Filter Results
:
(29)
Show Results For
-
All HBS Web
(75)
- Faculty Publications (29)
Show Results For
-
All HBS Web
(75)
- Faculty Publications (29)
Page 1 of
29
Results
→
- 2024
- Working Paper
Anytime-Valid Inference in Linear Models and Regression-Adjusted Causal Inference
By: Michael Lindon, Dae Woong Ham, Martin Tingley and Iavor I. Bojinov
Linear regression adjustment is commonly used to analyze randomized controlled experiments due to its efficiency and robustness against model misspecification. Current testing and interval estimation procedures leverage the asymptotic distribution of such estimators to...
View Details
Lindon, Michael, Dae Woong Ham, Martin Tingley, and Iavor I. Bojinov. "Anytime-Valid Inference in Linear Models and Regression-Adjusted Causal Inference." Harvard Business School Working Paper, No. 24-060, March 2024.
- 2021
- Working Paper
Quantifying the Value of Iterative Experimentation
By: Iavor I Bojinov and Jialiang Mao
Over the past decade, most technology companies and a growing number of conventional firms have adopted online experimentation (or A/B testing) into their product development process. Initially, A/B testing was deployed as a static procedure in which an experiment was...
View Details
Bojinov, Iavor I., and Jialiang Mao. "Quantifying the Value of Iterative Experimentation." Harvard Business School Working Paper, No. 24-059, March 2024.
- February 2024
- Module Note
Data-Driven Marketing in Retail Markets
By: Ayelet Israeli
This note describes an eight-class sessions module on data-driven marketing in retail markets. The module aims to familiarize students with core concepts of data-driven marketing in retail, including exploring the opportunities and challenges, adopting best practices,...
View Details
Keywords:
Data;
Data Analytics;
Retail;
Retail Analytics;
Data Science;
Business Analytics;
"Marketing Analytics";
Omnichannel;
Omnichannel Retailing;
Omnichannel Retail;
DTC;
Direct To Consumer Marketing;
Ethical Decision Making;
Algorithmic Bias;
Privacy;
A/B Testing;
Descriptive Analytics;
Prescriptive Analytics;
Predictive Analytics;
Analytics and Data Science;
E-commerce;
Marketing Channels;
Demand and Consumers;
Marketing Strategy;
Retail Industry
Israeli, Ayelet. "Data-Driven Marketing in Retail Markets." Harvard Business School Module Note 524-062, February 2024.
- 2023
- Article
Balancing Risk and Reward: An Automated Phased Release Strategy
By: Yufan Li, Jialiang Mao and Iavor Bojinov
Phased releases are a common strategy in the technology industry for gradually releasing new products or updates through a sequence of A/B tests in which the number of treated units gradually grows until full deployment or deprecation. Performing phased releases in a...
View Details
Li, Yufan, Jialiang Mao, and Iavor Bojinov. "Balancing Risk and Reward: An Automated Phased Release Strategy." Advances in Neural Information Processing Systems (NeurIPS) (2023).
- October 2023 (Revised February 2024)
- Technical Note
Design and Evaluation of Targeted Interventions
By: Eva Ascarza and Ta-Wei (David) Huang
Targeted interventions serve as a pivotal tool in business strategy, streamlining decisions for enhanced efficiency and effectiveness. This note delves into two central facets of such interventions: first, the design of potent decision guidelines, or targeting...
View Details
Keywords:
Marketing;
Customer Relationship Management;
Analysis;
Design;
Business Strategy;
Retail Industry;
Apparel and Accessories Industry;
Technology Industry;
Financial Services Industry;
Telecommunications Industry
Ascarza, Eva, and Ta-Wei (David) Huang. "Design and Evaluation of Targeted Interventions." Harvard Business School Technical Note 524-034, October 2023. (Revised February 2024.)
- September 2023
- Supplement
Design and Evaluation of Targeted Interventions
By: Eva Ascarza
Targeted interventions serve as a pivotal tool in business strategy, streamlining decisions for enhanced efficiency and effectiveness. This note delves into two central facets of such interventions: first, the design of potent decision guidelines, or targeting...
View Details
- June 2023
- Simulation
Artea Dashboard and Targeting Policy Evaluation
By: Ayelet Israeli and Eva Ascarza
Companies deploy A/B experiments to gain valuable insights about their customers in order to answer strategic business problems. In marketing, A/B tests are often used to evaluate marketing interventions intended to generate incremental outcomes for the firm. The Artea...
