Filter Results
:
(6)
Show Results For
-
All HBS Web
(46)
- Faculty Publications (6)
Show Results For
-
All HBS Web
(46)
- Faculty Publications (6)
Page 1 of
6
Results
- 2022
- Working Paper
Improving Human-Algorithm Collaboration: Causes and Mitigation of Over- and Under-Adherence
By: Maya Balakrishnan, Kris Ferreira and Jordan Tong
Even if algorithms make better predictions than humans on average, humans may sometimes have “private” information which an algorithm does not have access to that can improve performance. How can we help humans effectively use and adjust recommendations made by...
View Details
Keywords:
Cognitive Biases;
Algorithm Transparency;
Forecasting and Prediction;
Behavior;
AI and Machine Learning;
Analytics and Data Science;
Cognition and Thinking
Balakrishnan, Maya, Kris Ferreira, and Jordan Tong. "Improving Human-Algorithm Collaboration: Causes and Mitigation of Over- and Under-Adherence." Working Paper, December 2022.
- 2021
- Article
To Thine Own Self Be True? Incentive Problems in Personalized Law
By: Jordan M. Barry, John William Hatfield and Scott Duke Kominers
Recent years have seen an explosion of scholarship on “personalized law.” Commentators foresee a world in which regulators armed with big data and machine learning techniques determine the optimal legal rule for every regulated party, then instantaneously disseminate...
View Details
Keywords:
Personalized Law;
Regulation;
Regulatory Avoidance;
Regulatory Arbitrage;
Law And Economics;
Law And Technology;
Law And Artificial Intelligence;
Futurism;
Moral Hazard;
Elicitation;
Signaling;
Privacy;
Law;
Governing Rules, Regulations, and Reforms;
Information Technology;
AI and Machine Learning
Barry, Jordan M., John William Hatfield, and Scott Duke Kominers. "To Thine Own Self Be True? Incentive Problems in Personalized Law." Art. 2. William & Mary Law Review 62, no. 3 (2021).
- 2019
- Article
More Amazon Effects: Online Competition and Pricing Behaviors
By: Alberto Cavallo
I study how online competition, with its shrinking margins, algorithmic pricing technologies, and the transparency of the web, can change the pricing behavior of large retailers in the U.S. and affect aggregate inflation dynamics. In particular, I show that in the past...
View Details
Keywords:
Amazon;
Online Prices;
Inflation;
Uniform Pricing;
Price Stickiness;
Monetary Economics;
Economics;
Macroeconomics;
Inflation and Deflation;
System Shocks;
United States
Cavallo, Alberto. "More Amazon Effects: Online Competition and Pricing Behaviors." Jackson Hole Economic Symposium Conference Proceedings (Federal Reserve Bank of Kansas City) (2019).
- October 2017 (Revised April 2018)
- Case
Improving Worker Safety in the Era of Machine Learning (A)
By: Michael W. Toffel, Dan Levy, Jose Ramon Morales Arilla and Matthew S. Johnson
Managers make predictions all the time: How fast will my markets grow? How much inventory do I need? How intensively should I monitor my suppliers? Which potential customers will be most responsive to a particular marketing campaign? Which job candidates should I...
View Details
Keywords:
Machine Learning;
Policy Implementation;
Empirical Research;
Inspection;
Occupational Safety;
Occupational Health;
Regulation;
Analysis;
Forecasting and Prediction;
Policy;
Operations;
Supply Chain Management;
Safety;
Manufacturing Industry;
Construction Industry;
United States
Toffel, Michael W., Dan Levy, Jose Ramon Morales Arilla, and Matthew S. Johnson. "Improving Worker Safety in the Era of Machine Learning (A)." Harvard Business School Case 618-019, October 2017. (Revised April 2018.)
- November, 2016
- Article
Fixing Discrimination in Online Marketplaces
By: Ray Fisman and Michael Luca
Online marketplaces such as eBay, Uber, and Airbnb have the potential to reduce racial, gender, and other forms of bias that affect the off-line world. And in the early days of Internet commerce, the relative anonymity of transactions did make it harder for...
View Details
Fisman, Ray, and Michael Luca. "Fixing Discrimination in Online Marketplaces." Harvard Business Review 94, no. 12 (November, 2016): 88–95.
- 2023
- Chapter
Marketing Through the Machine’s Eyes: Image Analytics and Interpretability
By: Shunyuan Zhang, Flora Feng and Kannan Srinivasan
he growth of social media and the sharing economy is generating abundant unstructured image and video data. Computer vision techniques can derive rich insights from unstructured data and can inform recommendations for increasing profits and consumer utility—if only the...
View Details
Zhang, Shunyuan, Flora Feng, and Kannan Srinivasan. "Marketing Through the Machine’s Eyes: Image Analytics and Interpretability." Chap. 8 in Artificial Intelligence in Marketing. 20, edited by Naresh K. Malhotra, K. Sudhir, and Olivier Toubia. Review of Marketing Research. Emerald Publishing Limited, forthcoming.