Filter Results
:
(67)
Show Results For
-
All HBS Web
(318)
- Faculty Publications (67)
Show Results For
-
All HBS Web
(318)
- Faculty Publications (67)
Page 1 of
67
Results
→
- 2022
- Article
Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations
By: Tessa Han, Suraj Srinivas and Himabindu Lakkaraju
A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This...
View Details
Han, Tessa, Suraj Srinivas, and Himabindu Lakkaraju. "Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022). (Best Paper Award, International Conference on Machine Learning (ICML) Workshop on Interpretable ML in Healthcare.)
- October–December 2022
- Article
Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem
By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...
View Details
Keywords:
Machine Learning;
Econometric Analysis;
Instrumental Variable;
Random Forest;
Causal Inference;
AI and Machine Learning;
Forecasting and Prediction
Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
- August 2022
- Article
Contract Duration and the Costs of Market Transactions
By: Alexander MacKay
The optimal duration of a supply contract balances the costs of reselecting a supplier against the costs of being matched to an inefficient supplier when the contract lasts too long. I develop a structural model of contract duration that captures this tradeoff and...
View Details
Keywords:
Supply Contracts;
Intermediate Goods;
Switching Costs;
Vertical Relationships;
Transaction Costs;
Contract Duration;
Identification;
Supply Chain;
Cost;
Contracts;
Auctions;
Mathematical Methods
MacKay, Alexander. "Contract Duration and the Costs of Market Transactions." American Economic Journal: Microeconomics 14, no. 3 (August 2022): 164–212.
- 2022
- Article
Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations
By: Jessica Dai, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach and Himabindu Lakkaraju
As post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to ensure that the quality of the resulting explanations is consistently high across all subgroups of a population. For instance, it...
View Details
Dai, Jessica, Sohini Upadhyay, Ulrich Aivodji, Stephen Bach, and Himabindu Lakkaraju. "Fairness via Explanation Quality: Evaluating Disparities in the Quality of Post hoc Explanations." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society (2022): 203–214.
- 2022
- Article
Towards the Unification and Robustness of Post hoc Explanation Methods
By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two...
View Details
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Post hoc Explanation Methods." Symposium on Foundations of Responsible Computing (FORC) (2022).
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a...
View Details
Keywords:
Machine Learning Models;
Counterfactual Explanations;
Adversarial Examples;
Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- 2022
- Article
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods.
By: Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju
As Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes critical to ensure that the stakeholders understand the rationale behind their predictions. While several GNN explanation methods have been proposed recently, there has...
View Details
Keywords:
Graph Neural Networks;
Explanation Methods;
Mathematical Methods;
Framework;
Theory;
Analysis
Agarwal, Chirag, Marinka Zitnik, and Himabindu Lakkaraju. "Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- 2022
- Working Paper
A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure
By: Jesse M. Shapiro and Liyang Sun
Linear panel models featuring unit and time fixed effects appear in many areas of empirical economics. An active literature studies the interpretation of the ordinary least squares estimator of the model, commonly called the two-way fixed effects (TWFE) estimator, in...
View Details
Shapiro, Jesse M., and Liyang Sun. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure." NBER Working Paper Series, No. 29976, April 2022.
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless...
View Details
Keywords:
Causal Inference;
Partial Interference;
Synthetic Controls;
Bayesian Structural Time Series;
Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- 2022
- Working Paper
The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective
By: Satyapriya Krishna, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu and Himabindu Lakkaraju
As various post hoc explanation methods are increasingly being leveraged to explain complex models in high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations output by these methods disagree with each other, and how...
View Details
Krishna, Satyapriya, Tessa Han, Alex Gu, Javin Pombra, Shahin Jabbari, Steven Wu, and Himabindu Lakkaraju. "The Disagreement Problem in Explainable Machine Learning: A Practitioner's Perspective." Working Paper, 2022.
- September–October 2021
- Article
Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb
By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among...
View Details
Keywords:
Smart Pricing;
Pricing Algorithm;
Machine Bias;
Discrimination;
Racial Disparity;
Social Inequality;
Airbnb Revenue;
Revenue;
Race;
Equality and Inequality;
Prejudice and Bias;
Price;
Mathematical Methods;
Accommodations Industry
Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.
- August 2021
- Article
Multiple Imputation Using Gaussian Copulas
By: F.M. Hollenbach, I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward and A. Volfovsky
Missing observations are pervasive throughout empirical research, especially in the social sciences. Despite multiple approaches to dealing adequately with missing data, many scholars still fail to address this vital issue. In this paper, we present a simple-to-use...
View Details
Hollenbach, F.M., I. Bojinov, S. Minhas, N.W. Metternich, M.D. Ward, and A. Volfovsky. "Multiple Imputation Using Gaussian Copulas." Special Issue on New Quantitative Approaches to Studying Social Inequality. Sociological Methods & Research 50, no. 3 (August 2021): 1259–1283. (0049124118799381.)
- Article
Towards the Unification and Robustness of Perturbation and Gradient Based Explanations
By: Sushant Agarwal, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu and Himabindu Lakkaraju
As machine learning black boxes are increasingly being deployed in critical domains such as healthcare and criminal justice, there has been a growing emphasis on developing techniques for explaining these black boxes in a post hoc manner. In this work, we analyze two...