View Details
Keywords:
Algorithm Bias;
Algorithmic Data;
Race And Ethnicity;
Experimentation;
Promotion;
Marketing And Society;
Big Data;
Privacy;
Data-driven Management;
Data Analysis;
Data Analytics;
E-Commerce Strategy;
Discrimination;
Targeted Advertising;
Targeted Policies;
Pricing Algorithms;
A/B Testing;
Ethical Decision Making;
Customer Base Analysis;
Customer Heterogeneity;
Coupons;
Marketing;
Race;
Gender;
Diversity;
Customer Relationship Management;
Marketing Communications;
Advertising;
Decision Making;
Ethics;
E-commerce;
Analytics and Data Science;
Retail Industry;
Apparel and Accessories Industry;
United States
- September 2022
- Article
Experimentation and Start-up Performance: Evidence from A/B Testing
By: Rembrand Koning, Sharique Hasan and Aaron Chatterji
Recent scholarship has argued that experimentation should be the organizing principle for entrepreneurial strategy. Experimentation leads to organizational learning, which drives improvements in firm performance. We investigate this proposition by exploiting the...
View Details
Keywords:
Experimentation;
A/B Testing;
Data-driven Decision-making;
Organizational Learning;
Entrepreneurship;
Strategy;
Business Startups;
Learning;
Performance;
Decision Making
Koning, Rembrand, Sharique Hasan, and Aaron Chatterji. "Experimentation and Start-up Performance: Evidence from A/B Testing." Management Science 68, no. 9 (September 2022): 6434–6453.
- Article
Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide
By: Iavor Bojinov and Somit Gupta
In the past decade, online controlled experimentation, or A/B testing, at scale has proved to be a significant driver of business innovation. The practice was first pioneered by the technology sector and, more recently, has been adopted by traditional companies...
View Details
Keywords:
A/B Testing;
Experimentation;
Data-driven Culture;
Product Development;
Innovation and Invention;
Digital Transformation
Bojinov, Iavor, and Somit Gupta. "Online Experimentation: Benefits, Operational and Methodological Challenges, and Scaling Guide." Harvard Data Science Review, no. 4.3 (Summer, 2022).
- August 2021
- Case
Orchadio's First Two Split Experiments
By: Iavor I. Bojinov, Marco Iansiti and David Lane
Orchadio, a direct-to-consumer grocery business, needs to conduct its first two A/B tests—one to evaluate the effectiveness and functioning of its newly redesigned website, and one to market-test four versions of a new banner for the website. To do so, it will rely on...
View Details
Keywords:
Information Management;
Technological Innovation;
Knowledge Use and Leverage;
Resource Allocation;
Marketing;
Measurement and Metrics;
Customization and Personalization;
Information Technology;
Internet and the Web;
Digital Platforms;
Information Technology Industry;
Food and Beverage Industry
Bojinov, Iavor I., Marco Iansiti, and David Lane. "Orchadio's First Two Split Experiments." Harvard Business School Case 622-015, August 2021.
- June 23, 2021
- Article
Research: When A/B Testing Doesn't Tell You the Whole Story
By: Eva Ascarza
When it comes to churn prevention, marketers traditionally start by identifying which customers are most likely to churn, and then running A/B tests to determine whether a proposed retention intervention will be effective at retaining those high-risk customers. While...
View Details
Keywords:
Customer Retention;
Churn;
Targeting;
Market Research;
Marketing;
Investment Return;
Customers;
Retention;
Research
Ascarza, Eva. "Research: When A/B Testing Doesn't Tell You the Whole Story." Harvard Business Review Digital Articles (June 23, 2021).
- March 2021
- Supplement
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Power Point Supplement to Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on...
View Details
Keywords:
Targeted Advertising;
Targeting;
Algorithmic Data;
Bias;
A/B Testing;
Experiment;
Advertising;
Gender;
Race;
Diversity;
Marketing;
Customer Relationship Management;
Prejudice and Bias;
Analytics and Data Science;
Retail Industry;
Apparel and Accessories Industry;
Technology Industry;
United States
- February 2021
- Tutorial
T-tests: Theory and Practice
This video provides an introduction to hypothesis testing, sampling, t-tests, and p-values. It provides examples of A/B testing and t-testing to assess whether difference between two groups are statistically significant. This video can be assigned in conjunction with...
