Filter Results:
(6)
Show Results For
- All HBS Web
(12)
- Faculty Publications (6)
Show Results For
- All HBS Web
(12)
- Faculty Publications (6)
Page 1 of 6
Results
- 2022
- Article
Nonparametric Subset Scanning for Detection of Heteroscedasticity
By: Charles R. Doss and Edward McFowland III
We propose Heteroscedastic Subset Scan (HSS), a novel method for identifying covariates that are responsible for violations of the homoscedasticity assumption in regression settings. Viewing the problem as one of anomalous pattern detection, we use subset scanning... View Details
Doss, Charles R., and Edward McFowland III. "Nonparametric Subset Scanning for Detection of Heteroscedasticity." Journal of Computational and Graphical Statistics 31, no. 3 (2022): 813–823.
- January 2021
- Case
Anodot: Autonomous Business Monitoring
By: Antonio Moreno and Danielle Golan
Autonomous business monitoring platform Anodot leveraged machine learning to provide real-time alerts regarding business anomalies. Anodot’s solution was used in various industries in order to primarily monitor business health, such as revenue and payments, product... View Details
Keywords: Digital Platforms; Internet and the Web; Knowledge Sharing; Information Management; Sales; Value Creation; Product Positioning; Israel
Moreno, Antonio, and Danielle Golan. "Anodot: Autonomous Business Monitoring." Harvard Business School Case 621-084, January 2021.
- November–December 2020
- Article
The Risks You Can't Foresee: What to Do When There's No Playbook
By: Robert S. Kaplan, Herman B. Leonard and Anette Mikes
No matter how good their risk management systems are, companies can’t plan for everything. Some risks are outside people’s realm of experience or so remote no one could have imagined them. Some result from a perfect storm of coinciding breakdowns, and some materialize... View Details
Kaplan, Robert S., Herman B. Leonard, and Anette Mikes. "The Risks You Can't Foresee: What to Do When There's No Playbook." Harvard Business Review 98, no. 6 (November–December 2020): 40–46.
- Article
Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications
By: Daniel Elsner, Pouya Aleatrati Khosroshahi, Alan MacCormack and Robert Lagerström
Existing application performance management (APM) solutions lack robust anomaly detection capabilities and root cause analysis techniques that do not require manual efforts and domain knowledge. In this paper, we develop a density-based unsupervised machine learning... View Details
Keywords: Big Data; Data Science And Analytics Management; Governance And Compliance; Organizational Systems And Technology; Anomaly Detection; Application Performance Management; Machine Learning; Enterprise Architecture; Analytics and Data Science
Elsner, Daniel, Pouya Aleatrati Khosroshahi, Alan MacCormack, and Robert Lagerström. "Multivariate Unsupervised Machine Learning for Anomaly Detection in Enterprise Applications." Proceedings of the Hawaii International Conference on System Sciences 52nd (2019): 5827–5836.
- 2018
- Working Paper
Detecting Anomalies: The Relevance and Power of Standard Asset Pricing Tests
By: Malcolm Baker, Patrick Luo and Ryan Taliaferro
The two standard approaches for identifying capital market anomalies are cross-sectional coefficient tests, in the spirit of Fama and MacBeth (1973), and time-series intercept tests, in the spirit of Jensen (1968). A new signal can pass the first test, which we label a... View Details
Keywords: Investment Management; Anomalies; Portfolio Construction; Transaction Costs; Investment; Management; Asset Pricing; Market Transactions; Cost
Baker, Malcolm, Patrick Luo, and Ryan Taliaferro. "Detecting Anomalies: The Relevance and Power of Standard Asset Pricing Tests." Working Paper, July 2018.
- Article
Fast Generalized Subset Scan for Anomalous Pattern Detection
By: Edward McFowland III, Skyler Speakman and Daniel B. Neill
We propose Fast Generalized Subset Scan (FGSS), a new method for detecting anomalous patterns in general categorical data sets. We frame the pattern detection problem as a search over subsets of data records and attributes, maximizing a nonparametric scan statistic... View Details
Keywords: Pattern Detection; Anomaly Detection; Knowledge Discovery; Bayesian Networks; Scan Statistics; Analytics and Data Science
McFowland III, Edward, Skyler Speakman, and Daniel B. Neill. "Fast Generalized Subset Scan for Anomalous Pattern Detection." Art. 12. Journal of Machine Learning Research 14 (2013): 1533–1561.