When Does Advice Impact Startup Performance?*

Aaron Chatterji Solène M. Delecourt Sharique Hasan Rembrand Koning
Duke Fuqua and NBER Stanford GSB Duke Fuqua Harvard Business School
ronnie@duke.edu solened@stanford.edu sh424@duke.edu rem@hbs.edu

September 28, 2018

Abstract

Why do some entrepreneurs thrive while others fail? We explore whether the advice entrepreneurs receive about managing their employees influences their startup’s performance. We conducted a randomized field experiment in India with 100 high-growth technology firms whose founders received in-person advice from other entrepreneurs who varied in their managerial style. We find that entrepreneurs who received advice from peers with a formal approach to managing people—instilling regular meetings, setting goals consistently, and providing frequent feedback to employees—grew 28% larger and were 10 percentage points less likely to fail than those who got advice from peers with an informal approach to managing people, two years after our intervention. Entrepreneurs with MBAs or accelerator experience did not respond to this intervention, suggesting that formal training can limit the spread of peer advice.

*Authors names are listed alphabetically and all authors contributed equally to this project. This research has received funding and support from The Indian Software Product Industry Roundtable (iSPIRT), Stanford’s SEED Center, Duke’s Innovation and Entrepreneurship Initiative, Stanford GSB, and the Kauffman Foundation. Special thanks to our field partner, iSPIRT, who made this research possible, Gokul KS, who worked tirelessly to make PNgrowth a success, Randy Lubin for his help at the retreat and Aditya Ruia for assistance in collecting the outcome data. A previous version of this paper was titled “Learning to Manage: A Field Experiment in the Indian Startup Ecosystem.”
Introduction

The survival and growth of entrepreneurial firms varies widely (Birley and Westhead, 1990; Audretsch and Mahmood, 1995). Strategy researchers have long attributed these differences to resource and capability gaps (Baum, Calabrese and Silverman, 2000; Helfat and Lieberman, 2002). Of particular interest is the gap in management quality, whereby entrepreneurs often lack the management capabilities needed to grow their companies (Azoulay and Shane, 2001; Bloom and Van Reenen, 2010; Armanios et al., 2017; Kulchina, 2017). As a result, many otherwise promising startups fail.

How can entrepreneurs improve their management skills? Recent work on entrepreneurial training programs and business-plan competitions (e.g., Fairlie, Karlan and Zinman, 2015; Bryan, Tilcsik and Zhu, 2017; Howell, 2017; Camuffo, Gambardella and Spina, 2018; Lyons and Zhang, 2018) provide some evidence that entrepreneurs can acquire these skills. But another prevalent source of knowledge about management has been far less explored. Entrepreneurs often seek out advice from their peers to gain insights into how to manage their enterprises (Vissa and Chacar, 2009; Kuhn and Galloway, 2015). Interestingly, we have few insights about whether this advice is useful and the conditions under which it improves startup performance (cf. Lerner and Malmendier, 2013). Although numerous experimental studies on formal management training exist, the value of peer-to-peer advice remains an open question.

We use a field experiment to study how advice from peers helps entrepreneurs manage their human capital, a key determinant of firm growth and survival. To capture variation in the type of management advice an entrepreneur receives, we leverage the idea that advice reflects the adviser’s own prior experience and knowledge (Sørensen, 2007; Lerner and Malmendier, 2013; Hasan and Bagde, 2013; Lindquist, Sol and Van Praag, 2015). Specifically, we use a behavioral measure of how “formal” or “informal” the adviser is in the management of his or her own startup. Formal management involves consistently setting goals, providing feedback, and coordinating employees across various tasks (Bloom et al., 2013). Informal managers take a more laissez-faire approach to management where they rarely direct, meet or coordinate with their employees. A nascent literature has found that more formal management practices within firms, whereby leaders are actively setting incentives and providing feedback, is causally linked to improved firm performance (e.g., Bloom et al., 2013). We argue that an entrepreneur who receives advice from a peer with a formal management style will experience increased startup growth and survival. The plausible counterfactual, in our view, is that this advice makes no difference or that no differential impact exists based on who provides it.
Our field experiment randomized 100 growth-stage startup founders into pairs during a three-day executive retreat in Mysore, India. The purpose of the retreat was for participants to learn from other founders in the Indian entrepreneurial ecosystem. Our research design builds on the standard “peer effects” specification to estimate the causal effect of advice spillovers within randomized founder pairs (Hasan and Bagde, 2015; Sacerdote, 2014). Our research design extends this approach and also addresses two of the major drawbacks of prior peer effects studies as we will describe below (Angrist, 2014). During the event, the paired founders advised each other on management and growth strategy. The peer-advising sessions lasted for approximately two days, and founders left the camp with a checklist of changes to make over the next year. We followed up with these startups almost one year after the retreat and then tracked outcomes two years after the retreat to understand how peer advice affected their survival and growth. Our sample consists of a substantial proportion of growth-stage software startups in India, allowing us to develop some general insights.

Founders who were randomized to a peer who was one standard deviation higher on the Peer Management Index (moving from engaging in specific management activities monthly to weekly) had 28% more employees and were 10 percentage points more likely to have survived two years later. For the median firm, this effect size is equivalent to retaining an additional 2.5 employees and increasing the chances of survival from 75% to 85%. Additional evidence from our one-year follow-up survey shows that advice from formal-management peers caused founders to make more changes to how they managed human capital. By contrast, founders paired with informal managers were more likely to fail, and those who survived grew more slowly. The size of the advice effect on survival is about one-third to one-half as large as the estimated effect of accelerator participation (e.g., Hallen, Bingham and Cohen, 2014).

What accounts for the large effect of advice on startup success in our study? The stated goal of the retreat was to help founders grow their startups. Thus, those founders who attended the retreat were arguably the kind of entrepreneur who is most receptive to advice and most likely to translate advice into action. This argument is especially salient in the Indian ecosystem where founders often lack formal management training, even as they lead high-technology startups. In the absence of formal training, entrepreneurs are especially likely to turn to peer advice, both good and bad, to make decisions, structure firm policies, and learn how to manage (Vissa and Chacar, 2009). This logic implies startups led by founders with business training (e.g., via an incubator/accelerator or an MBA program) may be less in need and so less affected by peer advice. Indeed, we find that startups run by MBAs or incubator/accelerator participants show
little positive or negative responsiveness to peer advice.

Although we find evidence that suggests founders shared management advice, we are also able to rule out a number of alternative explanations for our results. Controlling for the peer’s experience and training, the peer’s startup stage and size, and for the peer’s personal characteristics, such as age and network size, do not change our results. Most importantly, by randomizing founder pairings as we do, we rule out the most severe confounds for advice effects, selection into pairs based on unobservables due to homophily, preferential attachment, or any alternative social-matching process (Manski, 1993). Our results suggest that the randomized-pairing induced variation in the quality of management advice which in turn influenced firm growth and survival, particularly for founders without formal management training.

Theoretical Framework

Advice and Startup Performance

One of the primary goals of strategy research is to explain differences in performance across firms. In that spirit, much of the strategy research on high-growth startups has tried to explain why some succeed and so many fail (e.g., Lee, Lee and Pennings, 2001). Prior work has documented the various reasons startups fail, and the lack of management capability has emerged as a key barrier to survival and growth (Azoulay and Shane, 2001; Bloom and Van Reenen, 2010; Armanios et al., 2017; Kulchina, 2017). Further, many young technology startups are knowledge-intensive with their key inputs being their employees, which implies management of human capital will have an outsized effect on performance. Ineffective management of this key resource could dampen growth and even threaten survival (Baron and Hannan, 2002; Beckman, Burton and O’Reilly, 2007). How then can founders improve the management of their companies?

