Filter Results
:
(841)
Show Results For
-
All HBS Web
(5,429)
- Faculty Publications (841)
Show Results For
-
All HBS Web
(5,429)
- Faculty Publications (841)
Page 1 of
841
Results
→
- June 2022
- Article
The Use and Misuse of Patent Data: Issues for Finance and Beyond
By: Josh Lerner and Amit Seru
Patents and citations are powerful tools for understanding innovation increasingly used in financial economics (and management research more broadly). Biases may result, however, from the interactions between the truncation of patents and citations and the changing...
View Details
Lerner, Josh, and Amit Seru. "The Use and Misuse of Patent Data: Issues for Finance and Beyond." Review of Financial Studies 35, no. 6 (June 2022): 2667–2704.
- 2022
- Article
Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis.
By: Martin Pawelczyk, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay and Himabindu Lakkaraju
As machine learning (ML) models become more widely deployed in high-stakes applications, counterfactual explanations have emerged as key tools for providing actionable model explanations in practice. Despite the growing popularity of counterfactual explanations, a...
View Details
Keywords:
Machine Learning Models;
Counterfactual Explanations;
Adversarial Examples;
Mathematical Methods
Pawelczyk, Martin, Chirag Agarwal, Shalmali Joshi, Sohini Upadhyay, and Himabindu Lakkaraju. "Exploring Counterfactual Explanations Through the Lens of Adversarial Examples: A Theoretical and Empirical Analysis." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- Article
How Much Should We Trust Staggered Difference-In-Differences Estimates?
By: Andrew C. Baker, David F. Larcker and Charles C.Y. Wang
Difference-in-differences analysis with staggered treatment timing is frequently used to assess the impact of policy changes on corporate outcomes in academic research. However, recent advances in econometric theory show that such designs are likely to be biased in the...
View Details
Keywords:
Difference In Differences;
Staggered Difference-in-differences Designs;
Generalized Difference-in-differences;
Dynamic Treatment Effects;
Mathematical Methods
Baker, Andrew C., David F. Larcker, and Charles C.Y. Wang. "How Much Should We Trust Staggered Difference-In-Differences Estimates?" Journal of Financial Economics 144, no. 2 (May 2022): 370–395. (Editor's Choice, May 2022.)
- 2022
- Article
Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods.
By: Chirag Agarwal, Marinka Zitnik and Himabindu Lakkaraju
As Graph Neural Networks (GNNs) are increasingly employed in real-world applications, it becomes critical to ensure that the stakeholders understand the rationale behind their predictions. While several GNN explanation methods have been proposed recently, there has...
View Details
Keywords:
Graph Neural Networks;
Explanation Methods;
Mathematical Methods;
Framework;
Theory;
Analysis
Agarwal, Chirag, Marinka Zitnik, and Himabindu Lakkaraju. "Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods." Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS) 25th (2022).
- 2022
- Working Paper
A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure
By: Jesse M. Shapiro and Liyang Sun
Linear panel models featuring unit and time fixed effects appear in many areas of empirical economics. An active literature studies the interpretation of the ordinary least squares estimator of the model, commonly called the two-way fixed effects (TWFE) estimator, in...
View Details
Shapiro, Jesse M., and Liyang Sun. "A Linear Panel Model with Heterogeneous Coefficients and Variation in Exposure." NBER Working Paper Series, No. 29976, April 2022.
- April 2022
- Article
Predictable Financial Crises
Using historical data on post-war financial crises around the world, we show that crises are substantially predictable. The combination of rapid credit and asset price growth over the prior three years, whether in the nonfinancial business or the household sector, is...
View Details
Greenwood, Robin, Samuel G. Hanson, Andrei Shleifer, and Jakob Ahm Sørensen. "Predictable Financial Crises." Journal of Finance 77, no. 2 (April 2022): 863–921.
- March 2022
- Teaching Note
Inclusive Innovation at Mass General Brigham
By: Katherine Coffman and Olivia Hull
Teaching Note for HBS Case No. 921-006, “Inclusive Innovation at Mass General Brigham." This case invites students to explore the individual and structural factors that lead to an under-representation of women in male-dominated domains, and to think critically about...
View Details
- March 2022 (Revised March 2022)
- Module Note
Linear Regression
By: Iavor I. Bojinov, Michael Parzen and Paul J. Hamilton
This note provides an overview of linear regression for an introductory data science course. It begins with a discussion of correlation, and explains why correlation does not necessarily imply causation. The note then describes the method of least squares, and how to...
