Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results : (3) Arrow Down
Filter Results : (3) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (20)
    • Faculty Publications  (3)

    Show Results For

    • All HBS Web  (20)
      • Faculty Publications  (3)

      Econometric Analyses Remove Econometric Analyses →

      Page 1 of 3 Results

      Are you looking for?

      → Search All HBS Web
      • October–December 2022
      • Article

      Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem

      By: Mochen Yang, Edward McFowland III, Gordon Burtch and Gediminas Adomavicius
      Combining machine learning with econometric analysis is becoming increasingly prevalent in both research and practice. A common empirical strategy involves the application of predictive modeling techniques to "mine" variables of interest from available data, followed...  View Details
      Keywords: Machine Learning; Econometric Analysis; Instrumental Variable; Random Forest; Causal Inference; AI and Machine Learning; Forecasting and Prediction
      Citation
      Find at Harvard
      Register to Read
      Related
      Yang, Mochen, Edward McFowland III, Gordon Burtch, and Gediminas Adomavicius. "Achieving Reliable Causal Inference with Data-Mined Variables: A Random Forest Approach to the Measurement Error Problem." INFORMS Journal on Data Science 1, no. 2 (October–December 2022): 138–155.
      • August 2020 (Revised September 2020)
      • Technical Note

      Assessing Prediction Accuracy of Machine Learning Models

      By: Michael W. Toffel, Natalie Epstein, Kris Ferreira and Yael Grushka-Cockayne
      The note introduces a variety of methods to assess the accuracy of machine learning prediction models. The note begins by briefly introducing machine learning, overfitting, training versus test datasets, and cross validation. The following accuracy metrics and tools...  View Details
      Keywords: Machine Learning; Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Forecasting and Prediction; Analytics and Data Science; Analysis; Mathematical Methods
      Citation
      Educators
      Purchase
      Related
      Toffel, Michael W., Natalie Epstein, Kris Ferreira, and Yael Grushka-Cockayne. "Assessing Prediction Accuracy of Machine Learning Models." Harvard Business School Technical Note 621-045, August 2020. (Revised September 2020.)
      • August 2020
      • Technical Note

      Comparing Two Groups: Sampling and t-Testing

      By: Iavor I Bojinov, Chiara Farronato, Yael Grushka-Cockayne, Willy C. Shih and Michael W. Toffel
      This note describes sampling and t-tests, two fundamental statistical concepts.  View Details
      Keywords: Statistics; Econometric Analyses; Experimental Methods; Data Analysis; Data Analytics; Analytics and Data Science; Analysis; Surveys; Mathematical Methods
      Citation
      Educators
      Purchase
      Related
      Bojinov, Iavor I., Chiara Farronato, Yael Grushka-Cockayne, Willy C. Shih, and Michael W. Toffel. "Comparing Two Groups: Sampling and t-Testing." Harvard Business School Technical Note 621-044, August 2020.
      • 1

      Are you looking for?

      → Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College