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Abstract 
 

Algorithms have the potential to improve managerial decisions—but the returns depend on how 
decision-makers use them. We explore a pilot run by an Inspectional Services Department that 
tested a pair of predictive algorithms that varied in their sophistication and inputs. We find that 
both algorithms provide substantial gains on the department’s measure of interest compared to 
human judgment. But, there is little difference in the average performance between the two 
algorithmic methods, suggesting that in this context the greatest gains stem from using any data, 
rather than algorithmic sophistication. Despite measurable gains on the dimension of interest, 
decision-makers are only half as likely to follow algorithmic recommendations compared to their 
own judgment. Qualitative and exploratory empirical evidence suggests that this gap appears to 
be driven at least in part by differing predictions—as inspectors were using intuition about which 
features were most predictive. Overall, our findings suggest that for algorithms to translate into 
improvements in managerial decisions, organizations must carefully manage how decision 
authority is allocated and used, and that while simple rules based on intuition can be helpful, they 
may also act as an impediment to effective use of algorithms for decision-making.   
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1. Introduction 

 

Organizations are increasingly interested in using algorithms to support decision-making, 

drawing on insights dating back to at least the 1970s that demonstrate the potential for even simple 

algorithms to help improve decisions (e.g., Dawes (1979), Grove and Meehl (1996), Kahneman et 

al (2016)). More recently, the use of data and prediction has been linked directly to performance 

gains across firms (Brynjolfsson and McElheran (2019), Bajari et al (2019), Camuffo et al (2020)). 

At the same time, evidence suggests that firms may fail to realize these potential gains (Kim 

(2020), Brynjolffson, Rock, and Syverson (2021)).   

When leveraging data and algorithms, organizations must decide not only whether to use 

algorithms, but also how to use them. For example, a decision might be completely automated. 

However, in many managerial contexts, algorithms are instead used to form predictions that 

decision-makers may take as inputs (Agrawal, Gans, and Goldfarb (2018, 2019), Cowgill (2019), 

Choudhury, Starr, and Agarwal (2020)). In these cases, managers are given decision authority to 

use algorithmic recommendations as a decision aid, as opposed to a decision rule. Evaluating how 

decision-makers use their discretion when faced with data-driven inputs is an important step 

toward understanding the impact of algorithms in practice (Athey, Bryan, Gans (2020)).  

In this paper, we explore the role that decision authority may play in translating the 

informational gains from algorithms into improvements in decision outcomes, looking at the use 

of algorithmic predictions in the field. We compare the performance of human judgment with and 

without algorithmic support, and further compare two algorithms with varying degrees of 

sophistication. One algorithm is based on simple historical averages, while the other uses a random 

forest model trained on both historical data from within the organization and additional data from 

online platforms. We find that algorithms provide substantial gains compared to human judgment. 

However, the greatest gains in this context stem from simply integrating data into the decision 

process, rather than from algorithmic sophistication. This suggests that simple heuristics can be 

valuable in managerial settings—but when driven by data—rather than human intuition alone. 

Furthermore, to the extent that the algorithm truly captured the department’s goals, we find that 

decision-makers may in some cases use their decision authority to dissipate gains from algorithms 

by over-rejecting data-driven recommendations in favor of their own judgment. These findings 

suggest that in some settings, managing decision authority may dominate investments in 
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algorithmic sophistication or enhanced data collection, at least in these early days of putting 

algorithms to into practice. 

We evaluate the impact of algorithms on decision-making through an intervention 

implemented by an Inspectional Services department, where inspectors use their judgment to make 

decisions on which restaurants to inspect. This setting provides compelling attributes for testing 

the power of predictive algorithms, since inspectors’ scarce time must be allocated with an 

uncertain but at least partially predictive objective: identifying restaurants with health code 

violations. While inspectors possess experience and insight that inform their judgment, historical 

administrative records and external data may help to improve predictions (Lehman (2014), Glaeser 

et al (2016)).  

We compare three approaches the department implemented to allocate inspectors: (1) 

human judgment (“business-as-usual”), (2) a “data-poor” algorithm based on the average number 

of historical violations for each restaurant; and (3) a “data-rich” algorithm based on a random 

forest model trained on both historical violations and Yelp data.1 Restaurants with the highest 

predicted likelihood of violations according to each approach are randomly sorted and provided as 

lists to inspectors to guide their inspections over four periods of two weeks each. This design 

allows us to observe counterfactual inspector judgment and their ultimate decisions, and provide 

insights into the intensive-margin gains from algorithmic sophistication in the field by comparing  

“data-poor” and “data-rich” algorithms.  

We find substantial gains from predictive algorithms compared to human judgment: 

algorithmic methods identify restaurants with over 50 percent more violations compared to 

inspectors. Most of the gains stem from integrating historical violations data, as the data-poor 

algorithm results in improvements nearly as large as those from the data-rich algorithm.    