View Details
- March 2022 (Revised March 2022)
- Module Note
Statistical Inference
By: Iavor I. Bojinov, Michael Parzen and Paul J. Hamilton
This note provides an overview of statistical inference for an introductory data science course. First, the note discusses samples and populations. Next the note describes how to calculate confidence intervals for means and proportions. Then it walks through the logic...
View Details
- March 2022
- Module Note
Navigating Nascent Industries and Product Categories
By: Rory McDonald
This Note introduces a module of cases used at Harvard Business School to teach fundamental concepts about navigating nascent industries and product categories. It elaborates a set of ‘innovation tensions’ that managers must address in these domains. In connecting the...
View Details
McDonald, Rory. "Navigating Nascent Industries and Product Categories." Harvard Business School Module Note 622-097, March 2022.
- Article
Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)
By: Eva Ascarza and Ayelet Israeli
An inherent risk of algorithmic personalization is disproportionate targeting of individuals from certain groups (or demographic characteristics such as gender or race), even when the decision maker does not intend to discriminate based on those “protected”... View Details
Keywords:
Algorithm Bias;
Personalization;
Targeting;
Generalized Random Forests (GRF);
Discrimination;
Customization and Personalization;
Decision Making;
Fairness;
Mathematical Methods
Ascarza, Eva, and Ayelet Israeli. "Eliminating Unintended Bias in Personalized Policies Using Bias-Eliminating Adapted Trees (BEAT)." e2115126119. Proceedings of the National Academy of Sciences 119, no. 11 (March 8, 2022).
- March 2022
- Article
Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models
By: Fiammetta Menchetti and Iavor Bojinov
Researchers regularly use synthetic control methods for estimating causal effects when a sub-set of units receive a single persistent treatment, and the rest are unaffected by the change. In many applications, however, units not assigned to treatment are nevertheless...
View Details
Keywords:
Causal Inference;
Partial Interference;
Synthetic Controls;
Bayesian Structural Time Series;
Mathematical Methods
Menchetti, Fiammetta, and Iavor Bojinov. "Estimating the Effectiveness of Permanent Price Reductions for Competing Products Using Multivariate Bayesian Structural Time Series Models." Annals of Applied Statistics 16, no. 1 (March 2022): 414–435.
- March 2022
- Article
Sensitivity Analysis of Agent-based Models: A New Protocol
By: Emanuele Borgonovo, Marco Pangallo, Jan Rivkin, Leonardo Rizzo and Nicolaj Siggelkow
Agent-based models (ABMs) are increasingly used in the management sciences. Though useful, ABMs are often critiqued: it is hard to discern why they produce the results they do and whether other assumptions would yield similar results. To help researchers address such...
View Details
Keywords:
Agent-based Modeling;
Sensitivity Analysis;
Design Of Experiments;
Total Order Sensitivity Indices;
Organizations;
Behavior;
Decision Making;
Mathematical Methods
Borgonovo, Emanuele, Marco Pangallo, Jan Rivkin, Leonardo Rizzo, and Nicolaj Siggelkow. "Sensitivity Analysis of Agent-based Models: A New Protocol." Computational and Mathematical Organization Theory 28, no. 1 (March 2022): 52–94.
- March 2022
- Article
Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field
Identifying high-growth microentrepreneurs in low-income countries remains a challenge due to a scarcity of verifiable information. With a cash grant experiment in India we demonstrate that community knowledge can help target high-growth microentrepreneurs; while the...
View Details
Keywords:
Microentrepreneurs;
Community Information;
Field Experiment;
Loans;
Entrepreneurship;
Developing Countries and Economies;
Financing and Loans;
Information;
Mathematical Methods;
India
Hussam, Reshmaan, Natalia Rigol, and Benjamin N. Roth. "Targeting High Ability Entrepreneurs Using Community Information: Mechanism Design in the Field." American Economic Review 112, no. 3 (March 2022): 861–898.
- 2022
- Chapter
Key Success Factors in Environmental Entrepreneurship: The Case of Wilderness Safaris
By: James E. Austin, Megan Epler Woods and Herman B. Leonard
Book abstract: This volume is the culmination of many discussions among the editors over the years, especially at the Sustainability, Ethics and Entrepreneurship (SEE) Conference, related to the growth and institutionalization of environmental and social...
