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Abstract

Several decades of expansion in digital communications, web

commerce, and online distribution have altered the U.S. labor market

for IT workers. We characterize the shifts in regional IT labor markets

from 2000 to 2018, and find that IT wage growth did not follow an

exceptional pattern compared to broader STEM labor market trends.

Digital wage inequality increased, almost entirely due to rising local

premiums in a few urban metropolises, where wage spreads became

narrower than elsewhere. The supply of college-educated workers

accounted for a substantial share of the total wage difference between

IT labor markets in top locations and other cities. Agglomeration and

IT innovation explained a notably larger fraction of the top-location

wage premium in more recent years.
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1 Introduction

Beginning with the growth of the personal computer in the 1980s, economic

analysis has considered why IT wages command a premium. Theories of

skill-biased technical change offer an explanation: the premium to wages

among IT workers results from the demand for the additional and rare skills

required to employ frontier IT for purposes with high market value (Autor,

Katz and Krueger, 1998; Autor, Levy and Murnane, 2003; Goldin and Katz,

2007; Autor, Katz and Kearney, 2006; Autor et al., 2019; Goldin, Katz et al.,

2020). Viewed through this lens, the uneven deployment of the Internet in

the 1990s placed additional pressure on IT wages in some locations, and

offers one explanation for why the distribution of regional wages became

less equal (Forman, Goldfarb and Greenstein, 2002, 2005).

After the turn of the millennium, the pressures leading to skill-biased

technical change persisted. U.S. businesses continued to make substantial

investments in networking infrastructure and enterprise IT and this class

of assets grew faster than any other in the nationwide economy (Byrne and

Corrado, 2019). Technical advances, such as broadband Internet access,

Web 2.0 and 3.0, web-software to support video advertising, streaming,

smartphone applications, data center hardware and software to enable big

data analytics, machine learning, and cloud technology, diffused across

many industries and locations (Greenstein, 2020). These advances created

visible changes in the skill requirements for IT labor. Training changed for

software engineers and architects, system administrators and developers,

information analysts, and support specialists, adding new software

language staples to frontier skill requirements, such as JavaScript, Nginx,
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Hadoop, and neural networks (Tambe, 2014; Horton and Tambe, 2019).

Did the experience after the millennium heighten or lessen regional

inequality, or exacerbate the response to skill-biased technical change? A

general answer is not obvious from descriptive data and existing studies.

Overall, the new frontier created different degrees of changes in the local

returns to skill, but IT is only one of many occupations that require skills.

Some urban environments broadly supported higher returns to

high-skilled labor (Moretti, 2013; Baum-Snow and Pavan, 2013;

Baum-Snow, Freedman and Pavan, 2018), and to frontier IT production

and usage in a small number of urban clusters (Tambe and Hitt, 2012;

Forman, Goldfarb and Greenstein, 2012). Whether that led to a higher or

lower wage premium is an empirical question. So too is whether the

results differed substantially across different types of skilled labor other

than IT.

This study compares variance in regional IT wage premiums with

other skilled labor markets and analyzes the causes of divergence and

convergence between them. If skill-biased technical change shapes IT labor

wages, does it also shape the wage premium in Science, Technology,

Engineering, and Mathematics (STEM) and do these operate to a

comparatively similar degree across regions? If the premium in

information technology is exceptional, what factors explain the divergence

from trends in STEM labor markets in some locations and not others? If

unexceptional, what factors shapes all skilled wages?

To motivate these comparisons, consider the regional variance in a few

illustrative jobs. As shown by the Occupational Employment Statistics, IT

occupations account for 40-50% of the overall STEM employment of 9.7
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million workers in 2018 (we ask the reader to momentarily defer questions

about definitions and details, which we address in the paper). The average

wages of computer and information research scientists in the locations

with the highest wages in 2018 were $167,990 in Santa Clara (Silicon)