Even so, inspectors are only half as likely to inspect algorithm-recommended restaurants 

relative to those based on their own judgment—suggesting that managerial discretion may 

dissipate potential gains from using algorithms. We explore the possibility that selection due to 

non-compliance in our data could be driving estimated gains from algorithmic inputs, but find little 

evidence that this can explain the full magnitude of the observed effects.   

 
1 We use the term “data-rich” in a relative sense to the other algorithm, rather than an absolute sense. One can 
imagine using a vast set of other data that may yield higher-quality insights, which is beyond the scope of this paper. 
The motivation behind this treatment was to explore the extent to which richer data modeled in a more sophisticated 
way adds any marginal gain, given the rising interest and investment in data and advanced technologies.  
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While our analysis cannot fully pin down the mechanism, we consider a few possible 

explanations for inspectors’ noncompliance with algorithmic recommendations: (1) algorithm 

aversion, (2) the balancing of another objective such as minimizing geographic distance (i.e., costs 

of inspection) or the time since last inspection, (3) inspectors’ own priors on what drives violations 

based on their intuition and experience. While not conclusive, anecdotal and exploratory empirical 

evidence suggests that inspectors rejected algorithmic recommendations when they conflicted with 

their priors on restaurant attributes that drive violations. These findings suggest that simple rules 

of thumb developed in the presence of uncertainty may work against introducing algorithms to 

support decision-making.  

In addition to the literature on algorithms and decision-making, our analysis contributes to 

research on strategy and digitization more broadly. A growing body of work has identified many 

organizational practices that shape returns to investments in information technology and data 

(Bresnahan, Brynjolfsson, and Hitt (2002), Bartel, Ichinowski, and Shaw (2007), Bloom et al 

(2012), Brynjolfsson, Jin, and McElheran (2021)). Our findings point to additional, under-studied 

challenges that organizations may face in deploying algorithms in practice. While no single context 

fully generalizes to other settings, our findings suggest that attention to the design and management 

of decision authority can be more important than sophistication in the data and algorithms 

themselves. 

 

 

2. Empirical Context 

 

We evaluate the impact of algorithms on managerial decision-making in the Inspectional 

Services department at the City of Boston (“the City”), where inspectors use their judgment to 

decide which restaurants to inspect before carrying out the inspections. The City employed 

approximately 20-30 inspectors, assigned to at least one of 22 Boston wards or “neighborhoods.” 

Inspectors find a large range of violations across their inspections, ranging from 0 to 60 weighted 

violations per inspection across 2007-2015 (Appendix Figure 1). Weights are assigned based on 

the severity of the violation: Level I (1 point) corresponds to non-critical violations such as 

building defects or standing water. Level II (2 points) are “Critical Violations” such as the presence 

of fruit flies, which are more likely to create food contamination, illness or environmental hazard. 
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Level III (5 points) are those considered to be “Food-borne Illness Risk Factor[s]” like insufficient 

refrigeration or a lack of allergen advisories on menus. When critical violations are found in a 

restaurant, the City temporarily suspends the restaurant’s food permit if they pose an imminent 

public health risk. 

This context provides several research advantages. First, while the strategy of which 

restaurants to inspect may be complex, a key component of the strategy involves predicting which 

businesses will have violations, which raises the potential for algorithms to enhance decision-

making (Agrawal et al (2019)). The main objective defined by Boston’s Head Inspector is to 

incapacitate establishments that pose the highest risk to public health.2 Thus, decision quality 

depends on inspectors’ ability to prioritize restaurants according to their likelihood of violation, 

flagging restaurants with the highest risk to public health as early as possible. While inspectors are 

encouraged to conduct inspections in geographic proximity whenever possible, this is considered 

secondary to inspecting restaurants with greater likelihoods of violation.  

Second, there are readily accessible data one might use to potentially improve these 

predictions – such as historical data the City already has access to, and external data (e.g. from 

platforms such as Yelp, Twitter, or TripAdvisor). The data used in this implementation are similar 

to what was used in Glaeser et al (2016), which found that algorithms could in principle help to 

identify a much larger number of violations.  

Third, inspectors both possess experience and insight to inform their decisions and are 

motivated to prioritize higher-risk restaurants—providing a meaningful estimate for human 

judgment. Many inspectors have been working with the City for several years and have relevant 

expertise. They are assigned to a particular ward for approximately two years, which balances 

learning about restaurants with reducing possibilities for strategic behavior that may lead to 

regulatory capture. Furthermore, as complaints about unsanitary conditions or illness require 

inspections within a specific time period, inspectors can prevent uncompensated increases in their 

workload by prioritizing inspections with greater likelihoods of violation. The quality of their 

inspections can also play a role in career opportunities.  