Some startup founders handle these challenges by hiring experienced managers (Kulchina, 2016) or entering incubator or accelerator programs (Cohen and Hochberg, 2014). Most founders, however, likely rely on their own trial and error or on informal advice from peers and mentors (Nanda and Sørensen, 2010; Lerner and Malmendier, 2013; Scott and Shu, 2017). Prior work has conceptualized this advice as reflecting the adviser’s own prior experience and knowledge (Sørensen, 2007; Lerner and Malmendier, 2013; Lindquist, Sol and Van Praag, 2015). Entrepreneurs can seek advice on a wide array of topics, including strategy, marketing, finance, and people-management issues such as how to hire, motivate and best leverage employees. However, the content and quality of advice about business practices is highly variable (Vermeulen,
Entrepreneurs also vary in their willingness to adopt the advice they are provided (Bryan, Tilcsik and Zhu, 2017).

Informal advice is distinct from coaching (Bryan, Tilcsik and Zhu, 2017), mentoring (Scott and Shu, 2017), and general feedback in a business-plan competition (Clingingsmith and Shane, 2017; Howell, 2017). The advice that entrepreneurs seek out and receive (Vissa and Chacar, 2009) can be unstructured and highly dependent on the knowledge and experience of the adviser. Because advice is typically dispensed via conversations, it may be more customized than other sources of knowledge, because clarifications can be requested and additional information can be provided in real time. Despite the prevalence of this kind of advice, we know little about if or when it will lead to better startup performance.

Advice about management is particularly germane to the interests of strategy scholars. Recent work has demonstrated a causal effect of formal management practices on firm performance (Bloom et al., 2013). In several contexts, including small businesses, large firms, schools, and hospitals, scholars find that formal management practices are consistent with increased profits and survival (Bloom and Van Reenen, 2006, 2010; Bloom et al., 2013; Bloom, Sadun and Van Reenen, 2014; Bloom et al., 2015). These practices include providing consistent feedback, setting clear goals, and frequent monitoring of performance.

Theory and evidence suggests human resource management, sometimes called people management, specifically makes a difference for firm performance (Kamoche, 1996; Huselid, Jackson and Schuler, 1997; Cardon and Stevens, 2004; Bloom et al., 2013; Hoffman and Tadelis, 2018). Basic elements of managing people include assigning the right tasks to the right people, monitoring employees' progress, setting goals, giving feedback, and coordinating across people, teams, and tasks (Bloom and Van Reenen, 2006). But not all entrepreneurs employ the same approach to human resource management. Some prioritize these activities, whereas others do them infrequently. This prior work implies these differences could drive variation in performance among entrepreneurial startups. Entrepreneurs who do not exert much effort in managing people are less able to assess and reward their high-performing employees, increasing the risk of losing key personnel. Similarly, lax human resource management leads to poor coordination across teams and projects, and can slow growth.

The entrepreneurs that do focus on their people should have more information about their employees and have fewer frictions in their work flow (Sappington, 1991). In well-functioning organizations such as these, good employees remain, weak employees are fired, and recruits are clamoring to join.
A key question is whether knowledge about human resource management diffuses through peer-to-peer advice and whether it will have the same effect on adopting firms. We have many reasons to believe the answer may be no. Management knowledge, when disembodied from the organization it comes from, could be far less useful. Significant parts of management practice could be tacit (Polanyi, 1966; Nelson and Winter, 1982) or highly specific to an individual. Even if management can be learned, the nature of informal advice might not well suited to the acquisition of new knowledge. The management practices identified in prior studies might not be well suited to knowledge-intensive startups, where some aspects of effective management, such as frequent monitoring and performance evaluation, could have negative effects on performance (Azoulay, Graff Zivin and Manso, 2011; Manso, 2011; Ederer and Manso, 2013). Finally, recipients might simply ignore advice provided by one of the many individuals they interact with on business matters.

To answer this open question, we explore the impact of advice about management, which varies by the management style of the entrepreneur providing it (and the attributes of the entrepreneur who receives it). We expect advice from formal managers to both provide substantive knowledge about managing people and direct the receiver’s attention to these activities. Informal managers will have less to say about managing people and direct the recipient’s attention to other activities. Regardless of the source of the advice, we expect it to influence the recipient. Prior work indicates that although managers can describe their management practices in detail, they cannot judge whether these practices are indeed “good” or “bad” (Bloom and Van Reenen, 2010). Thus, we do not expect those entrepreneurs paired with informal managers to systematically disregard their advice. Both kinds of advice should influence performance, albeit in different directions.

Advice and Formal Training

We expect that the characteristics of entrepreneurs (Bryan, Tilesik and Zhu, 2017; Howell, 2017; Lyons and Zhang, 2018) will moderate how influential advice is on their firms’ future prospects. Specifically, the impact of advice will depend on whether the entrepreneur has any other sources of managerial knowledge on which to rely. For example, entrepreneurs who have attained a MBA degree (Lerner and Malmendier, 2013) or have participated in a formal accelerator or incubator program (Cohen and Hochberg, 2014) will have a basis of knowledge about management and an expanded network of contacts to consult with on management challenges.

In most entrepreneurial ecosystems, informal peer advice and formal management training
co-exist. Formal training could interact with peer advice in several ways. The impact of advice will depend on the extent to which entrepreneurs use their formal management knowledge to process new information. Under some conditions, formal training may enhance the value of advice. Entrepreneurs might use management frameworks they have learned in school or in an incubator or accelerator to interpret and calibrate the experiences of others before applying new management practices to their own firm. An entrepreneur with an MBA may be able to glean the actionable insights from a story told by an adviser, having seen numerous case studies in business school. Or she might initiate a new activity in her organization, 360 performance reviews for example, based on her business school training, but then use the insights of her peers to improve implementation. If formal training is a complement to peer advice, we would expect to see a positive interaction between MBA and incubator/accelerator experience and receiving advice from a manager with a formal style.

Of course, formal training could be a substitute for peer advice. In this case, their existing knowledge base might make these entrepreneurs more skeptical of any advice, especially when it does not conform to their frameworks. This dynamic would make any given advisor, good or bad, less influential. Conversely, entrepreneurs lacking formal training from a university or an accelerator may respond the most to informal peer advice. Entrepreneurs without management knowledge will have a higher demand for external guidance, but also a weaker filter for “good” and “bad” advice. In this instance, we would expect any positive effect from advice to disappear for MBA or incubator/accelerator participants.

Finally, advice and formal training need not be complements or substitutes. They could represent two kinds of knowledge that pertain to different aspects of management. For example, formal management training may provide guidance about how to create organizational charts, structure the division of labor, and build product road maps. Peer advice, on the other hand, may be more useful for managing difficult employees, motivating star performers, and creating a desirable corporate culture. Under this scenario, advice and training could have independent rather than joint effects on performance.

Understanding whether advice and formal training are complements, substitutes, or neither is important not just for scholars, but also for policy and practice. Particularly in emerging markets, most entrepreneurs will never have access to formal management training, and it would be cost-prohibitive for governments to provide on a large scale. If advice and formal training are substitutes, advice networks would present a low-cost, scalable option to disseminate management knowledge broadly. If they are complements or neither, we would expect management
knowledge to diffuse much more slowly.

In the next section, we describe our field experiment and then go on to present our analysis and results. We aim to test the causal impact of advice on startup survival and growth, and explore any contingencies based on the existing knowledge of the founder, measured by whether she has a MBA or has participated in an incubator or accelerator program.

Research Setting: An Executive Retreat for Entrepreneurs

To test the role of management advice on startup growth, we conducted a field experiment1 in partnership with the Indian Software Product Industry Roundtable (iSPIRT).2 The authors worked with iSPIRT to embed the field experiment in their flagship training program. The program, the Product Nation Growth (PNgrowth) retreat, is an annual multi-day off-site retreat for growth-stage Indian startups. The program consists of peer learning and advising sessions, as well as case studies. Founders leave the retreat with a plan for growing their startup.

The PNgrowth retreat and experiment ran from January 8th through 10th, 2016. Admission was selective. Over 500 founders applied from across India; just over 200 were accepted, and 173 attended the camp. The retreat was residential and held on the corporate campus of a major Indian technology company.

The formal experiment included 100 of the 173 founders in attendance. The remaining 73 founders were not part of the experiment and were advised separately by iSPIRT coaches. All the startups in our experimental sample were interested in growing their organization. The average firm in our study had 12.6 employees, was three years old, and had hired six people over the last year. The median funding for a firm in our experimental sample was $83,000 USD, a substantial sum in the Indian context. Forty-six firms had previously raised a round of angel or institutional financing. The median age of the founders was 37.

