symbolic Boundary Maintenance between Social Groups." Sociological Methods & Research 51, no. 4 (November 2022): 1681–1720.
- November–December 2022
- Article
Can AI Really Help You Sell?
By: Jim Dickie, Boris Groysberg, Benson P. Shapiro and Barry Trailer
Many salespeople today are struggling; only 57% of them make their annual quotas, surveys show. One problem is that buying processes have evolved faster than selling processes, and buyers today can access a wide range of online resources that let them evaluate products...
View Details
Dickie, Jim, Boris Groysberg, Benson P. Shapiro, and Barry Trailer. "Can AI Really Help You Sell?" Harvard Business Review (November–December 2022): 120–129.
- 2022
- Working Paper
The Evolution of ESG Reports and the Role of Voluntary Standards
By: Ethan Rouen, Kunal Sachdeva and Aaron Yoon
We examine the evolution of ESG reports of S&P 500 firms from 2010 to 2021. The
percentage of firms releasing these voluntary disclosures increased from 35% to 86%
during this period, although the length of these documents experienced more modest
growth. Using a...
View Details
Keywords:
Voluntary Disclosure;
Textual Analysis;
Modeling And Analysis;
Corporate Social Responsibility and Impact;
AI and Machine Learning;
Accounting
Rouen, Ethan, Kunal Sachdeva, and Aaron Yoon. "The Evolution of ESG Reports and the Role of Voluntary Standards." Harvard Business School Working Paper, No. 23-024, October 2022.
- 2022
- Working Paper
When Less Is More: Using Short-term Signals to Overcome Systematic Bias in Long-run Targeting
By: Ta-Wei Huang and Eva Ascarza
Firms are increasingly interested in developing targeted interventions for customers with the best response. Doing so requires firms to identify differences in customer sensitivity, which they often obtain using uplift modeling (i.e., heterogeneous treatment effect...
View Details
Keywords:
Long-run Targeting;
Heterogeneous Treatment Effect;
Statistical Surrogacy;
Customer Churn;
Field Experiments;
Consumer Behavior;
Customer Focus and Relationships;
AI and Machine Learning;
Marketing
Huang, Ta-Wei, and Eva Ascarza. "When Less Is More: Using Short-term Signals to Overcome Systematic Bias in Long-run Targeting." Harvard Business School Working Paper, No. 23-023, October 2022.
- October 2022 (Revised December 2022)
- Case
SMART: AI and Machine Learning for Wildlife Conservation
By: Brian Trelstad and Bonnie Yining Cao
Spatial Monitoring and Reporting Tool (SMART), a set of software and analytical tools designed for the purpose of wildlife conservation, had demonstrated significant improvements in patrol coverage, with some observed reductions in poaching and contributing to wildlife...
View Details
Keywords:
Business and Government Relations;
Emerging Markets;
Technology Adoption;
Strategy;
Management;
Ethics;
Social Enterprise;
AI and Machine Learning;
Analytics and Data Science;
Natural Environment;
Technology Industry;
Cambodia;
United States;
Africa
Trelstad, Brian, and Bonnie Yining Cao. "SMART: AI and Machine Learning for Wildlife Conservation." Harvard Business School Case 323-036, October 2022. (Revised December 2022.)
- 2022
- Working Paper
Communicating Corporate Culture in Labor Markets: Evidence from Job Postings
A company’s culture represents one of the most important factors that job seekers consider. In this study, we examine how firms craft their job postings to convey their cultures and whether doing so helps attract employees. We utilize state-of-the art machine learning...
View Details
Keywords:
Corporate Culture Significance;
Labor Markets;
Disclosure;
Organizational Culture;
Recruitment;
Talent and Talent Management
Pacelli, Joseph, Tianshuo Shi, and Yuan Zou. "Communicating Corporate Culture in Labor Markets: Evidence from Job Postings." Working Paper, October 2022.
- 2022
- Working Paper
What Would It Mean for a Machine to Have a Self?
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum and Tomer Ullman
What would it mean for autonomous AI agents to have a ‘self’? One proposal for a minimal
notion of self is a representation of one’s body spatio-temporally located in the world, with a tag
of that representation as the agent taking actions in the world. This turns...
View Details
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, Laurie Paul, Joshua B. Tenenbaum, and Tomer Ullman. "What Would It Mean for a Machine to Have a Self?" Harvard Business School Working Paper, No. 23-017, September 2022.
- September 2022 (Revised November 2022)
- Teaching Note
PittaRosso: Artificial Intelligence-Driven Pricing and Promotion
By: Ayelet Israeli
Teaching Note for HBS Case No. 522-046.
View Details
Keywords:
Artificial Intelligence;
Pricing;
Pricing Algorithm;
Pricing Decisions;
Pricing Strategy;
Pricing Structure;
Promotion;
Promotions;
Online Marketing;
Data-driven Decision-making;
Data-driven Management;
Retail;
Retail Analytics;
Price;
Advertising Campaigns;
Analytics and Data Science;
Analysis;
Digital Marketing;
Budgets and Budgeting;
Marketing Strategy;
Marketing;
Transformation;
Decision Making;
AI and Machine Learning;
Retail Industry;
Italy
- August 2022 (Revised August 2022)
- Case
Icario Health: AI to Drive Health Engagement
By: David C. Edelman
Icario Health has built a market-leading AI engine to help health insurers drive better health behaviors for their members, enabling the insurers to improve their Medicare.
View Details
- August 25, 2022
- Article
Find the Right Pace for Your AI Rollout
By: Rebecca Karp and Aticus Peterson
Implementing AI can introduce disruptive change and disfranchise staff and employees. When members are reluctant to adopt a new technology, they might hesitate to use it, push back against its deployment, or use it in limited capacity — which affects the benefits an...
View Details
Karp, Rebecca, and Aticus Peterson. "Find the Right Pace for Your AI Rollout." Harvard Business Review Digital Articles (August 25, 2022).
- 2022
- Working Paper
Ethical Risks of Autonomous Products: The Case of Mental Health Crises on AI Companion Applications
By: Julian De Freitas, Ahmet Kaan Uğuralp and Zeliha Uğuralp
Increasingly, some products do not merely automate some piece of our lives but act as
autonomous agents. When these technologies are not yet perfected, what are their risks? Here
we explore the case of AI companion apps. Although these apps are designed...
View Details
Keywords:
Autonomy;
Artificial Intelligence;
Chatbots;
New Technology;
Brand Crises;
Ethics;
Mental Health;
AI and Machine Learning;
Well-being;
Health;
Applications and Software
De Freitas, Julian, Ahmet Kaan Uğuralp, and Zeliha Uğuralp. "Ethical Risks of Autonomous Products: The Case of Mental Health Crises on AI Companion Applications." Harvard Business School Working Paper, No. 23-011, August 2022.
- 2022
- Working Paper
Machine Learning Models for Prediction of Scope 3 Carbon Emissions
By: George Serafeim and Gladys Vélez Caicedo
For most organizations, the vast amount of carbon emissions occur in their supply chain and in the post-sale processing, usage, and end of life treatment of a product, collectively labelled scope 3 emissions. In this paper, we train machine learning algorithms on 15...
View Details
Keywords:
Carbon Emissions;
Climate Change;
Environment;
Carbon Accounting;
Machine Learning;
Artificial Intelligence;
Digital;
Data Science;
Environmental Sustainability;
Environmental Management;
Environmental Accounting
Serafeim, George, and Gladys Vélez Caicedo. "Machine Learning Models for Prediction of Scope 3 Carbon Emissions." Harvard Business School Working Paper, No. 22-080, June 2022.