Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
  • Research
    • Research
    • Publications
    • Global Research Centers
    • Case Development
    • Initiatives & Projects
    • Research Services
    • Seminars & Conferences
    →
  • Publications→

Publications

Publications

Filter Results : (6) Arrow Down
Filter Results : (6) Arrow Down Arrow Up

Show Results For

  • All HBS Web  (12)
    • Faculty Publications  (6)

    Show Results For

    • All HBS Web  (12)
      • Faculty Publications  (6)

      Counterfactual Explanations Remove Counterfactual Explanations →

      Page 1 of 6 Results

      Are you looking for?

      → Search All HBS Web
      • 2022
      • Article

      Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.

      By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
      As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a...  View Details
      Keywords: Machine Learning Models; Counterfactual Explanations; Adversarial Examples; Mathematical Methods
      Citation
      Read Now
      Related
      Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
      • Article

      Counterfactual Explanations Can Be Manipulated

      By: Dylan Slack, Sophie Hilgard, Himabindu Lakkaraju and Sameer Singh
      Counterfactual explanations are useful for both generating recourse and auditing fairness between groups. We seek to understand whether adversaries can manipulate counterfactual explanations in an algorithmic recourse setting: if counterfactual explanations indicate...  View Details
      Keywords: Machine Learning Models; Counterfactual Explanations
      Citation
      Read Now
      Related
      Slack, Dylan, Sophie Hilgard, Himabindu Lakkaraju, and Sameer Singh. "Counterfactual Explanations Can Be Manipulated." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Learning Models for Actionable Recourse

      By: Alexis Ross, Himabindu Lakkaraju and Osbert Bastani
      As machine learning models are increasingly deployed in high-stakes domains such as legal and financial decision-making, there has been growing interest in post-hoc methods for generating counterfactual explanations. Such explanations provide individuals adversely...  View Details
      Keywords: Machine Learning Models; Recourse; Algorithm; Mathematical Methods
      Citation
      Read Now
      Related
      Ross, Alexis, Himabindu Lakkaraju, and Osbert Bastani. "Learning Models for Actionable Recourse." Advances in Neural Information Processing Systems (NeurIPS) 34 (2021).
      • Article

      Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses

      By: Kaivalya Rawal and Himabindu Lakkaraju
      As predictive models are increasingly being deployed in high-stakes decision-making, there has been a lot of interest in developing algorithms which can provide recourses to affected individuals. While developing such tools is important, it is even more critical to...  View Details
      Keywords: Predictive Models; Decision Making; Framework; Mathematical Methods
      Citation
      Read Now
      Related
      Rawal, Kaivalya, and Himabindu Lakkaraju. "Beyond Individualized Recourse: Interpretable and Interactive Summaries of Actionable Recourses." Advances in Neural Information Processing Systems (NeurIPS) 33 (2020).
      • Teaching Interest

      Interpretability and Explainability in Machine Learning

      By: Himabindu Lakkaraju

      As machine learning models are increasingly being employed to aid decision makers in high-stakes settings such as healthcare and criminal justice, it is important to ensure that the decision makers correctly understand and consequent trust the functionality of these...  View Details

      • Research Summary

      Selection, Reallocation, and Spillover: Identifying the Sources of Gains from Multinational Production (with Maggie Chen)

      By: Laura Alfaro

      Quantifying the gains from multinational production has been a vital topic of economic research. Positive productivity gains are often attributed to knowledge spillover from multinational to domestic firms. An alternative, less stressed explanation is firm selection...  View Details

      Keywords: Gains From Multinational Production; Firm Selection; Knowledge Spillover
      • 1

      Are you looking for?

      → Search All HBS Web
      ǁ
      Campus Map
      Harvard Business School
      Soldiers Field
      Boston, MA 02163
      →Map & Directions
      →More Contact Information
      • Make a Gift
      • Site Map
      • Jobs
      • Harvard University
      • Trademarks
      • Policies
      • Accessibility
      • Digital Accessibility
      Copyright © President & Fellows of Harvard College