Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results : (9) Arrow Down
Filter Results : (9) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (57)
    • Faculty Publications  (9)

    Show Results For

    • All HBS Web  (57)
      • Faculty Publications  (9)

      Machine Bias Remove Machine Bias →

      Page 1 of 9 Results

      Are you looking for?

      → Search All HBS Web
      • May 2022
      • Case

      LOOP: Driving Change in Auto Insurance Pricing

      By: Elie Ofek and Alicia Dadlani
      John Henry and Carey Anne Nadeau, co-founders and co-CEOs of LOOP, an insurtech startup based in Austin, Texas, were on a mission to modernize the archaic $250 billion automobile insurance market. They sought to create equitably priced insurance by eliminating pricing...  View Details
      Keywords: AI and Machine Learning; Technological Innovation; Equality and Inequality; Prejudice and Bias; Insurance Industry; Financial Services Industry
      Citation
      Educators
      Related
      Ofek, Elie, and Alicia Dadlani. "LOOP: Driving Change in Auto Insurance Pricing." Harvard Business School Case 522-073, May 2022.
      • Article

      Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)

      By: Eva Ascarza and Ayelet Israeli

      An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”...  View Details

      Keywords: Algorithm Bias; Personalization; Targeting; Generalized Random Forests (GRF); Discrimination; Customization and Personalization; Decision Making; Fairness; Mathematical Methods
      Citation
      Read Now
      Related
      Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
      • September–October 2021
      • Article

      Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb

      By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
      We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among...  View Details
      Keywords: Smart Pricing; Pricing Algorithm; Machine Bias; Discrimination; Racial Disparity; Social Inequality; Airbnb Revenue; Revenue; Race; Equality and Inequality; Prejudice and Bias; Price; Mathematical Methods; Accommodations Industry
      Citation
      SSRN
      Find at Harvard
      Related
      Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
      • 2021
      • Working Paper

      Invisible Primes: Fintech Lending with Alternative Data

      By: Marco Di Maggio, Dimuthu Ratnadiwakara and Don Carmichael
      We exploit anonymized administrative data provided by a major fintech platform to investigate whether using alternative data to assess borrowers’ creditworthiness results in broader credit access. Comparing actual outcomes of the fintech platform’s model to...  View Details
      Keywords: Fintech Lending; Alternative Data; Machine Learning; Algorithm Bias; Finance; Information Technology; Financing and Loans; Analytics and Data Science; Credit
      Citation
      Read Now
      Related
      Di Maggio, Marco, Dimuthu Ratnadiwakara, and Don Carmichael. "Invisible Primes: Fintech Lending with Alternative Data." Harvard Business School Working Paper, No. 22-024, October 2021.
      • September 17, 2021
      • Article

      AI Can Help Address Inequity—If Companies Earn Users' Trust

      By: Shunyuan Zhang, Kannan Srinivasan, Param Singh and Nitin Mehta
      While companies may spend a lot of time testing models before launch, many spend too little time considering how they will work in the wild. In particular, they fail to fully consider how rates of adoption can warp developers’ intent. For instance, Airbnb launched a...  View Details
      Keywords: Artificial Intelligence; Algorithmic Bias; Technological Innovation; Perception; Diversity; Equality and Inequality; Trust; AI and Machine Learning
      Citation
      Find at Harvard
      Register to Read
      Related
      Zhang, Shunyuan, Kannan Srinivasan, Param Singh, and Nitin Mehta. "AI Can Help Address Inequity—If Companies Earn Users' Trust." Harvard Business Review Digital Articles (September 17, 2021).
      • 2021
      • Working Paper

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...  View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; Analysis; Theory; Measurement and Metrics; Performance Consistency
      Citation
      Read Now
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." Working Paper, 2021. (3rd Round Revision.)
      • 2020
      • Working Paper

      (When) Does Appearance Matter? Evidence from a Randomized Controlled Trial

      By: Prithwiraj Choudhury, Tarun Khanna, Christos A. Makridis and Subhradip Sarker
      While there is evidence about labor market discrimination based on race, religion, and gender, we know little about whether physical appearance leads to discrimination in labor market outcomes. We deploy a randomized experiment on 1,000 respondents in India between...  View Details
      Keywords: Behavioral Economics; Coronavirus; Discrimination; Homophily; Labor Market Mobility; Limited Attention; Resumes; Personal Characteristics; Prejudice and Bias
      Citation
      Read Now
      Related
      Choudhury, Prithwiraj, Tarun Khanna, Christos A. Makridis, and Subhradip Sarker. "(When) Does Appearance Matter? Evidence from a Randomized Controlled Trial." Harvard Business School Working Paper, No. 21-038, September 2020.
      • August 2020
      • Article

      Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation

      By: Prithwiraj Choudhury, Evan Starr and Rajshree Agarwal
      The use of machine learning (ML) for productivity in the knowledge economy requires considerations of important biases that may arise from ML predictions. We define a new source of bias related to incompleteness in real time inputs, which may result from strategic...  View Details
      Keywords: Machine Learning; Bias; Human Capital; Management; Strategy
      Citation
      Find at Harvard
      Read Now
      Related
      Choudhury, Prithwiraj, Evan Starr, and Rajshree Agarwal. "Machine Learning and Human Capital Complementarities: Experimental Evidence on Bias Mitigation." Strategic Management Journal 41, no. 8 (August 2020): 1381–1411.
      • March 2019
      • Case

      Wattpad

      By: John Deighton and Leora Kornfeld
      How to run a platform to match four million writers of stories to 75 million readers? Use data science. Make money by doing deals with television and filmmakers and book publishers. The case describes the challenges of matching readers to stories and of helping writers...  View Details
      Keywords: Platform Businesses; Creative Industries; Publishing; Data Science; Machine Learning; Collaborative Filtering; Women And Leadership; Managing Data Scientists; Big Data; Recommender Systems; Digital Platforms; Information Technology; Intellectual Property; Publishing Industry; Entertainment and Recreation Industry; Canada; United States; Philippines; Viet Nam; Turkey; Indonesia; Brazil
      Citation
      Educators
      Purchase
      Related
      Deighton, John, and Leora Kornfeld. "Wattpad." Harvard Business School Case 919-413, March 2019.
      • 1

      Are you looking for?

      → Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College