Filter Results
:
(27)
Show Results For
-
All HBS Web
(119)
- Faculty Publications (27)
Show Results For
-
All HBS Web
(119)
- Faculty Publications (27)
Page 1 of
27
Results
→
- 2023
- Working Paper
Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach
By: Ta-Wei Huang and Eva Ascarza
Data-driven targeted interventions have become a powerful tool for organizations to optimize business outcomes
by utilizing individual-level data from experiments. A key element of this process is the estimation
of Conditional Average Treatment Effects (CATE), which...
View Details
Huang, Ta-Wei, and Eva Ascarza. "Debiasing Treatment Effect Estimation for Privacy-Protected Data: A Model Auditing and Calibration Approach." Harvard Business School Working Paper, No. 24-034, December 2023.
- August 2023
- Article
Do Rating Agencies Behave Defensively for Higher Risk Issuers?
By: Samuel B. Bonsall IV, Kevin Koharki, Pepa Kraft, Karl A. Muller III and Anywhere Sikochi
We examine whether rating agencies act defensively toward issuers with a higher likelihood of default. We find that agencies' qualitative soft rating adjustments are more accurate as issuers' default risk grows, as evidenced by the adjustments leading to lower Type I...
View Details
Keywords:
Credit Rating Agencies;
Soft Rating Adjustments;
Default;
Credit;
Performance Evaluation;
Measurement and Metrics;
Financial Institutions;
Risk Management
Bonsall, Samuel B., IV, Kevin Koharki, Pepa Kraft, Karl A. Muller III, and Anywhere Sikochi. "Do Rating Agencies Behave Defensively for Higher Risk Issuers?" Management Science 69, no. 8 (August 2023): 4864–4887.
- 2023
- Working Paper
The Complexity of Economic Decisions
By: Xavier Gabaix and Thomas Graeber
We propose a theory of the complexity of economic decisions. Leveraging a macroeconomic framework of production functions, we conceptualize the mind as a cognitive economy, where a task’s complexity is determined by its composition of cognitive operations. Complexity...
View Details
Gabaix, Xavier, and Thomas Graeber. "The Complexity of Economic Decisions." Harvard Business School Working Paper, No. 24-049, February 2024.
- 2023
- Working Paper
Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness
By: Neil Menghani, Edward McFowland III and Daniel B. Neill
In this paper, we develop a new criterion, "insufficiently justified disparate impact" (IJDI), for assessing whether recommendations (binarized predictions) made by an algorithmic decision support tool are fair. Our novel, utility-based IJDI criterion evaluates false...
View Details
Menghani, Neil, Edward McFowland III, and Daniel B. Neill. "Insufficiently Justified Disparate Impact: A New Criterion for Subgroup Fairness." Working Paper, June 2023.
- 2023
- Working Paper
PRIMO: Private Regression in Multiple Outcomes
By: Seth Neel
We introduce a new differentially private regression setting we call Private Regression in Multiple Outcomes (PRIMO), inspired the common situation where a data analyst wants to perform a set of l regressions while preserving privacy, where the covariates...
View Details
Neel, Seth. "PRIMO: Private Regression in Multiple Outcomes." Working Paper, March 2023.
- 2023
- Working Paper
The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities
By: David S. Scharfstein and Sergey Chernenko
We show that the use of algorithms to predict race has significant limitations in measuring and understanding the sources of racial disparities in finance, economics, and other contexts. First, we derive theoretically the direction and magnitude of measurement bias in...
View Details
Keywords:
Racial Disparity;
Paycheck Protection Program;
Measurement Error;
AI and Machine Learning;
Race;
Measurement and Metrics;
Equality and Inequality;
Prejudice and Bias;
Forecasting and Prediction;
Outcome or Result
Scharfstein, David S., and Sergey Chernenko. "The Limits of Algorithmic Measures of Race in Studies of Outcome Disparities." Working Paper, April 2023.
- April 2023
- Article
The Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social Preferences
By: Armin Falk, Anke Becker, Thomas Dohmen, David B. Huffman and Uwe Sunde
Incentivized choice experiments are a key approach to measuring preferences in economics but are also costly. Survey measures are a low-cost alternative but can suffer from additional forms of measurement error due to their hypothetical nature. This paper seeks to...