On the first day, the founders participated in case discussions on defining a strategic direction for their startup. All participants completed the same exercises on this day. On day two, we commenced the randomized experiment. The 100 founders were randomly assigned to a peer (into 50 pairs) and spent the remaining two days working together on a series of modules focusing on managing people and growing their startup. Day two consisted of case discussion, individual worksheets, and peer-to-peer business advice. The founders discussed three topics:

1 Appendix section A1 describes the retreat setting, recruiting and selection criteria, and experimental procedures in more detail.

2 iSPIRT’s mission is to promote the growth and success of the Indian software-product ecosystem. It advocates for various Indian technology policies and provides training for entrepreneurs through programs, seminars, and retreats.
(1) managing people, (2) finding opportunities for growth, and (3) developing a competitive advantage.

On the final day, the founders completed a “strategic checklist” that listed their main objectives after the PNgrowth program. They worked in the same randomized pairs from the prior day, getting and giving advice on their checklists.

The retreat ended in the afternoon on the third day.

Experimental Design

Basic Research Design

The goal of our experiment was to test how and when management advice matters for startup growth and survival. Our experimental objective builds on prior work that argues that although Indian startups have access to a healthy pool of technical knowledge and talent (Arora and Gambardella, 2005), they lack managerial capacity (Bloom and Van Reenen, 2010). Further, because formal business training is still emerging in India, peer advice remains a key channel for learning about management practices. Finally, the decisions of startup founders impact the entire organization directly. This fact increases our ability to detect the effect of advice on firm-level outcomes more readily than for larger or more established businesses (Fischer and Karlan, 2015; Bruhn, Karlan and Schoar, 2017).

Our research uses the standard peer effects estimation approach. In this approach the researcher first measures participant characteristics. She then randomized participants into peer groups. Finally, she measures each participant’s outcomes (Sacerdote, 2014). The researcher then estimates a reduced form regression of each focal participant i’s outcome on her peer(s) j’s lagged characteristics. Because peer characteristics are lagged, and pairs are randomly assigned, the peer effects design overcomes bias due to social reflection and selection (Manski, 1993). In our case, the lagged peer characteristic is how formal a peer j’s management style is. We randomly paired founders and had them provide advice and feedback to each other during the retreat to generate exogenous peer groups. We then measured each focal founder i’s startup growth and survival at two points in the future—10 and 24 months after the retreat.

Our approach also improves upon prior peer effects research, specifically the concerns raised by Angrist (2014) regarding observational peer effects studies with group-level peer effects. First, we randomized founders into pairs and not groups. This feature addresses two weakness in studies with peer-group randomizations: (1) the loss of variation in the treatment caused by averaging the characteristics of peers and (2) strong assumptions about the right functional form
of the group peer effect (e.g., min, median, max, etc.) (Caeyers and Fafchamps, 2016). Second, because we have repeated measures both before and after the treatment (i.e., randomization of peers), we can leverage a differences-in-differences approach, a standard approach in the strategy literature. This approach increases our power by accounting for time-varying effects and allows us to visualize our treatment effects.3

Sample Size and Outcome Measures

Because we study firms in one industry over a two-year span, we note two research constraints. First, our sample size of 100 growth-stage startups is smaller than many observational studies at the firm level, particularly studies of publicly traded firms across many industries. Nevertheless, the firms in our sample represent a substantial proportion of growth stage startups in India in 2016, capping our maximum size to a few hundred rather than thousands of firms. Our sample size is comparable to recent field experiments at the firm level (e.g., Bloom et al. (2013), 28 plants; and industry studies (e.g., Kapoor and Furr (2015), 176 firms in the solar photovoltaic industry).

Data and Variables

Our data come from three sources: (1) a baseline survey completed before the retreat in January 2016, (2) a post-retreat survey conducted in September and October of 2016, and (3) data collection from secondary sources completed in January 2018. We describe each of these sources below in turn.

First, all founders completed a baseline survey in January 2016 asking about their education and experience, their startup’s growth rate, and funding history, as well as a time-use survey of management activities.4 Second, in September 2016, we contacted the 100 founders in our experimental sample, 90 of whom completed a phone interview. We asked about the changes they implemented post-retreat, startup growth, and whether their company was still active. Finally, two years after the retreat in January 2018, we hired a team of research assistants (RAs) to collect firm-outcome data by checking company websites, tracking social media activity (Facebook, Twitter) and investigating social network platform profiles (LinkedIn, AngelList, Crunchbase) for all 100 startups in our sample.

3Although we use difference-in-difference models, note that unlike the analysis of observational data, we need not rely on an additional parallel-trends assumption. The randomization of founders into pairs ensures that, at least in expectation, founders paired with formal or informal managers are equivalent on observables and unobservables in levels and trends.

4The survey interface, survey questions, and post-retreat interview protocol are available upon request.
Dependent variables

Firm size—We have a measure of firm size (including founders) for active firms at four points in time: (1) one year before the retreat, (2) at the retreat, (3) 10 months after, and (4) two years after. These measures derive from surveys and online data.

Our pre-retreat measures come from a baseline survey the founders completed before attending the retreat. We asked for the total number of employees and founders at the firm, and the number who were hired, fired and or had quit over the last year. We use this information to calculate the number of employees who worked at the startup one year before the retreat and the number of employees who worked for the firm at the time of the retreat.

To measure firm size after the retreat, we conducted a phone survey that ran from September 2016 to October 2016. We again asked the founder to provide us with the total number of employees and founders currently at the firm, and the number of employees who had been hired, fired or had quit since the retreat.

Finally, we measure startup size two years after the retreat using the startup’s LinkedIn profiles as of January of 2018. All the surviving startups had LinkedIn company profiles which listed of current employees, allowing us to calculate the number of employees for all the companies in our sample.

To ease exposition we refer to the phone survey described above as our one year outcome data and our LinkedIn measures as our two year outcome data.\(^5\)

Firm survival—We further analyze the effect of advice on *Survival 2 Years After Retreat* (e.g., by January 2018). RAs classified each of the 100 firms in our sample as “active” or “inactive.” We classified firms as active if, as of January 2018, their (1) website still worked, (2) LinkedIn showed employees currently working at the company, and (3) AngelList, CrunchBase, and the company’s social media profiles had no news of a shutdown. The RAs were blind to each startup’s treatment condition and to our research hypothesis.

Independent Variables We use responses from our management time-use survey about managing people to compute our independent variables, *Management Index* and *Peer Management Index*. These measures are derived from questions in the World Management Survey (Bloom and Van Reenen, 2007\(a\)). Our variables measure how often each peer founder conducts the following tasks at their firm:

- “...develop shared goals in your team?”

\(^5\)Modeling firm size in months (e.g., −12, 0, 10, and 24 months) does not impact our findings.
• “...measure employee performance using 360 reviews, interviews, or one-on-ones?”
• “...provide your employees with direct feedback about their performance?”
• “...set clear expectations around project outcomes and project scope?”

In the survey, founders indicated how frequently they engaged in each task by responding “Never,” “Yearly,” “Monthly,” “Weekly,” or “Daily.” Every cell for each item has at least five responses, with most indicating “Monthly” engagement.

We aggregate responses into a Management Index that quantifies how formal each founder’s management style is. Our aggregation follows Bloom and Van Reenen (2007b). We code responses from 1 (“Never”) to 5 (“Daily”) and then standardize dimensions to have mean 0 and standard deviation 1. These standardized dimensions are combined and re-standardized to create our final variables Management Index (for the focal founder) and Peer Management Index (the index of the focal founder’s randomized peer).6 We interpret Peer Management Index as a proxy for the behaviors and experience of a peer founder. Like the majority of peer effects designs we conceptualize these behaviors as the source of the advice, insight, and perspective that a peer will share with her partner.