View Details
Austin, James E., Megan Epler Woods, and Herman B. Leonard. "Key Success Factors in Environmental Entrepreneurship: The Case of Wilderness Safaris." Chap. 7 in World Scientific Encyclopedia of Business Sustainability, Ethics, and Entrepreneurship, Volume 1: Environmental and Social Entrepreneurship, edited by Peter Gianiodis, Maritza I. Espina, and William R. Meek. World Scientific Publishing, 2022.
- Article
Democratizing Work: Redistributing Power in Organizations for a Democratic and Sustainable Future
Environmental destruction and social inequalities are increasingly urgent challenges. How can corporations, which have played a key role in creating and reproducing these problems, be part of the solution? In this paper, we advance that a shift to more democratic forms...
View Details
Keywords:
Corporate Citizenship;
Corporate Social Responsibility;
CSP;
CSR;
Domination;
Industrial Relations;
Power;
Resistance;
Work;
Corporate Governance;
Corporate Social Responsibility and Impact;
Governance;
Power and Influence;
Environmental Management;
Social Issues
Battilana, Julie, Julie Yen, Isabelle Ferreras, and Lakshmi Ramarajan. "Democratizing Work: Redistributing Power in Organizations for a Democratic and Sustainable Future." Organization Theory 3, no. 1 (January–March 2022).
- Article
A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects
By: Edward McFowland III, Sandeep Gangarapu, Ravi Bapna and Tianshu Sun
We define a prescriptive analytics framework that addresses the needs of a constrained decision-maker facing, ex ante, unknown costs and benefits of multiple policy levers. The framework is general in nature and can be deployed in any utility maximizing context, public...
View Details
Keywords:
Prescriptive Analytics;
Heterogeneous Treatment Effects;
Optimization;
Observed Rank Utility Condition (OUR);
Between-treatment Heterogeneity;
Machine Learning;
Decision Making;
Analysis;
Mathematical Methods
McFowland III, Edward, Sandeep Gangarapu, Ravi Bapna, and Tianshu Sun. "A Prescriptive Analytics Framework for Optimal Policy Deployment Using Heterogeneous Treatment Effects." MIS Quarterly 45, no. 4 (December 2021): 1807–1832.
- November 2021
- Article
Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective
By: Iavor Bojinov, Ashesh Rambachan and Neil Shephard
In panel experiments, we randomly assign units to different interventions, measuring their outcomes, and repeating the procedure in several periods. Using the potential outcomes framework, we define finite population dynamic causal effects that capture the relative...
View Details
Keywords:
Panel Data;
Dynamic Causal Effects;
Potential Outcomes;
Finite Population;
Nonparametric;
Mathematical Methods
Bojinov, Iavor, Ashesh Rambachan, and Neil Shephard. "Panel Experiments and Dynamic Causal Effects: A Finite Population Perspective." Quantitative Economics 12, no. 4 (November 2021): 1171–1196.
- 4 Oct 2021
- Other Presentation
Amy Edmondson, Professor Leadership & Management at Harvard
By: Amy C. Edmondson and Guy Bloom
Amy C. Edmondson is an American scholar of leadership, teaming, and organizational learning. She is currently the Novartis Professor of Leadership at Harvard Business School.
Amy is the author of seven books and more than 75 articles and case studies.
She is... View Details
She is... View Details
"Amy Edmondson, Professor Leadership & Management at Harvard." Leadership Bites (podcast), October 4, 2021.
- September–October 2021
- Article
Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb
By: Shunyuan Zhang, Nitin Mehta, Param Singh and Kannan Srinivasan
We study the effect of Airbnb’s smart-pricing algorithm on the racial disparity in the daily revenue earned by Airbnb hosts. Our empirical strategy exploits Airbnb’s introduction of the algorithm and its voluntary adoption by hosts as a quasi-natural experiment. Among...
View Details
Keywords:
Smart Pricing;
Pricing Algorithm;
Machine Bias;
Discrimination;
Racial Disparity;
Social Inequality;
Airbnb Revenue;
Revenue;
Race;
Equality and Inequality;
Prejudice and Bias;
Price;
Mathematical Methods;
Accommodations Industry
Zhang, Shunyuan, Nitin Mehta, Param Singh, and Kannan Srinivasan. "Frontiers: Can an AI Algorithm Mitigate Racial Economic Inequality? An Analysis in the Context of Airbnb." Marketing Science 40, no. 5 (September–October 2021): 813–820.