Filter Results
:
(39)
Show Results For
-
All HBS Web
(174)
- Faculty Publications (39)
Show Results For
-
All HBS Web
(174)
- Faculty Publications (39)
Page 1 of
39
Results
→
- 2023
- Working Paper
Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach
By: Ta-Wei Huang and Eva Ascarza
Data-driven targeted interventions have become a powerful tool for organizations to optimize business outcomes
by utilizing individual-level data from experiments. A key element of this process is the estimation
of Conditional Average Treatment Effects (CATE), which...
View Details
Huang, Ta-Wei, and Eva Ascarza. "Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach." Harvard Business School Working Paper, No. 24-034, December 2023.
- 2023
- Working Paper
Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation
By: Dae Woong Ham, Michael Lindon, Martin Tingley and Iavor Bojinov
Randomized experiments have become the standard method for companies to evaluate the performance of new products or services. In addition to augmenting managers’ decision-making, experimentation mitigates risk by limiting the proportion of customers exposed to...
View Details
Keywords:
Performance Evaluation;
Research and Development;
Analytics and Data Science;
Consumer Behavior
Ham, Dae Woong, Michael Lindon, Martin Tingley, and Iavor Bojinov. "Design-Based Confidence Sequences: A General Approach to Risk Mitigation in Online Experimentation." Harvard Business School Working Paper, No. 23-070, May 2023.
- 2023
- Working Paper
Distributionally Robust Causal Inference with Observational Data
By: Dimitris Bertsimas, Kosuke Imai and Michael Lingzhi Li
We consider the estimation of average treatment effects in observational studies and propose a new framework of robust causal inference with unobserved confounders. Our approach is based on distributionally robust optimization and proceeds in two steps. We first...
View Details
Bertsimas, Dimitris, Kosuke Imai, and Michael Lingzhi Li. "Distributionally Robust Causal Inference with Observational Data." Working Paper, February 2023.
- November 2022
- Article
Measuring Inequality beyond the Gini Coefficient May Clarify Conflicting Findings
By: Kristin Blesch, Oliver P. Hauser and Jon M. Jachimowicz
Prior research has found mixed results on how economic inequality is related to various outcomes. These contradicting findings may in part stem from a predominant focus on the Gini coefficient, which only narrowly captures inequality. Here, we conceptualize the...
View Details
Keywords:
Economic Inequalty;
Gini Coefficient;
Income Inequality;
Equality and Inequality;
Social Issues;
Health;
Status and Position
Blesch, Kristin, Oliver P. Hauser, and Jon M. Jachimowicz. "Measuring Inequality beyond the Gini Coefficient May Clarify Conflicting Findings." Nature Human Behaviour 6, no. 11 (November 2022): 1525–1536.
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...
View Details
Keywords:
Machine Learning;
Econometric Analysis;
Instrumental Variable;
Random Forest;
Causal Inference;
AI and Machine Learning;
Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- 2022
- Article
Nonparametric Subset Scanning for Detection of Heteroscedasticity
By: Charles R. Doss and Edward McFowland III
We propose Heteroscedastic Subset Scan (HSS), a novel method for identifying covariates that are responsible for violations of the homoscedasticity assumption in regression settings. Viewing the problem as one of anomalous pattern detection, we use subset scanning...
View Details
Doss, Charles R., and Edward McFowland III. "Nonparametric Subset Scanning for Detection of Heteroscedasticity." Journal of Computational and Graphical Statistics 31, no. 3 (2022): 813–823.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords:
Algorithm Bias;
Personalization;
Targeting;
Generalized Random Forests (GRF);
Discrimination;
Customization and Personalization;
Decision Making;
Fairness;
Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless...
View Details
Keywords:
Causal Inference;
Partial Interference;
Synthetic Controls;
Bayesian Structural Time Series;
Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- March 2022
- Article
Where to Locate COVID-19 Mass Vaccination Facilities?
By: Dimitris Bertsimas, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li and Alessandro Previero
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine. However, the limited vaccine capacity creates another massive challenge: how to distribute vaccines to mitigate the near-end impact of the pandemic? In the United States in particular, the new...