Table 1 shows responses from seven founders selected from across the Management Index distribution. How often founders engage in people-management tasks varies substantially. The difference between a score of -0.85 to 0.16 (about one standard deviation) represents a shift in frequency from doing practices on a yearly-monthly level to a monthly-weekly level. Although some founders do conduct these activities on a weekly or daily basis, many rarely engage in any sort of people-management tasks.7 Finally, in Appendix section A3, we show that formal managers are more likely to run larger startups, are more likely to have graduated from better MBA programs, and are generally from higher-quality incubator/accelerator programs.

MBA and Incubator/Accelerator We use baseline survey data to measure whether the focal founder has other sources of management knowledge. We create two variables, Has MBA and In Incubator, to indicate these two characteristics. Twenty-three founders in our sample graduated from MBA programs, ranging from Wharton to IMT Ghaziabad. Forty startups were affiliated with an incubator or accelerator.8

6 Appendix section A2 demonstrates that our results and the index itself are robust to other methods of construction.
7 We find little evidence of overzealous and harmful “micro-management” in our sample. To test for the presence of micro-management, we split the Management Index into quartiles to test if the top-quartile manages too much. We find no evidence that especially formal managers work at smaller firms or are more likely to fail (results available upon request). Furthermore, the effect of Peer Management Index appears to be relatively linear, as can be seen graphically in Appendix section A6.
8 We acknowledge that startup accelerators and incubators have differences, most notably that accelerators like Y-Combinator work with companies for a short and fixed duration while incubators do not traditionally have these
Geographic Effects We also construct a variable called *Pair from Same Metropolitan Area* that indicates whether a founder-peer pair are based in the same Indian city. The majority are from the Bangalore metro-area (37), Mumbai (17), and Delhi (11). Twenty founders (10 pairs) are based in the same metro region. All startups were based in India.

Control Variables Although our research design benefits from both peer randomization and a difference-and-differences estimation strategy, we also account for focal firm and peer-level variation with control variables. We include controls for financing (*Raised Angel/VC Funds*) and startup age (*Startup Age* and *Startup Age Squared*), as well as other information about peers, including financing, founder age, MBA status, and incubator/accelerator participation. Including these peer controls helps us account for other plausible mechanisms in addition to our hypothesized ones.

Descriptive statistics for firms—Panel A in Table 2 reports summary statistics for the 100 firms in our sample. Two years after the retreat, 74 firms were operational. Surviving firms had an active website, employees on LinkedIn, and no news of a shutdown. For startups we classified as “inactive,“ we cross-checked our measure with the earlier survey in September and October 2017. All seven startups that were classified as inactive in the 2017 survey were also inactive as of January 2018. To our knowledge, only one of the firms that became inactive was acquired. Excluding this firm from our analysis does not affect our findings.

These measures yield a longitudinal data set with four measurements spaced approximately one year apart for the 90 firms for which we have complete data, including the survey. Panels A and B in Table 2 provide descriptive statistics of firm size at the time of the retreat and for the panel. At the time of the retreat, the average firm had 12.6 employees (median 9). Our final dependent variable is *Log(Employees+1)*, which accounts for the log-normal skew in the startup size distribution and the fact that non-surviving startups have zero employees and for which *Log(Employees)* would be undefined.

9 Appendix section A5 tests if the non-responders differ from the responders on treatment status. We find no difference between the two groups. Furthermore, our results hold when we consider survival using all 100 firms in our sample. Excluding the 10 non-responders from our panel does not alter our findings.
Estimation Strategy

We test the effect of peer advice on startup growth and survival. Because we observe our dependent variable multiple times both before and after the retreat, we adopt a difference-in-differences estimation strategy. Taking advantage of the panel structure of our data increases our statistical power,\(^\text{10}\) allows us to plot growth for founders partnered with formal and informal managers, and to test whether the estimated peer effect only occurs post-retreat.

We begin by estimating a particularly flexible differences-in-differences model of startup growth pre- and post-retreat by fitting a log-linear model of the following form:

\[
\log(Y_{it} + 1) = \alpha_{it} + \beta_{it} M_i + \gamma_{it} M_{i's peer} + \delta C_i + U_i + \epsilon_{it}
\]

(1)

In this model, our dependent variable is logged employees \(Y\) in firm \(i\) and period \(t\). \(I_t\) is an indicator for each period. \(\alpha_{it}\) captures time-period effects, \(\beta_{it}\) captures the effect of a founder’s Management Index \((M_i)\) in each period. \(\gamma_{it}\) is the effect of Peer Management Index \((M_{i's peer})\) in each period. \(\delta\) represents the effect of time-invariant controls \(C_i\) including startup age, age squared, MBA, Incubator status, and Angel/VC funding. Finally, \(U_i\) are firm-level random effects.\(^\text{11}\)

We then plot the estimated marginal effects, and associated 95% confidence intervals, at each period for founders with peers with high- and low- scores on the Peer Management Index. If the advice matters, we should see startup size diverge after but not before the retreat.

To estimate the magnitude of the treatment effect, we then fit a more structured log-linear model:

\[
\log(Y_{it} + 1) = \beta M_i + \beta_{post} M_{i post} + \gamma M_{i's peer} + \gamma_{post} M_{i's peer} + \alpha_{it} T_i + \delta C_i + \delta_{post} T_{post} C_i + \zeta_{post} T_{post} C_{peer's} + \zeta C_{peer's} + U_i + \epsilon_{it}
\]

(2)

In this pre/post difference-in-differences model, the estimated effect of Management Index and

\(^\text{10}\)McKenzie (2012) demonstrates that more “T” (time periods) can often substantially increase experimental power. In Appendix section A4, we present power calculations and show that for our effect size we have 95% power at the 5% level; for an effect half as large our power is still above 65%. By contrast, without panel data, our power drops to just over 33%.

\(^\text{11}\)Because peers were randomly assigned, a fixed-effects specification is not needed to account for selection bias. Including fixed effects yields plots that look substantively similar, but with uninformative levels. Because fixed effects absorb variation in the average size between firms, estimating marginal effects from a fixed-effect model could hide important variation in the size of firms depending on the level of treatment.
Peer Management Index depends on whether the period is before or after the retreat. Based on our hypothesis, γ should be close to zero (e.g., no treatment before retreat), and γ_{post} should be positive and significant. This specification also includes period fixed effects, random effects for each firm, firm controls, and pre- and post-retreat controls for the focal founder and the founder’s randomly assigned peer. In additional models, we replicate our results by replacing random effects U_i with fixed effects to control for both fixed observable and unobservable differences.

Our final approach adapts the specification above to analyze survival. Because the variation in when startups shutdown is minimal, we run cross-sectional logistic regressions with two-year survival S_i as our dependent variable. Our interest is in the coefficient γ, the effect of the randomly assigned peer.

$$S_i = \beta M_i + \gamma M_{i,peer} + \delta C_i + \epsilon_{it}$$ \hspace{1cm} (3)

For this analysis, we include all 100 firms because we have survival data for the entire sample at the two-year mark.

Results

We present our results in five parts. We begin with balance tests for our randomization. Next, we provide evidence for our primary claim that management advice affects the growth and the survival of startups. We then show evidence that our advice effects are contingent on whether a focal founder has prior management training. Finally, we present robustness checks to rule out alternative mechanisms and explanations.

Balance checks

To formally check that the randomization is balanced, we regress Peer Management Index on nine pre-retreat startup characteristics. The results are presented in Appendix section A5. We find no evidence of imbalance for startup age, the size of the firm one year before the retreat, the size of the firm at the time of the retreat, if the founder has an MBA, if the founders are from the same metropolitan region, or if they have raised VC or Angel funding. We do find imbalance on one of the nine variables. Startups that are part of an incubator are more likely to get advice from a formal manager. Even with perfect randomization, some imbalance is expected. Simulations described in the Appendix reveal that one-third of the time at least one
of our nine variables will be significant at the 5% level.\footnote{Even if our sample size increased by order of magnitude to 1,000 startups, we would still expect imbalance on at least one variable a third of the time. Please see Appendix section A5 for further discussion.}

Fortunately, the singular imbalance does not create significant sample divergence. Incubated startups are assigned to both formal (25 to Peer Management Index > 0) and informal managers (15 to Peer Management Index \(\leq 0\)). A straightforward way to account for this imbalance is to include incubation status in our models and see if it alters the magnitude of the Peer Management Index coefficient. Including this variable does not alter our results (Imai, King and Stuart, 2008).