 
2 While there are additional possible objectives, such as deterring restaurants from committing violations or ensuring 
fairness in the inspection allocation, our discussions with the department highlighted the primary importance of 
identifying restaurants with the highest likelihood of health violations.   
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Fourth, improving the targeting of inspections has a direct impact on organizational 

performance. Inspectors are responsible for inspecting all establishments in their ward multiple 

times a year: higher-risk facilities like hospitals and schools require three inspections per year, 

while restaurants are aimed to be inspected at least twice a year. However, in practice, inspectors 

are time-constrained and often unable to make all targeted inspections. Thus, better prioritizing 

inspections can improve the allocation of inspectors’ scarce time.  

 

 

3. Empirical Design  

 

Between February 1 and March 25, 2016, the City evaluated three methods to predict 

restaurant violations: (1) human judgment, (2) a “data-poor” algorithm, and (3) a “data-rich” 

algorithm. While we advised on the empirical design, the City made the final design choices and 

executed on the implementation.  

The empirical design compared three methods to predict violations. The first method 

represented the status quo of relying on inspectors’ own judgment to rank restaurants. To obtain 

these rankings, the Head Inspector asked all inspectors to rank the restaurants in their ward without 

a mandated priority to inspect, in the order that they intended to inspect them.3 The second method 

(a “data-poor algorithm) used the average number of violations across historical inspections to 

rank restaurants in each ward from most to least likely to have violations. The third method (a 

“data-rich” algorithm) ranked restaurants using a random forest model trained on both historical 

violations and Yelp data—including the number of Yelp reviews, Yelp rating, price range, hours, 

services available (e.g., reservations), business ambience (e.g., children-friendly), and 

neighborhood.4 While there are certainly more sophisticated approaches that might yield higher-

quality insights, this algorithm bundled a comparatively more sophisticated model and richer data 

 
3 This wording was chosen by the City as the most natural way to obtain inspector rankings. Restaurants with a 
mandated priority to inspect include high-risk establishments (e.g., hospitals and nursing homes), re-inspections, and 
restaurants flagged by complaints. We excluded these establishments to assess how inspectors prioritized restaurants.  

4 This method received second-place in a tournament run by the City to source algorithms for predicting violations 
(described in Glaeser et al. (2016)). This option provided theoretical gains of 40% relative to inspectors, and was 
chosen above the winner because the City felt it would be substantially easier to implement. 
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than the “data-poor” algorithm, as one way to emulate common practices by firms to invest in 

more complex technologies and data.  

Each inspector received a docket of restaurants to inspect in each period, which listed the 

top-ranked restaurants from each of the methods in randomly sorted order.5 The City determined 

the number of restaurants to list on each docket based on the number of restaurants that each 

inspector ranked for that period, which typically ranged from 15-21. Based on this number, the 

City’s Data team sourced equal numbers of the highest rankings from the other two methods, 

removed any duplicates, and randomly sorted all restaurants to create a docket.6  

These dockets were presented as a “new way of doing inspections” to guide inspector 

decisions, and inspectors were explicitly informed that the list of restaurants that they had ranked 

were supplemented with those that were prioritized using data that the City’s data team had 

processed. They were asked to go down the docket in each inspection period.  

Because inspectors were asked to first rank their own choices, it is easier to understand 

what inspectors’ counterfactual decisions would have been without algorithms. Moreover, the 

variation in the degree of algorithmic sophistication sheds light on how features of different 

algorithms impact outcomes. Last, randomizing the order of restaurants on the docket makes it 

possible to identify whether algorithmic methods effectively identified restaurants with a higher 

number of violations.  

 

3.1 Data and Empirical Approach  

 

The main data we observe is anonymized data on rankings and inspection results. However, 

several important implementation issues led to empirical challenges.   

First, inspectors inspected substantially fewer restaurants in practice than those assigned 

on the dockets. The total number of restaurants listed across dockets over this period was 1,042. 

However, inspectors were only able to inspect 361 restaurants, averaging to approximately 20 

restaurants per inspector.  

 
5 Each inspection period covered approximately 2 weeks, and rankings were processed prior to the inspection periods.  

6 The City made this decision in order to include all restaurants inspectors had prioritized.  
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Second, the City modified the docket generation process for the last two periods, after 

observing that inspectors could not complete the dockets. For these periods, dockets were filled by 

listing restaurants that had not yet been inspected from previous dockets. While dockets were still 

capped at a maximum of 47 restaurants, this change meant that each docket no longer sourced an 

equal number of restaurants from each method if inspectors had completed an imbalanced number 

of restaurants across methods in prior weeks.  

Lastly, rankings from all three methods were not available for all restaurants. Inspectors 

ranked only their highest-ranked restaurants in each period, so restaurants that were listed on the 

dockets because they were ranked highly only by algorithmic methods did not have an inspector 

ranking. There were also some restaurants ranked highly by inspectors that lacked rankings from 

algorithmic methods if there were no data from historical inspections or Yelp.  

