Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results : (140) Arrow Down
Filter Results : (140) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (1,201)
    • Faculty Publications  (140)

    Show Results For

    • All HBS Web  (1,201)
      • Faculty Publications  (140)

      Qualitative Methods (General) Remove Qualitative Methods (General) →

      Page 1 of 140 Results →

      Are you looking for?

      → Search All HBS Web
      • Article

      How Much Should We Trust Staggered Difference-In-Differences Estimates?

      By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
      Difference-in-differences analysis with staggered treatment timing is frequently used to assess the impact of policy changes on corporate outcomes in academic research. However, recent advances in econometric theory show that such designs are likely to be biased in the...  View Details
      Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
      Citation
      SSRN
      Find at Harvard
      Related
      Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" Journal of Financial Economics 144, no. 2 (May 2022): 370–395. (Editor's Choice, May 2022.)
      • Article

      Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)

      By: Eva Ascarza and Ayelet Israeli

      An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”...  View Details

      Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
      • March 2022
      • Article

      Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models

      By: Fiammetta Menchetti and Iavor Bojinov
      Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless...  View Details
      Keywords: Causal Inference; Partial Interference; Synthetic Controls; Bayesian Structural Time Series; Mathematical Methods
      Citation
      Find at Harvard
      Read Now
      Related
      Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
      • Article

      Pattern Detection in the Activation Space for Identifying Synthesized Content

      By: Celia Cintas, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande, Edward McFowland III and Komminist Weldemariam
      Generative Adversarial Networks (GANs) have recently achieved unprecedented success in photo-realistic image synthesis from low-dimensional random noise. The ability to synthesize high-quality content at a large scale brings potential risks as the generated samples may...  View Details
      Keywords: Subset Scanning; Generative Models; Synthetic Content Detection
      Citation
      Register to Read
      Related
      Cintas, Celia, Skyler Speakman, Girmaw Abebe Tadesse, Victor Akinwande, Edward McFowland III, and Komminist Weldemariam. "Pattern Detection in the Activation Space for Identifying Synthesized Content." Pattern Recognition Letters 153 (January 2022): 207–213.
      • Article

      A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects

      By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
      We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public...  View Details
      Keywords: Prescriptive Analytics; Heterogeneous Treatment Effects; Optimization; Observed Rank Utility Condition (OUR); Between-treatment Heterogeneity; Machine Learning; Decision Making; Analysis; Mathematical Methods
      Citation
      Find at Harvard
      Purchase
      Related
      McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
      • Article

      Counterfactual Explanations Can Be Manipulated

      By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
      Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate...  View Details
      Keywords: Machine Learning Models; Counterfactual Explanations
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Reliable Post hoc Explanations: Modeling Uncertainty in Explainability

      By: Dylan Slack, Sophie Hilgard, Sameer Singh and Himabindu Lakkaraju
      As black box explanations are increasingly being employed to establish model credibility in high stakes settings, it is important to ensure that these explanations are accurate and reliable. However, prior work demonstrates that explanations generated by...  View Details
      Keywords: Black Box Explanations; Bayesian Modeling; Decision Making; Risk and Uncertainty; Information Technology
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Sameer Singh, and Himabindu Lakkaraju. "Reliable Post hoc Explanations: Modeling Uncertainty in Explainability." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • October 2021
      • Article

      Board Design and Governance Failures at Peer Firms

      By: Shelby Gai, J. Yo-Jud Cheng and Andy Wu
      Our study introduces board committees as a crucial determinant of board actions. We examine how directors who structurally link different board committees—referred to as multi-committee directors (MCDs)—explain why some board actions are merely symbolic while others...  View Details
      Keywords: Board Committees; Board Monitoring; New Director Nomination; Peer Financial Restatements; Governing and Advisory Boards; Corporate Governance; Performance Effectiveness
      Citation
      Find at Harvard
      Read Now
      Related
      Gai, Shelby, J. Yo-Jud Cheng, and Andy Wu. "Board Design and Governance Failures at Peer Firms." Strategic Management Journal 42, no. 10 (October 2021): 1909–1938.
      • October 2021
      • Article