Peer management advice and firm growth

Next, we provide visual evidence for an effect of peer management advice on startup growth after the retreat. Our estimates control for both observed and unobserved heterogeneity in the characteristics of the focal, as well as peer, firms and founders.

We estimate equation 1, which leverages the longitudinal data structure and incorporates controls. We use GLS with random-effects for startups to estimate the treatment effect of peers in each of the four time periods separately. We robustly cluster standard errors at the randomized founder-pair level, which is the most conservative clustering possible in peer effects designs. Based on these estimates, we plot estimated firm size before and after the retreat with corresponding 95% confidence intervals for two parts of the Peer Management Index distribution: formal managers (Peer Management Index = 1) and informal managers ((Peer Management Index = −1)). To account for imbalance, models include controls for incubation status and for startup age, age squared, Angel/VC funding, and if the founder has an MBA.

We present the estimation described above in Figure 1. The solid black line is the estimated startup size for a founder partnered with a formal manager; the dashed gray line is the estimated startup size for a founder paired with an informal manager. Before the treatment, the estimates overlap, as expected, and startup size and the startup growth trajectory are the same for both groups of founders.

After the retreat, the estimates show that founders paired with a formal manager grow to about 11 employees on average. Founders who received advice from informal managers see their startups shrink to eight employees after one year and four employees after two years. Advice from informal managers increases employee attrition and exit. Figures 1 provide visual evidence that who entrepreneurs get advice from affects their startup’s growth. As a further check that our treatment influenced growth post-retreat, in Appendix section A6 we plot startup size one
year before the retreat and two years after the retreat against the Peer Management Index. We see the same pattern as in Figure 1. Before the retreat, no relationship exists between size and the peer management index. Two years after the retreat, we see that founders partnered with a peer who is a formal manager have more employees and are less likely to shut down.

We now turn to further estimates that assess the size of our treatment effect and its robustness to different model specifications and outliers. In Table 3, we report coefficients from models estimated using equation 3. We begin by describing Model 1, which uses the difference-in-differences approach. We find evidence of a treatment effect of peer advice. In this model, Peer Management Index, which captures any time-invariant effect of peer advice prior to the retreat, is small and statistically insignificant. By contrast, the coefficient on Peer Management Index X Post-Retreat is positive and statistically significant. A one-standard-deviation increase in a peer’s management index causes a startup to be 28% larger ($p = 0.007; se = 0.10$) post-retreat. The median startup has nine employees, so the treatment effect implies an increase of 2.5 employees.

In Model 2, we include startup-level controls. We find that the Peer Management Index X Post-Retreat remains positive and significant.

In interpreting our control variables, their estimated effects are consistent with prior work on startup growth. We find that firms run by MBAs are about 50% larger than those run by non-MBAs ($p = 0.03; se = 0.21$). Startups that raised Angel or VC funds are about 19% larger than the average firm. In addition, we find that older firms are also larger. However, incubated startups appear somewhat smaller than the average firm.

Model 3 accounts for additional peer and temporal heterogeneity that may affect our coefficient of interest, Peer Management Index X Post-Retreat. The control variables in Model 2 increase our certainty that the peer effect is not the result of founder heterogeneity in experience and training (e.g., has an MBA) or other firm characteristics (e.g., firm age). Further, we account for alternative channels of peer effects by including in Model 3 variables that account for other dimensions on which peers vary besides their Peer Management Index. To test if these peer controls have a treatment effect, we include both the peer controls and their interactions with our Post-Retreat variable.13 If receiving advice from a founder with a MBA drives our effect, and not necessarily advice from an formal or informal manager, Peer Has MBA X Post-Retreat

13To provide a parallel for the peer controls, we also include the interaction of the focal founder controls with our Post-Retreat variable. Thus, Model 3 also accounts for potential temporal heterogeneity in the effect of the controls. For example, imagine the funding environment worsens post-retreat, then perhaps having raised funds will only matter in the last two time periods. By including the interactions we reduce concerns that changes in the ecosystem account for our findings.
will mediate the peer management effect.

Including these variables in Model 3 has no meaningful impact on our independent variable of interest, which remains positive and statistically significant. We find little evidence that the Peer Management Index is a proxy for a peer’s experience or training, nor is it a proxy for the age of the startup. Furthermore, in Appendix section A7, we find no evidence that these other peer characteristics have any independent effects on growth as well. For example, getting advice from a founder who has gone to business school doesn’t appear to have any effect on post-retreat growth. We return to this issue of alternative peer effect channels when we discuss our robustness checks.

Model 4 includes startup fixed-effects rather than random-effects. This model accounts for all time-invariant differences across startups, but prevent us from estimating our control variables. Nevertheless, the interactions of the self and peer control variables with our post-retreat dummy are still included. The primary coefficient on Peer Management Index X Post-Retreat remains unaffected by this rigorous specification. We also ran a multi-level model that included a random effect for each firm which allowed the effect of each time period to differ across firms (i.e., random slopes). Our pattern of results continues to hold. This consistency in results is not surprising since the randomization embedded in our study already creates balance across conditions on both fixed and time-varying attributes of the firms.

In contrast to the Peer Management Index results, a founder’s own baseline Management Index is positively associated with startup size (marginally in model 1, but significantly so in models 2 and 3 at $p \leq 0.02$). However, unlike Peer Management Index, the coefficient on Management Index X Post-Retreat is small and insignificant in all our models, indicating no post-treatment increase in the effect, just as we would expect.

To summarize, getting advice from a peer founder with more formal people-management practices—e.g., someone who provides feedback or sets goals once a week as opposed to once a month—leads to a 28% larger startup two years later. On average, these treated firms grow from nine employees to just over 11. This effect is robust to a wide range of estimation techniques and methods that account for observed and unobserved heterogeneity across founders and peers.

Peer management advice and startup survival

We also test whether peer advice affects firm survival. Here, we simplify the estimation and use all 100 firms in our sample. Model 1 in Table 4 regresses survival on Management Index and Peer Management Index, and Model 2 includes our controls. The primary effect of peer
management advice is positive and statistically significant \((p = 0.01)\) in both models. Survival increases by 10%, from 75% to 85%, if a founder gets advice from a peer who is one standard deviation above the mean on Peer Management Index.\(^{14}\)

Much like the growth results, founders’ own formal and informal styles affect the survival of their startup. Management Index is positive and significant (though at the \(p \leq .1\) level) in both Models 1 and 2. The magnitude corresponds to an increase in survival of 75% to 81%.

Peer management advice and formal management training

We now test whether the effect of peer management advice is contingent on whether a focal founder has formal management training. We begin by estimating and plotting the results of equation 1 for two sets of conditions: if the founder has an MBA and if the founder is part of an incubator/accelerator. In both cases, we allow the peer management effect in equation 1 to vary by time period, if the founder has an MBA, and by incubation status.

First, we examine whether the effect of Peer Management Index is affected by whether the focal founder has an MBA. Figure 2 shows that founders with MBAs, while having larger firms, are less affected by whether or not they get advice from a formal or informal manager. MBA founders appear to ignore or do not implement the advice they receive.

Second, we examine whether the effect of Peer Management Index is affected by whether the focal founder is part of a formal incubator or accelerator program. Figure 3 shows that founders not in incubator/accelerator programs are most affected by their peers’ advice. Those founders who have participated in incubator programs are unaffected by advice.\(^{15}\)

In Table 5, we formally test for these two contingent effects. Model 1 includes Has MBA X (Peer Management Index X Post-Retreat) along with fixed effects for each firm, period fixed effects, and the interactions between the post-retreat indicator, the controls and peer controls.