Valley and $140,660 in San Francisco. That compares to $117,260 in the

Indianapolis. San Francisco and Santa Clara (Silicon) Valley account for

6.7% of IT employment in the United States. At the same time, the average

wages of biochemists were $115,070 in San Francisco and $105,850 in Santa

Clara (Silicon) Valley, compared to $118,790 in Indianapolis. In that case,

San Francisco and Santa Clara (Silicon) Valley account for 4.2% of

employment in non-IT STEM jobs. What creates such variance between

San Francisco and another location, such as Indianapolis, and between

STEM and IT occupations? Answering these questions entail disentangling

the contributions of three potentially interdependent causes of the returns

to skill – i.e., variance in the returns to different occupations, variance in

returns across locations, and trends over time that influence locations and

occupations to move in the same or different directions.

In this study, we analyze the 142 largest U.S. areas, known as

core-based statistical area (CBSA). We focus on the period after the

millennium, between the years 2000 and 2018 – a period of rapid change in

IT that includes two recessions – near the early part of our data, and in the

middle of it. The study compares the annual wage distribution for IT

occupations with all STEM occupations (excluding IT), using the

Occupational Employment Statistics (OES). Available statistics include the

mean, median, top and bottom quartiles and deciles of the wage

distribution. The analysis examines the determinants of two economic
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forces: factors shaping regional wage inequality, and the difference

(between IT and STEM) in wage premium within the highest-paying cities.

The study begins by establishing two underappreciated stylized facts,

which together frame a conundrum. First, the two decades after the turn of

the millennium witnessed slower but more broad-based wage growth for

IT labor than the experience during the dot-com boom. More to the point,

the data show that IT wage growth after the millennium followed broader

STEM trends. Locations with higher IT wages also have higher overall

returns to STEM labor. The second stylized fact seems to be inconsistent

with the first one: after the millennium, and especially after 2012, overall

IT wage inequality increased substantially within the United States.

How can they be reconciled? The answer lies in the patterns of regional

wage inequality. After the millennium, there is a growing wage gap

between leading U.S. regions and other areas. A few local labor markets

enjoyed a persistent wage premium relative to other areas, which

increased by about 50% between 2000 and 2018. Our findings suggest the

experiences in these locations – i.e., Santa Clara (Silicon) Valley, San

Francisco, Seattle, New York, and Washington DC – account for almost the

entirety of the increase in regional wage disparity in IT labor in the United

States.

The next part of the paper characterizes the changes in regional wage

inequality. We establish evidence of a pattern that runs against the notion

that exceptionally high returns to the most valuable IT skills determine the

wage premium in leading urban clusters. We find that the spread between

top-decile and median wages negatively correlates with the average wage

level in local IT labor markets and this negative correlation strengthened
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especially after 2012. Contrary to what most superstar models would

predict, the top-earning IT workers were not disproportionately

compensated in the leading cities. In the areas with thriving IT labor

markets, all IT workers, and not just the top earners, benefited from the

local wage premium. From the perspective of median-ability IT workers,

moving to a tech cluster (e.g., San Francisco) reduces their wage difference

from top-earning IT professionals. This pattern is surprising and not

recognized by previous studies.

That insight frames the last part of the paper, analyzing the

determinants of wage premium in top locations, and explaining the rising

regional inequality in returns to IT labor. We collect data on regional

determinants of labor market outcomes and examine how their impact on

the regional difference changes over time. Using an Oaxaca-Blinder

decomposition that compares the top five cities with other U.S. regions, we

test among three broad categories of explanations for differences in IT and

STEM wages. We label these categories as “capital complementarity,”

“agglomeration economies and labor pooling,” and “innovation and

entrepreneurship.” We provide a summary of the findings as follows.

A leading explanation forecasts that regional wage premiums arise

from complementarity between frontier IT assets and IT-skilled labor.

Sectors that produce IT goods (including computers, electronics, and

telecommunications) or use IT as input (such as finance, publishing, and

business services) may offer exceptionally high wages to IT-skilled

workers. IT-using and IT-producing firms choosing to cluster in the local

area can raise IT labor market returns, sharing the benefits of matching

complementary investments in IT assets and IT labor skills. These effects
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can be separately identified due to differences in the geographic spread of

IT usage and production. We find, surprisingly, little empirical evidence

supporting this explanation.