      Judgment Aggregation in Creative Production: Evidence from the Movie Industry

      By: Hong Luo, Jeffrey T. Macher and Michael Wahlen
      We study a novel, low-cost approach to aggregating judgment from a large number of industry experts on ideas that they encounter in their normal course of business. Our context is the movie industry, in which customer appeal is difficult to predict and investment costs...  View Details
      Keywords: Judgment Aggregation; Quality Uncertainty; Creative Industry; Project Evaluation And Selection; Creativity; Film Entertainment; Judgments; Motion Pictures and Video Industry
      Citation
      Find at Harvard
      Read Now
      Related
      Luo, Hong, Jeffrey T. Macher, and Michael Wahlen. "Judgment Aggregation in Creative Production: Evidence from the Movie Industry." Management Science 67, no. 10 (October 2021): 6358–6377.
      • September 15, 2021
      • Article

      Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map

      By: Andrea Blasco, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani and Aravind Subramanian
      A recurring problem in biomedical research is how to isolate signals of distinct populations (cell types, tissues, and genes) from composite measures obtained by a single analyte or sensor. Existing computational deconvolution approaches work well in many specific...  View Details
      Keywords: Deconvolution; Methods; Open Innovation Competition; Genomics; Research; Innovation and Invention
      Citation
      Find at Harvard
      Read Now
      Related
      Blasco, Andrea, Ted Natoli, Michael G. Endres, Rinat A. Sergeev, Steven Randazzo, Jin Hyun Paik, N.J. Maximilian Macaluso, Rajiv Narayan, Xiaodong Lu, David Peck, Karim R. Lakhani, and Aravind Subramanian. "Improving Deconvolution Methods in Biology Through Open Innovation Competitions: An Application to the Connectivity Map." Bioinformatics 37, no. 18 (September 15, 2021).
      • September 2021
      • Article

      Diagnostic Bubbles

      By: Pedro Bordalo, Nicola Gennaioli, Spencer Yongwook Kwon and Andrei Shleifer
      We introduce diagnostic expectations into a standard setting of price formation in which investors learn about the fundamental value of an asset and trade it. We study the interaction of diagnostic expectations with two well-known mechanisms: learning from prices and...  View Details
      Keywords: Bubble; Speculation; Diagnostic Expectations; Price Bubble; Mathematical Methods
      Citation
      Find at Harvard
      Related
      Bordalo, Pedro, Nicola Gennaioli, Spencer Yongwook Kwon, and Andrei Shleifer. "Diagnostic Bubbles." Journal of Financial Economics 141, no. 3 (September 2021).
      • Fall 2021
      • Article

      When to Go and How to Go? Founder and Leader Transitions in Private Equity Firms

      By: Josh Lerner and Diana Noble
      Leadership transition in private equity firms is an understudied field, despite the important, albeit controversial, role such firms play in developed economies. We analyzed 260 firms in an empirical study, supplemented by qualitative interviews with a small sample of...  View Details
      Keywords: Leadership Transition; Private Equity; Leadership; Management Succession; Analysis
      Citation
      Find at Harvard
      Related
      Lerner, Josh, and Diana Noble. "When to Go and How to Go? Founder and Leader Transitions in Private Equity Firms." Journal of Alternative Investments 24, no. 2 (Fall 2021): 9–30.
      • August 2021
      • Article

      Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders

      By: Tarun Khanna, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam and Meena Hewett
      This paper examines the role that the two lead authors’ personal connections played in the research methodology and data collection for the Partition Stories project—a mixed-methods approach to revisiting the much-studied historical trauma of the Partition of British...  View Details
      Keywords: Crowdsourcing; Mixed Methods Research; Oral History; History; Research
      Citation
      Find at Harvard
      Register to Read
      Related
      Khanna, Tarun, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam, and Meena Hewett. "Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders." Academy of Management Perspectives 35, no. 3 (August 2021): 384–399.
      • August 2021
      • Article

      Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders

      By: Tarun Khanna, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam and Meena Hewett
      This paper examines the role that the two lead authors’ personal connections played in the research methodology and data collection for the Partition Stories Project—a mixed-methods approach to revisiting the much-studied historical trauma of the Partition of British...  View Details
      Keywords: Mixed Methods; Insider-outsiders; Myth Of Informed Objectivity; Hybrid Research; Oral Narratives; Research; Analysis; India
      Citation
      Find at Harvard
      Purchase
      Related
      Khanna, Tarun, Karim R. Lakhani, Shubhangi Bhadada, Nabil Khan, Saba Kohli Davé, Rasim Alam, and Meena Hewett. "Crowdsourcing Memories: Mixed Methods Research by Cultural Insiders-Epistemological Outsiders." Academy of Management Perspectives 35, no. 3 (August 2021): 384–399.
      • August 2021
      • Article

      Multiple Imputation Using Gaussian Copulas

      By: F.M. Hollenbach, I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward and A. Volfovsky
      Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use...  View Details
      Keywords: Missing Data; Bayesian Statistics; Imputation; Categorical Data; Estimation
      Citation
      Find at Harvard
      Read Now
      Related
      Hollenbach, F.M., I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward, and A. Volfovsky. "Multiple Imputation Using Gaussian Copulas." Special Issue on New Quantitative Approaches to Studying Social Inequality. Sociological Methods & Research 50, no. 3 (August 2021): 1259–1283. (0049124118799381.)
      • August 2021
      • Article

      The Undervalued Power of Self-relevant Research: The Case of Researching Retirement While Retiring

      By: Teresa M. Amabile and Douglas T. (Tim) Hall
      For decades, training in management research has emphasized objectivity, typically viewed as an arm’s length distance between the topic of the research and the interests of the researcher. This emphasis has led most scholars to avoid research topics of deep personal...  View Details
      Keywords: Qualitative Research Methods; Case Research Methods; Organizational Behavior; Careers; Career Changes And Transitions; Self-relevant Research; Research; Personal Development and Career; Transition; Identity; Retirement
      Citation
      Read Now
      Related
      Amabile, Teresa M., and Douglas T. (Tim) Hall. "The Undervalued Power of Self-relevant Research: The Case of Researching Retirement While Retiring." Academy of Management Perspectives 35, no. 3 (August 2021): 347–366.
      • Article

      Learning Models for Actionable Recourse

      By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
      As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely...  View Details
      Keywords: Machine Learning Models; Recourse; Algorithm; Mathematical Methods
      Citation
      Read Now
      Related
      Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • 2021
      • Working Paper

      Population Interference in Panel Experiments

      By: Iavor I Bojinov, Kevin Wu Han and Guillaume Basse
      The phenomenon of population interference, where a treatment assigned to one experimental unit affects another experimental unit's outcome, has received considerable attention in standard randomized experiments. The complications produced by population interference in...  View Details
      Keywords: Finite Population; Potential Outcomes; Dynamic Causal Effects; Mathematical Methods
      Citation
      SSRN
      Read Now
      Related
      Bojinov, Iavor I., Kevin Wu Han, and Guillaume Basse. "Population Interference in Panel Experiments." Harvard Business School Working Paper, No. 21-100, March 2021.
      • 2021
      • Working Paper

      How Much Should We Trust Staggered Difference-In-Differences Estimates?

      By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
      Difference-in-differences analysis with staggered treatment timing is frequently used to assess the impact of policy changes on corporate outcomes in academic research. However, recent advances in econometric theory show that such designs are likely to be biased in the...  View Details
      Keywords: Difference In Differences; Staggered Difference-in-differences Designs; Generalized Difference-in-differences; Dynamic Treatment Effects; Mathematical Methods
      Citation
      SSRN
      Read Now
      Related
      Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" European Corporate Governance Institute Finance Working Paper, No. 736/2021, February 2021. (Harvard Business School Working Paper, No. 21-112, April 2021.)
      • 2021
      • Working Paper

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...  View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; Analysis; Theory; Measurement and Metrics; Performance Consistency
      Citation
      Read Now
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." Working Paper, 2021. (3rd Round Revision.)
      • 1
      • 2
      • …
      • 6
      • 7
      • →

      Are you looking for?

      → Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College