Filter Results:
(215)
Show Results For
- All HBS Web
(1,016)
- Faculty Publications (215)
Show Results For
- All HBS Web
(1,016)
- Faculty Publications (215)
Page 1 of 215
Results →
- 2025
- Working Paper
Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning
Reinforcement learning (RL) offers potential for optimizing sequences of customer interactions by modeling the relationships
between customer states, company actions, and long-term value. However, its practical implementation often faces significant
challenges.... View Details
Keywords: Dynamic Policy; Deep Reinforcement Learning; Representation Learning; Dynamic Difficulty Adjustment; Latent Variable Models; Customer Relationship Management; Customer Value and Value Chain; Foreign Direct Investment; Analytics and Data Science
Ma, Liangzong, Ta-Wei Huang, Eva Ascarza, and Ayelet Israeli. "Dynamic Personalization with Multiple Customer Signals: Multi-Response State Representation in Reinforcement Learning." Harvard Business School Working Paper, No. 25-037, February 2025.
- January 2025
- Technical Note
AI vs Human: Analyzing Acceptable Error Rates Using the Confusion Matrix
By: Tsedal Neeley and Tim Englehart
This technical note introduces the confusion matrix as a foundational tool in artificial intelligence (AI) and large language models (LLMs) for assessing the performance of classification models, focusing on their reliability for decision-making. A confusion matrix... View Details
- January 2025
- Supplement
Hippo: Weathering the Storm of the Home Insurance Crisis (B)
By: Lauren Cohen, Grace Headinger and Sophia Pan
Rick McCathron, CEO of Hippo, was optimistic about the InsurTech's path to profitability after navigating the financial uncertainties of 2022. By bundling their home insurance services with third-parties and established insurance incumbents, Hippo was adopting a... View Details
Keywords: Fintech; Underwriters; Big Data; Homeowners' Insurance; Catastrophe Risk; Global Warming; Environment; Business Economics; Vertical Specialization; Bundling; Economies Of Scale; Business Model; Forecasting and Prediction; Climate Change; Environmental Sustainability; Green Technology; Technological Innovation; Natural Environment; Natural Disasters; Weather; Business Strategy; Competitive Advantage; Business Earnings; Insurance; Social Issues; Insurance Industry; California; United States
- November 2024
- Supplement
AlphaGo (C): Birth of a New Intelligence
By: Shikhar Ghosh and Shweta Bagai
This case, the final of a three-part series, explores DeepMind's pivotal transition from mastering games to solving real-world scientific challenges. In December 2020, DeepMind's AI system AlphaFold 2 achieved a breakthrough by solving protein folding—a 50-year-old... View Details
Keywords: AI; Artificial Intelligence; Machine Learning; Research; Autonomy; Deep Learning; Drug Discovery; Healthcare Innovation; Neural Networks; Information Technology; Research And Development; Scientific Research; Technology Startup; AI and Machine Learning; Technological Innovation; United States
- November 2024
- Article
Perceptions About Monetary Policy
By: Michael D. Bauer, Carolin Pflueger and Adi Sunderam
We estimate perceptions about the Federal Reserve’s monetary policy rule from panel data on professional forecasts of interest rates and macroeconomic conditions. The perceived dependence of the federal funds rate on economic conditions varies substantially over time,... View Details
Bauer, Michael D., Carolin Pflueger, and Adi Sunderam. "Perceptions About Monetary Policy." Quarterly Journal of Economics 139, no. 4 (November 2024): 2227–2278.
- October 2024
- Article
Canary Categories
By: Eric Anderson, Chaoqun Chen, Ayelet Israeli and Duncan Simester
Past customer spending in a category is generally a positive signal of future customer spending. We show that there exist “canary categories” for which the reverse is true. Purchases in these categories are a signal that customers are less likely to return to that... View Details
Keywords: Churn; Churn Management; Churn/retention; Assortment Planning; Retail; Retailing; Retailing Industry; Preference Heterogeneity; Assortment Optimization; Customers; Retention; Consumer Behavior; Forecasting and Prediction; Retail Industry
Anderson, Eric, Chaoqun Chen, Ayelet Israeli, and Duncan Simester. "Canary Categories." Journal of Marketing Research (JMR) 61, no. 5 (October 2024): 872–890.