To address these issues, we take the following steps. First, we focus our main analyses on 

evaluating whether inspected restaurants ranked in the top 20 by algorithms have a higher number 

of violations than those ranked in the top 20 by inspectors. Restricting to this subsample ensures a 

more consistent availability of rankings, and allows us to compare inspection outcomes across 

comparable rankings in each method. Furthermore, since inspectors ranked their highest-priority 

restaurants, comparing the top 20-ranked restaurants provides insight into how the top-ranked 

restaurants under each of the three methods differ, and whether restaurants that were ranked highly 

by algorithms have a higher number of violations.  

This subsample consists of 280 restaurants out of the full set of 361 that were inspected, 

and represents a subset of all 674 restaurants that were ranked in the top 20 by any method. We 

find substantial overlaps between the methods, especially those using algorithms, with 176 

restaurants (26%) ranked in the top 20 by at least two methods. 108 (16%) are ranked in the top 

20 by the data-rich algorithm alone, 97 (14%) by the data-poor algorithm alone, and 293 (43%) by 

inspectors alone. 

Based on this data, we assess the gains from using algorithms by examining the number of 

violations found across restaurants ranked in the top 20 by algorithmic methods compared to those 

ranked by inspectors. We use the following model as our main specification for restaurant !:  
 

			#$%&'	(!$'&%!$)*! = 	, + 	./&%&0!1ℎ	! +	3/&%&4$$5	! + 678'%!9':7:%ℎ$;*! + <! 	        (1) 
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Here, , represents the mean number of weighted violations for restaurants ranked in the top 20 by 

inspectors; . and 3 represent the mean expected difference in weighted violations for a restaurant 

ranked by the data-poor and data-rich algorithms relative to a restaurant ranked by inspectors, 

respectively; 6 accounts for overlaps between methods and represents the mean expected 

difference in weighted violations for a restaurant ranked by multiple methods.  

We explore robustness of the results across alternative subsamples. We vary the threshold 

of the top 20 across 10-30, as well as the full sample of inspected restaurants. We also account for 

changes in the docket-generation process by restricting our sample to the first two periods before 

the modification occurred.  

Lastly, given the selection present in our data due to only a subset of restaurants being 

inspected, we evaluate how selection bias might impact our estimates of the gains from algorithms.  

 

 

4. Results  

 

We find large gains in identifying violations from using algorithms: algorithms identify 

restaurants with over 50% more violations on average compared to those prioritized by inspectors. 

The largest gains stem from using any data, rather than algorithmic sophistication. Despite these 

gains, we find that inspectors were half as likely to follow algorithmic recommendations compared 

to restaurants that they ranked themselves.  

 

4.1 The gains from algorithms  

 

We find that algorithms identify restaurants with more violations than those prioritized by 

inspectors. Table 1 Column 1 shows a comparison of weighted violations by restaurants ranked by 

one of the methods alone or by multiple methods. Restaurants ranked by inspectors alone have 6.8 

violations on average, which is equivalent to having a Level II and a Level III violation. Our 

estimates of the gains from algorithms over human judgment, . and 3, are 5.03 and 4.88 

respectively, which represents a difference of targeting a restaurant with one more Level III 

violation. The coefficients on the two algorithmic methods are not statistically different, although 

the data-rich algorithm used both richer data and a more sophisticated algorithm. 
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In Column 2 of Table 1, we explore a specification that accounts for restaurants ranked by 

inspectors that were also ranked by one of the algorithms. The constant term shows the mean 

number of weighted violations for both restaurants ranked by inspectors alone and those that 

overlapped with one of the algorithms. Accounting for these overlaps increases the average number 

of violations found at inspector-ranked restaurants to 7.4. We also separate out restaurants ranked 

by both algorithms and all three methods, and find that these increase the violations found by 

twofold.  

These results are robust across alternative subsamples that vary the threshold of top-ranked 

restaurants (Appendix Table 1), as well as subsamples that restrict to the first one or two inspection 

periods prior to the modification in the docket generation process (Appendix Table 2).  

One key consideration in interpreting these results is what the inspector-ranked method 

represents. Inspectors were asked to rank the restaurants in the order they intended to inspect them, 

raising the possibility that inspectors may not have been prioritizing restaurants with more 

violations. In our interpretations, we assume this method represents inspector judgment on 

restaurants with the highest likelihood of violation, as the wording was chosen by the City as the 

most natural way to obtain inspector rankings. As described in Section 2, inspectors were trained 

to prioritize restaurants by their likelihood of violations, and had some incentive to do so as any 

high-risk restaurants later flagged through complaints would increase their workload.  

Based on these results, we draw two conclusions. First, the data-poor and data-rich 

algorithms outperform human judgment in predicting violations, and these performance 

improvements are on the order of over 50% and statistically significant.  