View Details
- September 2020 (Revised February 2024)
- Teaching Note
Artea (A), (B), (C), and (D): Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
Teaching Note for HBS No. 521-021,521-022,521-037,521-043. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and...
View Details
- September 2020 (Revised July 2022)
- Exercise
Artea (B): Including Customer-Level Demographic Data
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The...
View Details
Keywords:
Targeting;
Algorithmic Bias;
Race;
Gender;
Marketing;
Diversity;
Customer Relationship Management;
Demographics;
Prejudice and Bias;
Retail Industry;
Apparel and Accessories Industry;
Technology Industry;
United States
Ascarza, Eva, and Ayelet Israeli. "Artea (B): Including Customer-Level Demographic Data." Harvard Business School Exercise 521-022, September 2020. (Revised July 2022.)
- September 2020 (Revised July 2022)
- Exercise
Artea (C): Potential Discrimination through Algorithmic Targeting
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The...
View Details
Keywords:
Targeting;
Algorithmic Bias;
Race;
Gender;
Marketing;
Diversity;
Customer Relationship Management;
Prejudice and Bias;
Retail Industry;
Apparel and Accessories Industry;
Technology Industry;
United States
Ascarza, Eva, and Ayelet Israeli. "Artea (C): Potential Discrimination through Algorithmic Targeting." Harvard Business School Exercise 521-037, September 2020. (Revised July 2022.)
- September 2020 (Revised July 2022)
- Exercise
Artea (D): Discrimination through Algorithmic Bias in Targeting
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The...
View Details
Keywords:
Targeted Advertising;
Discrimination;
Algorithmic Data;
Bias;
Advertising;
Race;
Gender;
Marketing;
Diversity;
Customer Relationship Management;
Prejudice and Bias;
Analytics and Data Science;
Retail Industry;
Apparel and Accessories Industry;
Technology Industry;
United States
Ascarza, Eva, and Ayelet Israeli. "Artea (D): Discrimination through Algorithmic Bias in Targeting." Harvard Business School Exercise 521-043, September 2020. (Revised July 2022.)
- September 2020 (Revised June 2023)
- Exercise
Artea: Designing Targeting Strategies
By: Eva Ascarza and Ayelet Israeli
This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and targeting. Parts (B),(C),(D) Introduce algorithmic bias. The...
View Details
Keywords:
Algorithmic Data;
Race And Ethnicity;
Experimentation;
Promotion;
"Marketing Analytics";
Marketing And Society;
Big Data;
Privacy;
Data-driven Management;
Data Analytics;
Data Analysis;
E-Commerce Strategy;
Discrimination;
Targeted Advertising;
Targeted Policies;
Targeting;
Pricing Algorithms;
A/B Testing;
Ethical Decision Making;
Customer Base Analysis;
Customer Heterogeneity;
Coupons;
Algorithmic Bias;
Marketing;
Race;
Gender;
Diversity;
Customer Relationship Management;
Marketing Communications;
Advertising;
Decision Making;
Ethics;
E-commerce;
Analytics and Data Science;
Retail Industry;
Apparel and Accessories Industry;
United States
Ascarza, Eva, and Ayelet Israeli. "Artea: Designing Targeting Strategies." Harvard Business School Exercise 521-021, September 2020. (Revised June 2023.)
- September 2020 (Revised June 2023)
- Supplement
Spreadsheet Supplement to Artea Teaching Note
By: Eva Ascarza and Ayelet Israeli
Spreadsheet Supplement to Artea Teaching Note 521-041. This collection of exercises aims to teach students about 1)Targeting Policies; and 2)Algorithmic bias in marketing—implications, causes, and possible solutions. Part (A) focuses on A/B testing analysis and...
View Details
- March–April 2020
- Article
Avoid the Pitfalls of A/B Testing
By: Iavor I. Bojinov, Guillaume Sait-Jacques and Martin Tingley
Online experiments measuring whether “A,” usually the current approach, is inferior to “B,” a proposed improvement, have become integral to the product-development cycle, especially at digital enterprises. But often firms make serious mistakes in conducting these...
View Details
Keywords:
A/B Testing;
Experiment Design;
Social Networks;
Product Development;
Performance Improvement;
Measurement and Metrics;
Social Media
Bojinov, Iavor I., Guillaume Sait-Jacques, and Martin Tingley. "Avoid the Pitfalls of A/B Testing." Harvard Business Review 98, no. 2 (March–April 2020): 48–53.