- 2024
- Working Paper
Pitfalls of Demographic Forecasts of U.S. Elections
By: Richard Calvo, Vincent Pons and Jesse M. Shapiro
Many observers have forecast large partisan shifts in the US electorate based on demographic trends. Such forecasts are appealing because demographic trends are often predictable even over long horizons. We backtest demographic forecasts using data on US elections... View Details
Keywords: Mathematical Methods; Voting; Political Elections; Trends; Forecasting and Prediction; Demographics
Calvo, Richard, Vincent Pons, and Jesse M. Shapiro. "Pitfalls of Demographic Forecasts of U.S. Elections." NBER Working Paper Series, No. 33016, October 2024.
- 2024
- Article
Learning Under Random Distributional Shifts
By: Kirk Bansak, Elisabeth Paulson and Dominik Rothenhäusler
Algorithmic assignment of refugees and asylum seekers to locations within host
countries has gained attention in recent years, with implementations in the U.S.
and Switzerland. These approaches use data on past arrivals to generate machine
learning models that can... View Details
Bansak, Kirk, Elisabeth Paulson, and Dominik Rothenhäusler. "Learning Under Random Distributional Shifts." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 27th (2024).
- July 2024
- Article
Chatbots and Mental Health: Insights into the Safety of Generative AI
By: Julian De Freitas, Ahmet Kaan Uğuralp, Zeliha Uğuralp and Stefano Puntoni
Chatbots are now able to engage in sophisticated conversations with consumers. Due to the ‘black box’ nature of the algorithms, it is impossible to predict in advance how these conversations will unfold. Behavioral research provides little insight into potential safety... View Details
Keywords: Autonomy; Chatbots; New Technology; Brand Crises; Mental Health; Large Language Model; AI and Machine Learning; Behavior; Well-being; Technological Innovation; Ethics
De Freitas, Julian, Ahmet Kaan Uğuralp, Zeliha Uğuralp, and Stefano Puntoni. "Chatbots and Mental Health: Insights into the Safety of Generative AI." Journal of Consumer Psychology 34, no. 3 (July 2024): 481–491.
- 2024
- Working Paper
How Inflation Expectations De-Anchor: The Role of Selective Memory Cues
By: Nicola Gennaioli, Marta Leva, Raphael Schoenle and Andrei Shleifer
In a model of memory and selective recall, household inflation expectations remain rigid when inflation is anchored but exhibit sharp instability during inflation surges, as similarity prompts retrieval of forgotten high-inflation experiences. Using data from the New... View Details
Gennaioli, Nicola, Marta Leva, Raphael Schoenle, and Andrei Shleifer. "How Inflation Expectations De-Anchor: The Role of Selective Memory Cues." NBER Working Paper Series, No. 32633, June 2024.
- 2024
- Working Paper
Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization
This paper introduces Incrementality Representation Learning (IRL), a novel multitask representation learning framework that predicts heterogeneous causal effects of marketing interventions. By leveraging past experiments, IRL efficiently designs and targets... View Details
Keywords: Heterogeneous Treatment Effect; Multi-task Learning; Representation Learning; Personalization; Promotion; Deep Learning; Field Experiments; Customer Focus and Relationships; Customization and Personalization
Huang, Ta-Wei, Eva Ascarza, and Ayelet Israeli. "Incrementality Representation Learning: Synergizing Past Experiments for Intervention Personalization." Harvard Business School Working Paper, No. 24-076, June 2024.
- April 2024
- Article
A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification
By: Hsin-Hsiao Scott Wang, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow and Caleb Nelson
Backgrounds: Urinary Tract Dilation (UTD) classification has been designed to be a more objective grading system to evaluate antenatal and post-natal UTD. Due to unclear association between UTD classifications to specific anomalies such as vesico-ureteral reflux (VUR),... View Details
Wang, Hsin-Hsiao Scott, Michael Lingzhi Li, Dylan Cahill, John Panagides, Tanya Logvinenko, Jeanne Chow, and Caleb Nelson. "A Machine Learning Algorithm Predicting Risk of Dilating VUR among Infants with Hydronephrosis Using UTD Classification." Journal of Pediatric Urology 20, no. 2 (April 2024): 271–278.
- April 2024
- Article
Demand-and-Supply Imbalance Risk and Long-Term Swap Spreads
By: Samuel G. Hanson, Aytek Malkhozov and Gyuri Venter
We develop and test a model in which swap spreads are determined by end users' demand for
and constrained intermediaries’ supply of long-term interest rate swaps. Swap spreads reflect
compensation both for using scarce intermediary capital and for bearing convergence... View Details
Keywords: Swap Spreads; Credit Derivatives and Swaps; Interest Rates; Risk and Uncertainty; Volatility
Hanson, Samuel G., Aytek Malkhozov, and Gyuri Venter. "Demand-and-Supply Imbalance Risk and Long-Term Swap Spreads." Art. 103814. Journal of Financial Economics 154 (April 2024).