Second, the performance of the data-poor and data-rich algorithms are statistically 

indistinguishable, suggesting that the marginal benefit of additional data may be limited in this 

case. This is consistent with findings in similar applications to problems with representative 

datasets, especially when the scale of the dataset is smaller (Ng 2018). This result suggests that in 

some cases, algorithmic sophistication may not lead to substantially larger gains in decision-

making, and reinforces that simple heuristics can go a long way—but when driven by data, rather 

than human decision-makers with discretion.  

While these results suggest that prior violations play an important role in predicting current 

violations, one can imagine important reasons why a city might not want to use them to guide 

inspection decisions. For example, if heterogeneity is driven by variation in inspector stringency 
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rather than true variation in violations, as found in Jin and Lee (2018), we may be concerned about 

relying heavily on past data. Furthermore, as with any simple algorithm, using historical violations 

to guide decisions may facilitate strategic behavior that might lead to regulatory capture, 

eventually reducing the efficacy of this approach. Lastly, while predicting violations are part of the 

managerial problem, they are unlikely to be the full problem. To the extent that inspections are 

meant to do more than help rectify existing problems, one may not want to prioritize solely based 

on these predictions.  

 

4.2 Decision authority and non-compliance 

 

Despite these gains from algorithms, inspectors were less likely to inspect algorithmically-

ranked restaurants compared to those based on their own judgment.  

Table 2 shows the extent of the non-compliance we observe. Inspector-only ranked 

restaurants accounted for 61% of all inspected restaurants, whereas either of the algorithm-only 

ranked restaurants accounted for only 10% each of all inspected restaurants. Mapping these 

numbers to all top-20 ranked restaurants detailed in Section 3.1, we find that inspectors were only 

half as likely to inspect restaurants based on algorithms relative to their own judgment. They 

inspected 58% of the 293 restaurants that they alone ranked in the top 20, but only inspected 27% 

and 29% of the 108 and 97 restaurants that the data-rich or data-poor algorithm alone ranked.  

Figure 1 examines heterogeneity across inspectors, plotting the percentage of restaurants 

inspected by each inspector, with the red line indicating what the percentage breakdown would 

have been if the inspector had followed the dockets. While we observe some heterogeneity, nearly 

all inspectors inspected more restaurants prioritized by their own judgment compared to those 

ranked by algorithms.  

While this non-compliance raises an important challenge for organizations in realizing 

gains from algorithms in practice, it also poses a potential threat to our results, because we observe 

inspection results for only a subset of the restaurants on each docket. In particular, it raises the 

concern that inspectors may have selected algorithm-ranked restaurants with higher likelihoods of 

violation. The performance differences we observe across methods could then be driven primarily 

by a selection effect of not observing outcomes for restaurants ranked lower by algorithms, rather 

than a treatment effect.  
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We test this concern in Column 1 of Table 3 by looking for differences in average ranking 

by method for inspected restaurants, excluding any that were ranked by multiple methods. If 

inspectors inspected higher-ranked restaurants on algorithmic lists, then the average ranking of 

restaurants on algorithmic lists should be higher than those on the inspector-generated list.  

The point estimates suggest that there is a slight bias in the opposite direction, with 

restaurants ranked by inspectors alone occupying higher ranking positions compared to those 

ranked by the data-rich and data-poor algorithms, although differences are small and statistically 

insignificant. This suggests that the results are unlikely to be driven by observing different parts 

of the ranking distribution for each method and misattributing these differences.  

Furthermore, we find little evidence that the gains from algorithms are emerging from a 

particular part of the ranking distribution. In Column 2 of Table 3, we explore whether the gains 

from algorithms vary across rank. The gains from algorithms appear to be spread across the ranking 

distribution, as the coefficients on interactions with rank are both small and relatively precise 

around 0.  

These results, in context of our broader findings, suggest that the performance differences 

we observe between the algorithmic approaches and inspector judgment are unlikely to be fully 

explained by selection alone. First, while there may be selection in the restaurants that inspectors 

choose to inspect, inspectors do not appear to choose substantially dirtier restaurants from the 

algorithmic approaches compared to their own list. This suggests that inspectors may not be 

making sophisticated tradeoffs, and makes it difficult to construct a clear alternative story driven 

by selection. Second, the magnitude of the differences we observe between algorithmic approaches 

and inspectors is quite large, and does not differ significantly across rankings. Given this, it seems 

unlikely that selection would change these results directionally.  

However, one key limitation to our analysis is that we do not know how clean the 

restaurants that inspectors do not visit may be. Although inspectors are not systematically 

prioritizing restaurants predicted to have the most violations, it remains possible that uninspected 

restaurants are much cleaner than the inspected ones, which would affect the magnitude of gains 

from algorithms one could expect in a higher-compliance world.  