View Details
Keywords:
Survey Validation;
Experiment;
Preference Measurement;
Surveys;
Economics;
Behavior;
Measurement and Metrics
Falk, Armin, Anke Becker, Thomas Dohmen, David B. Huffman, and Uwe Sunde. "The Preference Survey Module: A Validated Instrument for Measuring Risk, Time, and Social Preferences." Management Science 69, no. 4 (April 2023): 1935–1950.
- 2023
- Working Paper
Complexity and Time
By: Benjamin Enke, Thomas Graeber and Ryan Oprea
We provide experimental evidence that core intertemporal choice anomalies -- including extreme short-run impatience, structural estimates of present bias, hyperbolicity and transitivity violations -- are driven by complexity rather than time or risk preferences. First,...
View Details
Enke, Benjamin, Thomas Graeber, and Ryan Oprea. "Complexity and Time." NBER Working Paper Series, No. 31047, March 2023.
- January–February 2023
- Article
Forecasting COVID-19 and Analyzing the Effect of Government Interventions
By: Michael Lingzhi Li, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis and Dimitris Bertsimas
We developed DELPHI, a novel epidemiological model for predicting detected cases and deaths in the prevaccination era of the COVID-19 pandemic. The model allows for underdetection of infections and effects of government interventions. We have applied DELPHI across more...
View Details
Keywords:
COVID-19 Pandemic;
Epidemics;
Analytics and Data Science;
Health Pandemics;
AI and Machine Learning;
Forecasting and Prediction
Li, Michael Lingzhi, Hamza Tazi Bouardi, Omar Skali Lami, Thomas Trikalinos, Nikolaos Trichakis, and Dimitris Bertsimas. "Forecasting COVID-19 and Analyzing the Effect of Government Interventions." Operations Research 71, no. 1 (January–February 2023): 184–201.
- 2023
- Working Paper
Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development
By: Daniel Yue, Paul Hamilton and Iavor Bojinov
Predictive model development is understudied despite its centrality in modern artificial
intelligence and machine learning business applications. Although prior discussions
highlight advances in methods (along the dimensions of data, computing power, and
algorithms)...
View Details
Keywords:
Analytics and Data Science
Yue, Daniel, Paul Hamilton, and Iavor Bojinov. "Nailing Prediction: Experimental Evidence on the Value of Tools in Predictive Model Development." Harvard Business School Working Paper, No. 23-029, December 2022. (Revised April 2023.)
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...
View Details
Keywords:
Machine Learning;
Econometric Analysis;
Instrumental Variable;
Random Forest;
Causal Inference;
AI and Machine Learning;
Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- April 12, 2022
- Article
Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States
By: Estee Y. Cramer, Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li and et al.
Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models...
View Details
Keywords:
COVID-19;
Forecasting and Prediction;
Health Pandemics;
Mathematical Methods;
Partners and Partnerships
Cramer, Estee Y., Evan L. Ray, Velma K. Lopez, Johannes Bracher, Andrea Brennen, Alvaro J. Castro Rivadeneira, Michael Lingzhi Li, and et al. "Evaluation of Individual and Ensemble Probabilistic Forecasts of COVID-19 Mortality in the United States." e2113561119. Proceedings of the National Academy of Sciences 119, no. 15 (April 12, 2022). (See full author list here.)
- February 2021
- Tutorial
Assessing Prediction Accuracy of Machine Learning Models
By: Michael Toffel and Natalie Epstein
This video describes how to assess the accuracy of machine learning prediction models, primarily in the context of machine learning models that predict binary outcomes, such as logistic regression, random forest, or nearest neighbor models. After introducing and...
View Details
- 2021
- Working Paper
Real Credit Cycles
By: Pedro Bordalo, Nicola Gennaioli, Andrei Shleifer and Stephen J. Terry
We incorporate diagnostic expectations, a psychologically founded model of overreaction to news, into a workhorse business cycle model with heterogeneous firms and risky debt. A realistic degree of diagnosticity, estimated from the forecast errors of managers of U.S....