View Details
Keywords:
Vaccines;
COVID-19;
Health Care and Treatment;
Health Pandemics;
Performance Effectiveness;
Analytics and Data Science;
Mathematical Methods
Bertsimas, Dimitris, Vassilis Digalakis Jr, Alexander Jacquillat, Michael Lingzhi Li, and Alessandro Previero. "Where to Locate COVID-19 Mass Vaccination Facilities?" Naval Research Logistics Quarterly 69, no. 2 (March 2022): 179–200.
- August 2021
- Article
Multiple Imputation Using Gaussian Copulas
By: F.M. Hollenbach, I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward and A. Volfovsky
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use...
View Details
Hollenbach, F.M., I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward, and A. Volfovsky. "Multiple Imputation Using Gaussian Copulas." Special Issue on New Quantitative Approaches to Studying Social Inequality. Sociological Methods & Research 50, no. 3 (August 2021): 1259–1283. (0049124118799381.)
- November 2020
- Article
Taxation in Matching Markets
By: Arnaud Dupuy, Alfred Galichon, Sonia Jaffe and Scott Duke Kominers
We analyze the effects of taxation in two-sided matching markets, i.e., markets in which all agents have heterogeneous preferences over potential partners. In matching markets, taxes can generate inefficiency on the allocative margin by changing who is matched to whom,...
View Details
Dupuy, Arnaud, Alfred Galichon, Sonia Jaffe, and Scott Duke Kominers. "Taxation in Matching Markets." International Economic Review 61, no. 4 (November 2020): 1591–1634.
- 2019
- Article
Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading
By: Iavor I Bojinov and Neil Shephard
We define causal estimands for experiments on single time series, extending the potential outcome framework to dealing with temporal data. Our approach allows the estimation of a broad class of these estimands and exact randomization based p-values for testing causal...
View Details
Bojinov, Iavor I., and Neil Shephard. "Time Series Experiments and Causal Estimands: Exact Randomization Tests and Trading." Journal of the American Statistical Association 114, no. 528 (2019): 1665–1682.
- 2019
- Article
Ridesharing with Driver Location Preferences
By: Duncan Rheingans-Yoo, Scott Duke Kominers, Hongyao Ma and David C. Parkes
We study revenue-optimal pricing and driver compensation in ridesharing platforms when drivers have heterogeneous preferences over locations. If a platform ignores drivers' location preferences, it may make inefficient trip dispatches; moreover, drivers may strategize...
View Details
Keywords:
Ridesharing;
Pricing;
Compensation and Benefits;
Geographic Location;
Market Design;
Mathematical Methods
Rheingans-Yoo, Duncan, Scott Duke Kominers, Hongyao Ma, and David C. Parkes. "Ridesharing with Driver Location Preferences." Proceedings of the International Joint Conference on Artificial Intelligence (2019): 557–564.
- May 2018
- Article
Nowcasting Gentrification: Using Yelp Data to Quantify Neighborhood Change
By: Edward L. Glaeser, Hyunjin Kim and Michael Luca
Data from digital platforms have the potential to improve our understanding of gentrification and enable new measures of how neighborhoods change in close to real time. Combining data on businesses from Yelp with data on gentrification from the Census, Federal Housing...
View Details
Keywords:
Forecasting Models;
Simulation Methods;
Regional Economic Activity: Growth, Development, Environmental Issues, And Changes;
Geographic Location;
Local Range;
Transition;
Analytics and Data Science;
Measurement and Metrics;
Economic Growth;
Forecasting and Prediction
Glaeser, Edward L., Hyunjin Kim, and Michael Luca. "Nowcasting Gentrification: Using Yelp Data to Quantify Neighborhood Change." AEA Papers and Proceedings 108 (May 2018): 77–82.
- November 2021
- Article
Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data
By: William Herlands, Edward McFowland III, Andrew Gordon Wilson and Daniel B. Neill
Identifying anomalous patterns in real-world data is essential for understanding where, when, and how systems deviate from their expected dynamics. Yet methods that separately consider the anomalousness of each individual data point have low detection power for subtle,...