 

4.3 What drives non-compliance?  
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These findings also raise the question of what drives inspectors’ non-compliance. While 

our analysis cannot fully pin down the mechanism, we consider a few possible explanations: (1) 

algorithmic aversion, (2) balancing other objectives such as minimizing geographic distance or 

inspecting restaurants that have gone longer without an inspection, (3) inspectors’ priors on what 

predicts violations. We find the most supportive evidence for this last explanation.  

One potential explanation is algorithmic aversion, which has been shown to play a role in 

some settings (e.g., Dietvorst et al. 2015). However, the department chose to not explicitly 

communicate that these recommendations were driven by algorithms—only stating that they 

supplemented inspectors’ lists with restaurants prioritized using data, at which inspectors 

expressed enthusiasm. If the department had, it could have led to different responses, and may 

have even increased rates of non-compliance. But, as algorithms in this setting had the effect of 

simply suggesting a different set of restaurants to inspect, algorithm aversion may be less likely to 

explain the effects we observe.   

Another explanation may be that inspectors were balancing another objective than the 

number of violations, such as geographic distance, thus sacrificing targeting restaurants with 

higher violations to reduce the distance that they traveled. To explore this, we evaluate the distance 

inspectors traveled to their next restaurant compared to the distance from the closest algorithm-

ranked restaurant that they did not inspect. However, we find the latter to be a subset of the first—

suggesting that inspectors often had an algorithmically-ranked restaurant in closer proximity than 

the next restaurant they did travel to (Figure 2).  

We also explore whether inspectors may have been more sensitive to overdue inspections, 

by examining the number of days elapsed since the last inspection. We find that inspectors tended 

to slightly prioritize restaurants that were more overdue, suggesting that objectives may not have 

been fully aligned. However, differences in the number of days elapsed across inspected versus 

non-inspected restaurants, or restaurants ranked highly by the inspectors compared to those ranked 

by the algorithms, are not statistically significant (Table 4).  

Finally, anecdotal evidence on inspector decisions seems to broadly suggest the presence 

of strong priors. Discussions with individuals involved with the implementation suggest that 

inspectors might have prioritized restaurants with certain features that they viewed as being 

correlated with violations, such as chains, lower-end businesses, and seafood restaurants—simple 

rules based on intuition, which may have helped their decision-making prior to using algorithms 
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(Sull and Eisenhardt (2015)). This raises the potential that inspectors appear to have overridden 

algorithmic recommendations when they conflicted with this intuition. We find suggestive 

evidence consistent with this interpretation in the summary statistics of restaurants ranked by each 

method and inspected (Table 4). 

While this analysis provides little conclusive evidence on mechanisms, it raises the 

possibility that allocating decision authority to decision-makers may prevent organizations from 

realizing gains from algorithms in decision-making. In this case, simple rules of thumb, which may 

have provided advantages for decision-making in the past, may have ended up as an impediment 

when using algorithms for decision-making. This is consistent with evidence found by Hoffman 

et al (2018), where managers who appear to hire against job test scores ended up with worse 

average hires. As theorized by Athey et al (2020), whether to allocate decision authority to 

decision-makers compared to algorithms likely depends on a number of factors, including how 

much private information decision-makers have, how aligned their incentives are with the 

objective at hand, how biased they may be, and how well they can predict compared to algorithms. 

Furthermore, the value of discretion may be highly dynamic, if decision-makers become more 

likely to rely on algorithms as they observe their performance and able to exercise discretion more 

carefully.  

However, these findings—and the extent to which decision-makers may use their discretion 

to reject algorithmic recommendations—may also crucially depend on the organizational context 

and practices. One key choice variable may be how to communicate about the algorithm being 

implemented, as further explanations about the algorithm and the motivation for using it may help 

decision-makers better apply their discretion. Similarly, clarity on organizational objectives and 

higher-powered incentives may help better align decision-makers. 

 

5. Discussion 

 

Our results show a clear role for algorithms in improving decisions, but also highlight that 

managing decision authority is an important issue. Even a simple algorithm based on internal 

historical data has the potential to better prioritize restaurants relative to human judgment. 

Moreover, much of the gains stemmed from simply integrating data into the decision process, 
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rather than a more sophisticated algorithm. Yet despite these gains, inspectors frequently chose to 

prioritize restaurants based on their own judgment rather than algorithms.  

Our analysis has important limitations. First, our analysis takes the goal of the department 

as given. While the department’s goal in this context was to prioritize based solely on the severity 

of violations, in practice, one can imagine a variety of other goals that departments might want to 

incorporate—such as adjusting for travel distance, recency of inspection, or more easily rectifiable 

violations, and a simple predictive algorithm may not be completely aligned with their objectives. 

More broadly, if inspections also deter future violations, then this would suggest that a department 

may want to change its approach to prioritization. Furthermore, to the extent that behavior changes 

over time (whether through deterrence or other mechanisms), the effect of implementing different 

targeting strategies could vary. Second, our analysis assumes that inspections accurately capture 

true violations. To the extent that violations are inaccurate or biased, then predictions based on 

those would also be biased. Third, we examine one specific data set, within one particular context. 