- March 2024 (Revised January 2025)
- Case
Hippo: Weathering the Storm of the Home Insurance Crisis
By: Lauren Cohen, Grace Headinger and Sophia Pan
Rick McCathron, CEO of Hippo, considered how the firm’s underwriting model could account for the effects of climate change. Along with providing smart home packages, targeting risk-friendly customers, and using data-driven pricing, the Insurtech used technologically... View Details
Keywords: Fintech; Underwriters; Big Data; Insurance Companies; Business Model Design; Weather Insurance; Business Model; Forecasting and Prediction; Climate Change; Environmental Sustainability; Green Technology; Technological Innovation; Natural Environment; Natural Disasters; Weather; Business Strategy; Competitive Advantage; Business Earnings; Insurance; Social Issues; Insurance Industry; United States; California
- February 2024
- Teaching Note
AB InBev: Brewing Up Forecasts during COVID-19
By: Mark Egan and C. Fritz Foley
Teaching Note for HBS Case No. 224-020. In July 2021, the CEO of AB InBev's European operations and his team strategized to position the company for success post-pandemic. As the world's largest beer company, boasting over 500 brands, revenue of $46 billion, and a... View Details
- 2023
- Working Paper
'De Gustibus' and Disputes about Reference Dependence
By: Thomas Graeber, Pol Campos-Mercade, Lorenz Goette, Alexandre Kellogg and Charles Sprenger
Existing tests of reference-dependent preferences assume universal loss aversion. This paper examines the implications of heterogeneity in gain-loss attitudes for such tests. In experiments on labor supply and exchange behavior we measure gain-loss attitudes and then... View Details
Graeber, Thomas, Pol Campos-Mercade, Lorenz Goette, Alexandre Kellogg, and Charles Sprenger. "'De Gustibus' and Disputes about Reference Dependence." Harvard Business School Working Paper, No. 24-046, January 2024.
- February 2024
- Article
Representation and Extrapolation: Evidence from Clinical Trials
By: Marcella Alsan, Maya Durvasula, Harsh Gupta, Joshua Schwartzstein and Heidi L. Williams
This article examines the consequences and causes of low enrollment of Black patients in clinical
trials. We develop a simple model of similarity-based extrapolation that predicts that evidence is
more relevant for decision-making by physicians and patients when it... View Details
Keywords: Representation; Racial Disparity; Health Testing and Trials; Race; Equality and Inequality; Innovation and Invention; Pharmaceutical Industry
Alsan, Marcella, Maya Durvasula, Harsh Gupta, Joshua Schwartzstein, and Heidi L. Williams. "Representation and Extrapolation: Evidence from Clinical Trials." Quarterly Journal of Economics 139, no. 1 (February 2024): 575–635.
- 2024
- Working Paper
The Impact of Culture Consistency on Subunit Outcomes
By: Jasmijn Bol, Robert Grasser, Serena Loftus and Tatiana Sandino
We examine the association between subunit culture consistency—defined as the congruence between the organizational values espoused by top management and those perceived and practiced by subunit employees—and subunit outcomes. Using data from 235 subunits of a... View Details
Bol, Jasmijn, Robert Grasser, Serena Loftus, and Tatiana Sandino. "The Impact of Culture Consistency on Subunit Outcomes." Working Paper, December 2024.
- 2023
- Working Paper
Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach
By: Ta-Wei Huang and Eva Ascarza
Data-driven targeted interventions have become a powerful tool for organizations to optimize business outcomes
by utilizing individual-level data from experiments. A key element of this process is the estimation
of Conditional Average Treatment Effects (CATE), which... View Details
Huang, Ta-Wei, and Eva Ascarza. "Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach." Harvard Business School Working Paper, No. 24-034, December 2023.
- 2023
- Article
M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models
By: Himabindu Lakkaraju, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai and Haoyi Xiong
While Explainable Artificial Intelligence (XAI) techniques have been widely studied to explain predictions made by deep neural networks, the way to evaluate the faithfulness of explanation results remains challenging, due to the heterogeneity of explanations for... View Details
Keywords: AI and Machine Learning
Lakkaraju, Himabindu, Xuhong Li, Mengnan Du, Jiamin Chen, Yekun Chai, and Haoyi Xiong. "M4: A Unified XAI Benchmark for Faithfulness Evaluation of Feature Attribution Methods across Metrics, Modalities, and Models." Advances in Neural Information Processing Systems (NeurIPS) (2023).