View Details
Bordalo, Pedro, Nicola Gennaioli, Andrei Shleifer, and Stephen J. Terry. "Real Credit Cycles." NBER Working Paper Series, No. 28416, January 2021.
- September–October 2020
- Article
Managing Churn to Maximize Profits
By: Aurelie Lemmens and Sunil Gupta
Customer defection threatens many industries, prompting companies to deploy targeted, proactive customer retention programs and offers. A conventional approach has been to target customers either based on their predicted churn probability or their responsiveness to a...
View Details
Keywords:
Churn Management;
Defection Prediction;
Loss Function;
Stochastic Gradient Boosting;
Customer Relationship Management;
Consumer Behavior;
Profit
Lemmens, Aurelie, and Sunil Gupta. "Managing Churn to Maximize Profits." Marketing Science 39, no. 5 (September–October 2020): 956–973.
- August 2020 (Revised September 2020)
- Technical Note
Assessing Prediction Accuracy of Machine Learning Models
The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools...
View Details
Keywords:
Machine Learning;
Statistics;
Econometric Analyses;
Experimental Methods;
Data Analysis;
Data Analytics;
Forecasting and Prediction;
Analytics and Data Science;
Analysis;
Mathematical Methods
Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
- October 2018
- Article
The Operational Value of Social Media Information
By: Ruomeng Cui, Santiago Gallino, Antonio Moreno and Dennis J. Zhang
While the value of using social media information has been established in multiple business contexts, the field of operations and supply chain management have not yet explored the possibilities it offers in improving firms' operational decisions. This study attempts to...
View Details
Cui, Ruomeng, Santiago Gallino, Antonio Moreno, and Dennis J. Zhang. "The Operational Value of Social Media Information." Special Issue on Big Data in Supply Chain Management. Production and Operations Management 27, no. 10 (October 2018): 1749–1774.
- 2018
- Working Paper
Channeled Attention and Stable Errors -- Previous Working Version
By: Tristan Gagnon-Bartsch, Matthew Rabin and Joshua Schwartzstein
A common critique of models of mistaken beliefs is that people should recognize their error after observations they thought were unlikely. This paper develops a framework for assessing when a given error is likely to be discovered, in the sense that the error-maker...
View Details
Gagnon-Bartsch, Tristan, Matthew Rabin, and Joshua Schwartzstein. "Channeled Attention and Stable Errors -- Previous Working Version." Harvard Business School Working Paper, No. 18-108, June 2018.
- Article
Can Analysts Assess Fundamental Risk and Valuation Uncertainty? An Empirical Analysis of Scenario-Based Value Estimates
By: Peter R. Joos, Joseph D. Piotroski and Suraj Srinivasan
We use a dataset of sell-side analysts' scenario-based valuation estimates to examine whether analysts reliably assess the risk surrounding a firm's fundamental value. We find that the spread in analysts' state-side contingent valuations captures the riskiness of...
View Details
Keywords:
Analyst Forecasts;
Scenarios;
Uncertainty;
Risk and Uncertainty;
Valuation;
Forecasting and Prediction
Joos, Peter R., Joseph D. Piotroski, and Suraj Srinivasan. "Can Analysts Assess Fundamental Risk and Valuation Uncertainty? An Empirical Analysis of Scenario-Based Value Estimates." Journal of Financial Economics 121, no. 3 (September 2016): 645–663.
- August 2016
- Article
The Role of (Dis)similarity in (Mis)predicting Others' Preferences
By: Kate Barasz, Tami Kim and Leslie K. John
Consumers readily indicate liking options that appear dissimilar—for example, enjoying both rustic lake vacations and chic city vacations or liking both scholarly documentary films and action-packed thrillers. However, when predicting other consumers’ tastes for the...
View Details
Keywords:
Perceived Similarity;
Prediction Error;
Preference Prediction;
Self-other Difference;
Social Inference;
Cognition and Thinking;
Perception;
Forecasting and Prediction
Barasz, Kate, Tami Kim, and Leslie K. John. "The Role of (Dis)similarity in (Mis)predicting Others' Preferences." Journal of Marketing Research (JMR) 53, no. 4 (August 2016): 597–607.