Other datasets or algorithms might be more productive than these approaches, and organizations 

need to carefully consider the quality of their data, and the noise and bias present. Similarly, the 

compliance patterns we observe may not generalize to other settings with different communication 

and organizational dynamics.  

Stepping back from this application, organizations are increasingly investing in 

technologies to support their decision-making, and our findings speak to some of the promise and 

challenge involved in implementing such approaches at scale. While we cannot claim that these 

findings fully generalize to other settings, they highlight the importance of carefully considering 

how decision authority should be allocated and managed. This particular decision context is 

characterized by moderate complexity, with higher costs for mistakes that make some degree of 

human supervision valuable, and our findings may be most generalizable to similar contexts. In 

settings with higher complexity and richer data, the benefits of algorithmic inputs to decision-

making may be far higher than what we find, suggesting that decision authority may be better 

allocated to algorithms.  

However, the solution may rarely be as simple as removing decision authority from human 

decision-makers. For many decisions in managerial contexts, removing humans from the decision 

process may involve substantial risks, and some degree of human supervision may remain 

necessary for edge cases. Much work remains to be done to further understand how organizations 
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can effectively implement algorithms for decision-making without removing managerial 

discretion. Some promising directions for future work might explore how decision processes can 

be redesigned and what organizational practices may help decision-makers learn to better inform 

their decisions using data.  
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Figure 1: Percentage Inspected by Method across Inspectors 

 
This figure plots the percentage of inspected restaurants by ranked method for each inspector. Each bar represents a 
single inspector, where the left axis indicates the inspector, and the right axis shows the number of restaurants that the 
inspector inspected. The red line indicates the percentage of inspector-only ranked restaurants in the full sample of 
top 20-ranked restaurants, which is where the Inspector-Only bar (in dark grey) should have ended if inspectors had 
fully complied.  
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Figure 2: Comparison of the distance inspectors travelled versus the closest algorithm-ranked  
restaurant not inspected 

 

 
This figure plots the distribution of the distance inspectors travelled to their next restaurant, compared with the distance 
to the closest algorithm-ranked restaurant on the docket that was not inspected. 
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Table 1: The Informational Gains from Algorithms  
 
 (1) (2) 
Outcome: Total Violations Total Violations 
 b/se b/se 
Data-rich Algorithm Only 5.03*** 4.43*** 
 (1.13) (1.16) 
Data-poor Algorithm Only 4.88*** 4.28*** 
 (1.36) (1.33) 
Multiple Methods 7.66***  
 (1.27)  
Both Algorithms  7.46*** 
  (1.45) 
All Methods  8.37** 
  (3.16) 
Constant 6.80*** 7.40*** 
 (0.61) (0.80) 
Observations 280 280 
Including Ranking Up To:  20 20 
 
Total violations is a weighted sum of one, two, and three star violations. Data-rich Algorithm Only and Data-poor 
Algorithm Only are binary variables indicating restaurants that were ranked in the top 20 by the data-rich algorithm or 
the data-poor algorithm only, respectively. Multiple Methods indicates restaurants that were ranked in the top 20 by at 
least two or all three methods. Both Algorithms indicates restaurants ranked in the top 20 by both data-rich and data-
poor algorithms, but not the inspectors. All Methods indicates restaurants ranked in the top 20 by all three methods. 
Standard errors are clustered at the inspector level. 
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Table 2: Inspector Compliance 
 

 
(1) 

 
(2) 

 
(3) 

 
Number of Restaurants 

Inspected (%) 

% of Restaurants Inspected 
Out of All Top-20 Ranked 

Restaurants 
Data-rich Algorithm Only 29 10.36 26.85 
Data-poor Algorithm Only 28 10 28.87 
Inspector Only 171 61.07 58.36 
Multiple Lists 52 18.57 29.55 
Total 280 100% 100% 
 
This table shows the breakdown of inspected restaurants by ranking method. Column (1) and (2) respectively show 
the number of restaurants that were inspected in each category and the corresponding percentages. Column (3) shows 
the percentage of restaurants inspected out of all top-20 ranked restaurants in that category.    
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Table 3: Differences in Rankings and Performance across the Ranking Distribution 
 

 (1) (2) 
Outcome: Rank Total Violations 
 b/se b/se 
Data-rich Algorithm Only 1.29 4.55* 
 (1.07) (2.55) 
Data-poor Algorithm Only 1.06 3.28 
 (1.09) (2.84) 
Data-Rich Algorithm x 
Rank  0.04 

  (0.19) 
Data-Poor Algorithm x 
Rank  0.14 

  (0.22) 
Rank  -0.03 
  (0.06) 
Constant 10.44*** 7.15*** 
 (0.41) (0.89) 
Observations 228 228 