Critically, we interact our treatment effect, Peer Management Index X Post-Retreat, with whether a founder has an MBA or is part of an incubator. If MBAs are unaffected by peer advice, the coefficient on the interaction term should be negative and similar in size to Peer Management Index X Post-Retreat. The coefficient for Peer Management Index X Post-Retreat is 0.42 \((p \leq 0.001)\), but for Has MBA X (Peer Management Index X Post-Retreat), the coefficient

\(^{14}\)Results are nearly identical when we use a linear probability model. See Appendix Table A8.1.\(^{15}\)One potential concern with Figure 3 is that non-incubated startups paired with formal managers appear to be larger to start with than non-incubated startups paired with informal managers. Nevertheless, the slopes are not statistically different from one another before the retreat. Thus, by including fixed effects we can control for this pre-retreat-level difference, which is related to the problem of imbalance on our incubator variable. When we include fixed effects, we still find that advice matters for non-incubated startups.
is \(-0.52 (p = 0.05)\). Founders with MBA degrees appear unaffected by the advice of their peers.\(^{16}\)

Model 2 tests if the impact of advice is smaller for incubator/accelerator startups. The coefficient for \(\text{In Incubator X (Peer Management Index X Post-Retreat)}\) is negative and relatively large, \(-0.30\), but we do not find statistical significance at conventional levels \((p = 0.10)\). In Model 3, we include both moderators and the estimates and standard errors are essentially unchanged. In Model 4, when we include a moderator for whether the pair is from the same metro area, we find negative interaction effects for both incubated startups \(-0.41(p = 0.02)\) and MBA-run companies \(-0.51(p = 0.04)\). Concordant findings for both MBA-run (on average, larger) and incubator/accelerator startups (on average, smaller) suggests the absence of advice effects for MBA-run startups is not a consequence of their larger size.

Turning to the effect of geographic proximity, we find that \(\text{Same Metro X (Peer Management Index X Post-Retreat)}\) is positive and statistically significant \((p \leq 0.001)\). The effect of advice is stronger for pairs located in the same city. The effect is substantial, roughly doubling the impact of peer advice on startup growth. This finding is consistent with work on geography and startups (e.g., Dahl and Sorenson, 2012) and indicates that when it is easier to get advice, our treatment effect is stronger.

Finally, Model 3 in Table 4 examines whether there are also contingent effects on survival. The interaction between \(\text{Peer Management Index}\) and MBA status is similarly negative and significant \((p = 0.001)\). The interaction between \(\text{Peer Management Index}\) and incubator status is also negative, but not statistically significant. However, the effect of being in the same region nearly doubles the effect of advice on firm survival \((p = 0.01)\).

Both of these results suggest that past management training and support limits the influence of peer advice, both good and bad. Moreover, the effect of advice is strongest for founders located in the same region.

Taken together, the results suggest that those managers paired with peers with a more formal management style perform better. Given that startups fail at very high rates (Birley and Westhead, 1990; Audretsch and Mahmood, 1995), it appears that our treatment is a positive one, slowing the typical tendency towards failure among nascent firms.

\(^{16}\)In Appendix section A12 we test if MBA program quality matters and find little evidence that founders from higher-tier or lower-tier MBA programs responded differently to their randomly assigned peer. Management training appears to inoculate founders from management advice, no matter the quality of the training. Intriguingly, the results in Table A3 suggest MBAs from higher-ranked schools are better managers.
Peer management advice and management language

To further validate our results and proposed mechanisms, we ask whether *Peer Management Index* relates to *how* founders talk about the changes they made in the post-retreat phone survey conducting in September and October of 2017. As part of this post-retreat survey, founders described the most significant changes they made after PNGrowth and whether they made any changes outlined in their end-of-retreat checklist. The interviewer typed up these conversations, which consisted of approximately one paragraph of text for each founder.\(^{17}\) We used natural language processing to test how often founders used “management” words relative to words describing the product, technology or customer, after being assigned to managers with formal or informal styles.

In Table A11.2 in the Appendix section, we regress the number and percent of management words on the founder and peer’s management index using two methods: negative binomial and fractional probit regressions. The number and percentage of management words used is positively related to *Peer Management Index*. The effect sizes indicate advice from a more formal manager (with an index score of 1 vs. 0) increases the number of management words used by a founder by 13.1%. Relatedly, a more formal focal founder (one standard deviation above average) uses 17.4% more words than a founder at the mean of our index. Together with results from Table 3 and the findings in Table A7, we find support for the idea that our treatment effect reflects differences in advice from peers about management, as opposed to alternative channels.

Robustness checks and alternative peer mechanisms

We also conducted more robustness checks to validate our results and our effect sizes. These results are reported in Appendix sections A9 and A10. In section A9, we replicate Table 3 using negative binomial models. We find no meaningful differences between the two approaches. Table A10 provides further checks on our assumptions. Model 1 in this table tests for the effect of outliers and finds no difference in results if we exclude firms with *Peer Management Index* less than −2 and the one firm with more than 100 employees. Model 2 includes a lagged size measure to account for growth dynamics and finds no difference in our results.

\(^{17}\)A full description of the the survey and interview procedures are described in subsection “Survey procedures” in Appendix section 1.
Accounting for alternative mechanisms

In this section, we explore whether our peer effect can be linked back to other dimensions on which founders vary. To summarize, the principal claim in our paper is that our estimated peer effect arises due to differences in the management advice a founder received from her more or less formal peer. Given our research design, we are confident that selection or environmental effects do not bias our estimates. However, it is possible that peers have developed a formal or informal management style either because of their human capital investments or through experience that is driving our observed peer effect.

In this context, variation in a peer’s business education, their experience running a large firm, or raising institutional capital may affect how formal their management style is, and thus the type of advice they provide. We test whether these characteristics drive our results by including these factors in our model and seeing whether their inclusion weakens our estimated peer effect. We begin by accounting for whether our peer effect is a consequence of differences in human capital. As the results in Model 3 of Table 3 show, we find the effect of Peer Management Index holds if we include controls for whether a peer has an MBA and has participated in an incubator.

Next, we test whether our effects are driven by differences in the stage of a peer’s startup or their resources. Model 3 of Table 3 also includes controls for a peer’s startup age, age squared, and whether he or she has raised Angel or VC funds. Again, our main effects hold. In Model 3, in Appendix Table A10.1, we include a control for the size a peer’s startup to reflect whether founders who have larger startups are more likely to be the ones who provide advice regarding formal versus informal management. We find little evidence that a peer’s firm size affects a focal founder’s growth, but the Peer Management Index effect remains.

A second alternative explanation is that personality or behavioral differences among peers drive our effects (Astebro et al., 2014). These personality differences may also affect how the advice is delivered, whether advice is heeded, or how well a peer connects with her partner.

Although we do not have direct measures of these constructs, we can account for some additional behavioral differences across peers. First, we consider founder age. Prior work has shown that older founders have higher opportunity costs and exit their firms faster (Arora and Nandkumar, 2011). As a result, these founders may be less optimistic about growth prospects, and this attribute may affect the nature of advice or its tone. Second, we consider the argument that the size of a founder’s social network reflects his or her social skill and so the likelihood that his or her advice is heeded. In Model 4, we include controls for peer age and social network.
size, using the number of connections the peers have on LinkedIn just before the retreat. Again, our main results remain consistent and robust.

In Model 5, we include all pairwise interactions between the peer controls to further test the robustness of our Peer Management Index X Post-Retreat effect (e.g., we control for the peer having an MBA and having raised Angel/VC funds). In this demanding specification, our primary estimates remain positive and statistically significant. Moreover, if other potential omitted peer variables in this model change the size or magnitude of Peer Management Index X Post-Retreat, they must be uncorrelated with the large suite of controls we have already included.

These results lend further support to our proposed mechanism: differences in advice based on a peer’s experience managing her employees leads to divergent startup performance. Further, it is unlikely based on the estimates above that the other differences in peer backgrounds could also account for the heterogeneous treatment effects for focal founders with MBAs and Incubator/Accelerator experience.

Conclusion

Why do some entrepreneurs thrive, while others struggle to scale their companies? In this article, we propose that differences in the advice entrepreneurs receive about managing people can affect the growth and survival outcomes of their companies. We run a field experiment to evaluate the impact of peer advice on the two-year growth and survival outcomes of 100 high-growth technology startups.