View Details
Herlands, William, Edward McFowland III, Andrew Gordon Wilson, and Daniel B. Neill. "Gaussian Process Subset Scanning for Anomalous Pattern Detection in Non-iid Data." Proceedings of Machine Learning Research (PMLR) 84 (2018): 425–434. (Also presented at the 21st International Conference on Artificial Intelligence and Statistics (AISTATS), 2018.)
- 2023
- Working Paper
Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection
By: Edward McFowland III, Sriram Somanchi and Daniel B. Neill
In the recent literature on estimating heterogeneous treatment effects, each proposed method makes its own set of restrictive assumptions about the intervention’s effects and which subpopulations to explicitly estimate. Moreover, the majority of the literature provides...
View Details
Keywords:
Causal Inference;
Program Evaluation;
Algorithms;
Distributional Average Treatment Effect;
Treatment Effect Subset Scan;
Heterogeneous Treatment Effects
McFowland III, Edward, Sriram Somanchi, and Daniel B. Neill. "Efficient Discovery of Heterogeneous Quantile Treatment Effects in Randomized Experiments via Anomalous Pattern Detection." Working Paper, 2023.
- May 2017
- Article
Agent-based Modeling: A Guide for Social Psychologists
By: Joshua Conrad Jackson, David Rand, Kevin Lewis, Michael I. Norton and Kurt Gray
Agent-based modeling is a longstanding but underused method that allows researchers to simulate artificial worlds for hypothesis testing and theory building. Agent-based models (ABMs) offer unprecedented control and statistical power by allowing researchers to...
View Details
Jackson, Joshua Conrad, David Rand, Kevin Lewis, Michael I. Norton, and Kurt Gray. "Agent-based Modeling: A Guide for Social Psychologists." Social Psychological & Personality Science 8, no. 4 (May 2017): 387–395.
- 2016
- Article
Penalized Fast Subset Scanning
By: Skyler Speakman, Sriram Somanchi, Edward McFowland III and Daniel B. Neill
We present the penalized fast subset scan (PFSS), a new and general framework for scalable and accurate pattern detection. PFSS enables exact and efficient identification of the most anomalous subsets of the data, as measured by a likelihood ratio scan statistic....
View Details
Keywords:
Disease Surveillance;
Likelihood Ratio Statistic;
Pattern Detection;
Scan Statistic;
Mathematical Methods
Speakman, Skyler, Sriram Somanchi, Edward McFowland III, and Daniel B. Neill. "Penalized Fast Subset Scanning." Journal of Computational and Graphical Statistics 25, no. 2 (2016): 382–404. (Selected for “Best of JCGS” invited session by the journal’s editor in chief.)
- Article
Transition to Clean Technology
By: Daron Acemoglu, Ufuk Akcigit, Douglas Hanley and William R. Kerr
We develop a microeconomic model of endogenous growth where clean and dirty technologies compete in production and innovation, in the sense that research can be directed to either clean or dirty technologies. If dirty technologies are more advanced to start with, the...
View Details
Keywords:
Technological Innovation;
Entrepreneurship;
Environmental Sustainability;
Green Technology Industry
Acemoglu, Daron, Ufuk Akcigit, Douglas Hanley, and William R. Kerr. "Transition to Clean Technology." Special Issue on Climate Change and the Economy. Journal of Political Economy 124, no. 2 (February 2016): 52–104.
- 2015
- Article
Scalable Detection of Anomalous Patterns With Connectivity Constraints
By: Skyler Speakman, Edward McFowland III and Daniel B. Neill
We present GraphScan, a novel method for detecting arbitrarily shaped connected clusters in graph or network data. Given a graph structure, data observed at each node, and a score function defining the anomalousness of a set of nodes, GraphScan can efficiently and...
View Details
Speakman, Skyler, Edward McFowland III, and Daniel B. Neill. "Scalable Detection of Anomalous Patterns With Connectivity Constraints." Journal of Computational and Graphical Statistics 24, no. 4 (2015): 1014–1033.