 
These regressions are run across the subsample of restaurants ranked in the top 20 by one of the methods alone, 
excluding any restaurants ranked by multiple methods. Column (1) analyzes differences in rankings across inspected 
restaurants, where Rank indicates the ranking position using the method that ranked the restaurant in the top 20. 
Column (2) analyzes whether the performance of algorithmic methods differs depending on the ranking position, 
where Total violations is a weighted sum of one, two, and three star violations. Standard errors are clustered at the 
inspector level. 
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Table 4: Characteristics of Ranked and Inspected Restaurants 
 
Panel A: Restaurant Ranked in the Top 20 by Each Method 

 
(1) Data-Rich 

Algorithm Only 
(2) Data-Poor 

Algorithm Only 
(3) Inspector 

Only 
p-value 
(1)=(3) 

p-value 
(2)=(3) 

      

Chain 0*** 0.04* 0.1 <0.001 0.07 
Yelp Rating 3.14 2.6 2.97 0.33 0.17 
Yelp Reviews 119.9 144.41 154.28 0.19 0.74 
Seafood 0*** 0.05 0.06 0.004 0.66 
Restaurant Age 1.69*** 3.18** 7.27 0.003 0.05 
Price Range 1.4 1.14 1.27 0.17 0.4 
Accepts 
Reservations 0.27 0.22 0.21 0.2 0.84 
Table Service 0.46** 0.38 0.32 0.03 0.34 
Days Since Last 
Inspection 153.43 164.91 181.21 0.23 0.39 

 
Panel B: Inspected vs. Non-Inspected Restaurants 
   

 Not Inspected Inspected 
Chain 0.047 0.06 
 (0.011) (0.02) 
Yelp Rating 2.94 2.93 
 (0.07) (0.11) 
Review Count 158.3 140.9 
 (13.46) (16.16) 
Seafood 0.06 0.04 
 (0.01) (0.01) 
Restaurant Age 4.34 5.47 
 (0.58) (1.17) 
Price Range 1.31 1.23 
 (0.05) (0.06) 
Accepts Reservations 0.28 0.16*** 
 (0.02) (0.03) 
Table Service 0.42 0.32*** 
 (0.03) (0.03) 
Days since Last Inspection 172.46 180.74 
 (9.08) (6.68) 

 
Panel A compares the attributes of restaurants ranked in the top 20 by each method, excluding any restaurants included 
across multiple methods. Columns (1)-(3) show means of each variable, and the last two columns display the p-value 
of the difference between restaurants ranked in the top 20 by the Data-Rich Algorithm Only and Inspector Only, and 
the Data-Poor Algorithm Only and Inspector Only, respectively, from a regression of the restaurant attribute on an 
indicator for being ranked by one of the algorithmic methods. Panel B compares the attributes of inspected and non-
inspected restaurants.  
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Appendix Figure 1: Distribution of Violations 

 
This figure shows the distribution of weighted violations across inspections from January 2007 through June 2015.  
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Appendix Table 1: Robustness across sample restrictions  
 
 (1) (2) (3) (4) (5) 
Outcome: Total Violations Total Violations Total Violations Total Violations Total Violations 
 b/se b/se b/se b/se b/se 
Data-rich Algorithm Only 4.15** 4.87*** 4.59*** 4.63*** 4.28*** 
 (1.79) (1.19) (1.22) (1.20) (1.30) 
Data-poor Algorithm Only 4.03* 4.30** 4.44*** 4.48*** 4.13*** 
 (2.22) (1.63) (1.35) (1.37) (1.27) 
Multiple Methods 7.82*** 7.68*** 7.22*** 7.26*** 6.91*** 
 (1.75) (1.33) (1.26) (1.29) (1.30) 
Constant 7.10*** 7.02*** 7.24*** 7.20*** 7.55*** 
 (0.80) (0.64) (0.64) (0.57) (0.55) 
Observations 155 220 312 337 361 
Including Ranking Up To:  10 15 25 30 All 
 
Only restaurants ranked within the top 10 by any condition are included. Total violations is a weighted sum of one, two, and three star violations. 
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Appendix Table 2: Robustness across time periods 
 (1) (2) 
Outcome: Total Violations Total Violations 
 b/se b/se 
Data-rich Algorithm Only 3.76** 4.39*** 
 (1.37) (1.33) 
Data-poor Algorithm Only 4.44** 4.23** 
 (1.86) (1.73) 
Multiple Methods 8.73*** 7.98*** 
 (1.79) (1.49) 
Constant 6.85*** 6.97*** 
 (0.53) (0.51) 
Observations 200 220 
Including Periods Up To:  1 2 
 
Only restaurants ranked within the top 20 by any condition are included. Total violations are a weighted sum of one-
, two-, and three-star violations. 
 

 
 

 