We find that entrepreneurs who received advice from peers with a formal approach to managing people—instincting regular meetings, setting goals consistently, and providing frequent feedback to employees—grew 28% larger and were 10 percentage points less likely to fail than those who got advice from peers with an informal people-management approach. Moreover, founders located in the same metropolitan area are more responsive to the advice of their peers, suggesting the localized nature of peer-to-peer advising. However, not all founders respond to advice in the same way. We find that founders with a MBA degree or incubator/accelerator experience, are significantly less affected by peer advice — from either formal or informal managers. These results suggests that formal training may be a substitute for informal peer counsel. Formal management training, while independently improving startup outcomes, may also make founders resistant to learning from others’ experience.

Our article contributes to three themes in strategy research. First, our results provide
insights for the growing literature on improving the management capabilities of startup founders (Bloom and Van Reenen, 2007a; Teece, 2007). Strikingly, our results suggest that advice can help to diffuse evidence-based management practices that have been highlighted in prior work (e.g., Vissa and Chacar, 2009), but also that advice may hinder performance by spreading poor managerial practices. While a significant recent literature has focused on formal training (Fairlie, Karlan and Zinman, 2015; Lyons and Zhang, 2018; Bryan, Tilesik and Zhu, 2017; Camuffo, Gambardella and Spina, 2018; Howell, 2017) as a mechanism for disseminating management knowledge, we provide causal evidence that less formal advice from peers (Nanda and Sørensen, 2010; Lerner and Malmendier, 2013) can be just as crucial for firm performance. Further, we document that formal training can limit the effect of advice, for better or worse.

Second, our paper links to prior literature on how strategy influences startup performance. This work has documented the role of business-model choices (Zott and Amit, 2007), alliance networks (Shan, Walker and Kogut, 1994; Stuart, Hoang and Hybels, 1999; Baum, Calabrese and Silverman, 2000), commercialization strategies (Aggarwal and Hsu, 2009; Marx, Gans and Hsu, 2014), patenting (Hsu and Ziedonis, 2013), firm names (Belenzon, Chatterji and Daley, 2017), location (Stuart and Sorenson, 2003) and equity splits (Hellmann and Wasserman, 2016) in determining firm performance. Within this domain, our paper is particularly germane for the literature on how human-capital practices develop inside startups (Baron, Burton and Hannan, 1996) and how these decisions impact performance (e.g., Baron and Hannan, 2002; Cardon and Stevens, 2004).

Third, our results are particularly relevant for the burgeoning literature on entrepreneurship in emerging markets. The lack of management capabilities is especially acute in emerging economies where formal business training and incubator/accelerator programs are relatively nascent compared to robust ecosystems such as Silicon Valley, London or Tel Aviv (Mair and Marti, 2009; Dutt et al., 2016). In these environments, many entrepreneurs turn to informal business advice from peers and mentors as a primary source to learn about management and improve their company’s performance (Peng and Heath, 1996; Vissa and Chacar, 2009). Our results demonstrate that good advice is available but is ultimately a limited resource. A key challenge for emerging economies will be to scale high-quality advice for entrepreneurs.

Finally, while our treatment is at the founder-level, our field experiment is one of the few in strategic management that explores the outcomes of high-growth startups (Chatterji et al., 2016). The work most similar to our own, Cai and Szeidl (2017) and Fafchamps and Quinn (2015), studies the impact of larger peer groups (see Angrist, 2014) on the diffusion of man-
agement knowledge across traditional small- and medium-sized enterprises. Since strategy and entrepreneurship scholars increasingly study high-growth startups, and inter-firm spillovers are crucial for organizational learning, we believe our empirical context is a particularly advantageous feature of our study.

We also acknowledge important limitations in our approach. Although comparable to many published experimental studies and even those with secondary data, our sample size is modest. Our limited sample constrains the conclusions we draw, particularly about contingencies and mechanisms. Further, because we cannot observe the day-to-day changes to management practice inside all of the firms in our sample, our ability to pinpoint a specific mechanism is limited. Despite our modest sample size, however, we capture a meaningful proportion of early-stage Indian software firms. We believe that our results have strong external validity vis-a-vis this population and for similar high-growth startups around the world. Future research would be needed to generalize these results to other sectors where human capital might be less important or to more traditional small businesses.

Furthermore, this article narrowly focuses on the role of advice in learning because it is an important channel through which knowledge flows in our setting (Hallen, Bingham and Cohen, 2014). Argote et al. (2000) refer to as vicarious learning or learning from other people’s experience. However, advice is still only one of many channels through which founders and their firms learn. Future research should understand how our findings relate to other kinds of learning such as learning from one’s own experience, actively searching for new knowledge and experimentation (Argote, 2012; McGrath and MacMillan, 1995; McDonald and Eisenhardt, 2014; Gavetti and Rivkin, 2007).

In addition, our current study is unique in that we demonstrate a causal effect of an important real-world phenomenon, namely advice, two years after the initial intervention. Yet, we cannot fully uncover all the mechanisms through which advice impacts growth and survival. Specifically, with our data we cannot disentangle the effect of the advice given during the retreat and any follow-on advice between randomly assigned peers. Since we find that founders from same region experienced a stronger advice effect, we believe that follow-on advice may be strengthening our treatment effect.

We hope these results encourage new research on what entrepreneurs can learn from advice and the conditions under which peer advice is most important. Research exploring the value of advice has great potential to inform policy and practice, especially in emerging markets where formal training is hard to access.
References

Arora, Ashish and Alfonso Gambardella. 2005. From underdogs to tigers: The rise and growth of the software industry in Brazil, China, India, Ireland, and Israel. Oxford University Press.

Bloom, Nicholas, Raffaella Sadun and John Van Reenen. 2014. “Does management matter in healthcare.”

Cohen, Susan and Yael Hochberg. 2014. “Accelerating startups: The seed accelerator phenomenon.”

McGrath, Rita Gunther and Ian C MacMillan. 1995. “Discovery driven planning.”.

Table 1: How often to founders engage in people-management tasks?

<table>
<thead>
<tr>
<th>IM-Index</th>
<th>Median Frequency</th>
<th>Conducts Reviews</th>
<th>Provides Feedback</th>
<th>Provides Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-1.52</td>
<td>Never</td>
<td>Yearly</td>
<td>Weekly</td>
</tr>
<tr>
<td>2</td>
<td>-0.85</td>
<td>Yearly-Weekly</td>
<td>Monthly</td>
<td>Weekly</td>
</tr>
<tr>
<td>3</td>
<td>-0.61</td>
<td>Monthly</td>
<td>Monthly</td>
<td>Yearly</td>
</tr>
<tr>
<td>4</td>
<td>0.16</td>
<td>Monthly</td>
<td>Daily</td>
<td>Monthly</td>
</tr>
<tr>
<td>5</td>
<td>0.67</td>
<td>Weekly</td>
<td>Monthly</td>
<td>Weekly</td>
</tr>
<tr>
<td>6</td>
<td>1.34</td>
<td>Weekly</td>
<td>Weekly</td>
<td>Daily</td>
</tr>
<tr>
<td>7</td>
<td>1.63</td>
<td>Weekly-Daily</td>
<td>Daily</td>
<td>Weekly</td>
</tr>
</tbody>
</table>

Time-use data from 7 founders.