View Details
Keywords:
Machine Learning;
Black Box Explanations;
Decision Making;
Forecasting and Prediction;
Information Technology
Agarwal, Sushant, Shahin Jabbari, Chirag Agarwal, Sohini Upadhyay, Steven Wu, and Himabindu Lakkaraju. "Towards the Unification and Robustness of Perturbation and Gradient Based Explanations." Proceedings of the International Conference on Machine Learning (ICML) 38th (2021).
- April 2021
- Article
A Model of Multi-Pass Search: Price Search Across Stores and Time
By: Navid Mojir and K. Sudhir
In retail settings with price promotions, consumers often search across stores and time. However, the search literature typically only models one pass search across stores, ignoring revisits to stores; the choice literature using scanner data has modeled search across...
View Details
Keywords:
Consumer Search;
Multi-pass Search;
Price Search;
Store Search;
Spatial Search;
Temporal Search;
Spatiotemporal Search;
Dynamic Structural Models;
MPEC;
Price Promotions;
Store Loyalty;
Consumer Behavior;
Price;
Spending;
Marketing;
Mathematical Methods
Mojir, Navid, and K. Sudhir. "A Model of Multi-Pass Search: Price Search Across Stores and Time." Management Science 67, no. 4 (April 2021): 2126–2150.
- 2020
- Working Paper
Design and Analysis of Switchback Experiments
By: Iavor I Bojinov, David Simchi-Levi and Jinglong Zhao
In switchback experiments, a firm sequentially exposes an experimental unit to a random treatment, measures its response, and repeats the procedure for several periods to determine which treatment leads to the best outcome. Although practitioners have widely adopted...
View Details
Bojinov, Iavor I., David Simchi-Levi, and Jinglong Zhao. "Design and Analysis of Switchback Experiments." Harvard Business School Working Paper, No. 21-034, September 2020.
- Article
Oracle Efficient Private Non-Convex Optimization
By: Seth Neel, Aaron Leon Roth, Giuseppe Vietri and Zhiwei Steven Wu
One of the most effective algorithms for differentially private learning and optimization is objective perturbation. This technique augments a given optimization problem (e.g. deriving from an ERM problem) with a random linear term, and then exactly solves it....
View Details
Neel, Seth, Aaron Leon Roth, Giuseppe Vietri, and Zhiwei Steven Wu. "Oracle Efficient Private Non-Convex Optimization." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020).
- 2020
- Working Paper
Iterative Coordination and Innovation
By: Sourobh Ghosh and Andy Wu
Agile management practices from the software industry continue to transform the way organizations innovate across industries, yet they remain understudied in the organizations literature. We investigate the widespread Agile practice of iterative coordination: frequent...
View Details
Keywords:
Innovation;
Goals;
Specialization;
Coordination;
Field Experiment;
Software Development;
Organizations;
Collaborative Innovation and Invention;
Goals and Objectives;
Integration;
Software
Ghosh, Sourobh, and Andy Wu. "Iterative Coordination and Innovation." Harvard Business School Working Paper, No. 20-121, January 2020.
- May 2020
- Article
Identifying Sources of Inefficiency in Health Care
By: Amitabh Chandra and Douglas O. Staiger
In medicine, the reasons for variation in treatment rates across hospitals serving similar patients are not well understood. Some interpret this variation as unwarranted and push standardization of care as a way of reducing allocative inefficiency. However, an...
View Details
Keywords:
Health Care and Treatment;
Performance Efficiency;
Performance Productivity;
Mathematical Methods
Chandra, Amitabh, and Douglas O. Staiger. "Identifying Sources of Inefficiency in Health Care." Quarterly Journal of Economics 135, no. 2 (May 2020): 785–843.
- Article
History-informed Strategy Research: The Promise of History and Historical Research Methods in Advancing Strategy Scholarship
By: Nicholas Argyres, Alfredo De Massis, Nicolai J. Foss, Federico Frattini, Geoffrey Jones and Brian Silverman
Recent years have seen an increasing interest in the use of history and historical research methods in strategy research. This article discusses how and why history and historical research methods can enrich theoretical explanations of strategy phenomena. The article...
View Details
Argyres, Nicholas, Alfredo De Massis, Nicolai J. Foss, Federico Frattini, Geoffrey Jones, and Brian Silverman. "History-informed Strategy Research: The Promise of History and Historical Research Methods in Advancing Strategy Scholarship." Strategic Management Journal 41, no. 3 (March 2020): 343–368.
- December 2019
- Article
Costly Concessions: An Empirical Framework for Matching with Imperfectly Transferable Utility
By: Alfred Galichon, Scott Duke Kominers and Simon Weber
We introduce an empirical framework for models of matching with imperfectly transferable utility and unobserved heterogeneity in tastes. Our framework allows us to characterize matching equilibrium in a flexible way that includes as special cases the classic fully- and...
View Details
Keywords:
Sorting;
Matching;
Marriage Market;
Intrahousehold Allocation;
Imperfectly Transferable Utility;
Marketplace Matching;
Mathematical Methods
Galichon, Alfred, Scott Duke Kominers, and Simon Weber. "Costly Concessions: An Empirical Framework for Matching with Imperfectly Transferable Utility." Journal of Political Economy 127, no. 6 (December 2019): 2875–2925.