Table 2: Summary statistics

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel A: Cross-Sectional Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Index</td>
<td>0.00</td>
<td>0.03</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>Peer Management Index</td>
<td>0.00</td>
<td>0.03</td>
<td>1.00</td>
<td>100</td>
</tr>
<tr>
<td>Startup Age at Retreat</td>
<td>3.46</td>
<td>2.78</td>
<td>2.77</td>
<td>100</td>
</tr>
<tr>
<td>Employees at Retreat</td>
<td>12.62</td>
<td>9.00</td>
<td>10.83</td>
<td>100</td>
</tr>
<tr>
<td>Has MBA</td>
<td>0.25</td>
<td>0.00</td>
<td>0.44</td>
<td>100</td>
</tr>
<tr>
<td>In Incubator</td>
<td>0.40</td>
<td>0.00</td>
<td>0.49</td>
<td>100</td>
</tr>
<tr>
<td>Raised Angel/VC Funds</td>
<td>0.48</td>
<td>0.00</td>
<td>0.50</td>
<td>100</td>
</tr>
<tr>
<td>Pair from Same Metropolitan Area</td>
<td>0.20</td>
<td>0.00</td>
<td>0.40</td>
<td>100</td>
</tr>
<tr>
<td>Survival 2 Years After Retreat</td>
<td>0.74</td>
<td>1.00</td>
<td>0.44</td>
<td>100</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean</th>
<th>Median</th>
<th>Std. Dev.</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Panel B: Panel Data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management Index</td>
<td>-0.03</td>
<td>0.03</td>
<td>1.02</td>
<td>360</td>
</tr>
<tr>
<td>Peer Management Index</td>
<td>-0.02</td>
<td>0.01</td>
<td>0.98</td>
<td>360</td>
</tr>
<tr>
<td>Startup Age at Retreat</td>
<td>3.63</td>
<td>2.90</td>
<td>2.83</td>
<td>360</td>
</tr>
<tr>
<td>Number Employees</td>
<td>14.11</td>
<td>9.00</td>
<td>18.74</td>
<td>360</td>
</tr>
<tr>
<td>Has MBA</td>
<td>0.26</td>
<td>0.00</td>
<td>0.44</td>
<td>360</td>
</tr>
<tr>
<td>In Incubator</td>
<td>0.40</td>
<td>0.00</td>
<td>0.49</td>
<td>360</td>
</tr>
<tr>
<td>Raised Angel/VC Funds</td>
<td>0.48</td>
<td>0.00</td>
<td>0.50</td>
<td>360</td>
</tr>
<tr>
<td>Pair from Same Metropolitan Area</td>
<td>0.20</td>
<td>0.00</td>
<td>0.40</td>
<td>360</td>
</tr>
</tbody>
</table>
Table 3: The impact of management advice on startup growth

<table>
<thead>
<tr>
<th></th>
<th>Log(Employees+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Management Index</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>(0.088)</td>
</tr>
<tr>
<td>Management Index X Post-Retreat</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>(0.090)</td>
</tr>
<tr>
<td>Peer Management Index</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>(0.079)</td>
</tr>
<tr>
<td>Peer Management Index X Post-Retreat</td>
<td>0.281</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
</tr>
<tr>
<td>Startup Age</td>
<td>0.274</td>
</tr>
<tr>
<td></td>
<td>(0.065)</td>
</tr>
<tr>
<td>Startup Age Squared</td>
<td>-0.012</td>
</tr>
<tr>
<td></td>
<td>(0.004)</td>
</tr>
<tr>
<td>Raised Angel/VC Funds</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td>(0.143)</td>
</tr>
<tr>
<td>Has MBA</td>
<td>0.465</td>
</tr>
<tr>
<td></td>
<td>(0.212)</td>
</tr>
<tr>
<td>In Incubator</td>
<td>-0.169</td>
</tr>
<tr>
<td></td>
<td>(0.187)</td>
</tr>
<tr>
<td>Observations</td>
<td>360</td>
</tr>
<tr>
<td>Number of Firms</td>
<td>90</td>
</tr>
<tr>
<td>Time Period FE</td>
<td>Yes</td>
</tr>
<tr>
<td>Controls X Post-Retreat</td>
<td>No</td>
</tr>
<tr>
<td>Peer Controls</td>
<td>No</td>
</tr>
<tr>
<td>Peer Controls X Post-Retreat</td>
<td>No</td>
</tr>
<tr>
<td>Startup Random or Fixed Effects</td>
<td>RE</td>
</tr>
</tbody>
</table>

Significance stars (*** are omitted.
Robust standard errors clustered at the pair level in parentheses.
Table 4: The impact of management advice on startup survival

<table>
<thead>
<tr>
<th></th>
<th>Survival 2 Years after Retreat</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Management Index</td>
<td>0.415</td>
</tr>
<tr>
<td></td>
<td>(0.242)</td>
</tr>
<tr>
<td>Peer Management Index</td>
<td>0.632</td>
</tr>
<tr>
<td></td>
<td>(0.254)</td>
</tr>
<tr>
<td>Startup Age</td>
<td>0.249</td>
</tr>
<tr>
<td></td>
<td>(0.229)</td>
</tr>
<tr>
<td>Startup Age Squared</td>
<td>-0.010</td>
</tr>
<tr>
<td></td>
<td>(0.014)</td>
</tr>
<tr>
<td>Has MBA</td>
<td>1.998</td>
</tr>
<tr>
<td></td>
<td>(0.998)</td>
</tr>
<tr>
<td>Has MBA X Peer Management Index</td>
<td>-2.164</td>
</tr>
<tr>
<td></td>
<td>(0.675)</td>
</tr>
<tr>
<td>In Incubator</td>
<td>0.398</td>
</tr>
<tr>
<td></td>
<td>(0.514)</td>
</tr>
<tr>
<td>In Incubator X Peer Management Index</td>
<td>-0.742</td>
</tr>
<tr>
<td></td>
<td>(0.543)</td>
</tr>
<tr>
<td>Raised Angel/VC Funds</td>
<td>-0.544</td>
</tr>
<tr>
<td></td>
<td>(0.484)</td>
</tr>
<tr>
<td>Raised Angel/VC X Peer Management Index</td>
<td>-0.064</td>
</tr>
<tr>
<td></td>
<td>(0.526)</td>
</tr>
<tr>
<td>Pair from Same Metropolitan Area</td>
<td>-0.234</td>
</tr>
<tr>
<td></td>
<td>(0.422)</td>
</tr>
<tr>
<td>Same Metro X Peer Management Index</td>
<td>1.477</td>
</tr>
<tr>
<td></td>
<td>(0.612)</td>
</tr>
<tr>
<td>Constant</td>
<td>1.155</td>
</tr>
<tr>
<td></td>
<td>(0.211)</td>
</tr>
<tr>
<td>Observations</td>
<td>100</td>
</tr>
</tbody>
</table>

Significance stars (****) are omitted.
Robust standard errors clustered at the pair level in parentheses.
Table 5: The impact of management advice on startup growth for founders with an MBA, who are part of incubator, or are located in the same metropolitan area

<table>
<thead>
<tr>
<th></th>
<th>Log(Employees+1)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
</tr>
<tr>
<td>Management Index X Post-Retreat</td>
<td>-0.026</td>
</tr>
<tr>
<td></td>
<td>(0.085)</td>
</tr>
<tr>
<td>Peer Management Index X Post-Retreat</td>
<td>0.418</td>
</tr>
<tr>
<td></td>
<td>(0.104)</td>
</tr>
<tr>
<td>Has MBA X Post-Retreat</td>
<td>0.382</td>
</tr>
<tr>
<td></td>
<td>(0.191)</td>
</tr>
<tr>
<td>Has MBA X (Peer Management Index X Post-Retreat)</td>
<td>-0.518</td>
</tr>
<tr>
<td></td>
<td>(0.239)</td>
</tr>
<tr>
<td>In Incubator X Post-Retreat</td>
<td>-0.008</td>
</tr>
<tr>
<td></td>
<td>(0.204)</td>
</tr>
<tr>
<td>In Incubator X (Peer Management Index X Post-Retreat)</td>
<td>-0.302</td>
</tr>
<tr>
<td></td>
<td>(0.180)</td>
</tr>
<tr>
<td>Same Metro X Post-Treat</td>
<td>0.030</td>
</tr>
<tr>
<td></td>
<td>(0.147)</td>
</tr>
<tr>
<td>Same Metro X (Peer Management Index X Post-Retreat)</td>
<td>0.702</td>
</tr>
<tr>
<td></td>
<td>(0.167)</td>
</tr>
</tbody>
</table>

Observations: 360, Number of Firms: 90, Time Period FE: Yes, Controls X Post-Retreat: Yes, Peer Controls X Post-Retreat: Yes, Startup Random or Fixed Effects: FE

Significance stars (*** are omitted.
Robust standard errors clustered at the pair level in parentheses.
Figure 1: The impact of management advice on startup growth
Figure 2: Estimated startup size by treatment status for startups with MBA founders (23 startups) and for non-MBA founders (67 startups)
Figure 3: Estimated startup size by treatment status for startups that are a part of an incubator/accelerator (36 startups) and those that are not (54 startups)