Another leading explanation stresses agglomeration economies among

all skilled labor, where IT and STEM occupations are subject to the same

economic factors. According to this explanation, agglomeration of

professionals can lead to productivity spillovers among skilled labor, and

high-quality matching between firms in need of skills and potential hires in

high-density urban settings. The matching does not value the IT skills per

sé but, instead, matches on facets of skilled labor, such as adaptability of

employees to new requirements, sound judgment with discretion, and the

ability to learn and perform cognitive tasks quickly. Empirically, we test

for this explanation and find evidence consistent with it. For example, the

share of highly educated labor explains a substantial fraction of the wage

difference between top CBSAs and other U.S. cities. The population size of

the area also accounts for a significant fraction of the regional wage gap.

The third explanation, which we label “innovation and

entrepreneurship,” also has received considerable attention. The IT sector

evolves rapidly and has a long history of introducing novel ideas and

business models. Many high-growth startups contribute to new job

creation and productivity growth, seemingly boosting IT wages.

Innovation and startup activities tend to cluster in a few urban locations,

potentially contributing to the local wage premium. We do find evidence

partially consistent with this explanation. Innovation (measured in

patents) explains an increasing share of local IT wage premium in

top-wage cities, especially after 2012. We do not find any support that
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entrepreneurship plays a role. Again, both results are surprising and

contrast with the IT-producers’ self-image as offering exceptional returns.

Either factor is not a critical driver of high returns to IT labor – they are of

moderate economic importance at best.

To summarize, we show that two distinct and competing forces shaped

inequality trends in the IT labor market, over the last two decades. On the

one hand, the advantage of tech hubs and urban metropolises – especially

the combination of dense population and vigorous innovation –

increasingly leads to higher IT wages, making some regions more

attractive to skilled talent. On the other hand, wage spread narrowed

within such advantaged areas, moving the top decile of IT wages into

convergence with other STEM occupations. These findings are consistent

with the view that provincial experiences within local labor markets shape

the returns to skill bias and plays an increasingly significant role in driving

wage inequality.

1.1 Related Work

This paper contributes to several strands of literature. First, it speaks to the

literature documenting that advanced IT adoption led to substantial wage

growth, concentrated in a small number of urban locations with dense

population, a large supply of skilled labor, and high IT intensity.

Advanced IT investments benefit wages in these areas disproportionately,

exacerbating regional wage inequality between 1995 and 2000 (Forman,

Goldfarb and Greenstein, 2002, 2005, 2012). Our findings contrast with this

literature about the dot-com boom. We show that the relative growth in

wages after the dot-com boom has been much milder but more broadly
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shared across regions, and more similar between IT and STEM (excluding

IT) labor. Our contribution supports the view that the divergence of IT

wages from other skilled wages in the 1990s was an aberration from long

term trends for how skill-biased technical change shaped wages.

Second, this paper relates to the recent literature on new trends in the

high-skilled labor market in the United States. Recent empirical evidence

suggests that the theory of skill-biased technical change alone does not

entirely explain the changes in the wage structure in the United States after

2000 (Goldin, Katz et al., 2020). Several papers offer explanations for

patterns in U.S. wage inequality, including Deming (2017), Eckert,

Ganapati and Walsh (2019), and Kaltenberg (2020), all broadly pointing to

digital-enabled communication and falling costs for coordination across

space as the mechanism driving changes in the wage structure of the U.S.

skilled labor force. Consistent with this work, we also find that since 2012,

the supply of college-educated labor explained a much smaller fraction of

the overall top city wage premium. Instead, the wage structure appears to

explain the increasing premium in the returns to IT skills in tech hubs and

large metropolises. Our contribution also emphasizes the insights gleaned

from comparing how IT wage patterns converge with and differ from

similar skill types, i.e., STEM skills.

Third, this paper speaks to the literature on innovation spillovers,

which are more geographically concentrated than typical industrial

activity (Carlino and Kerr, 2015; Kerr and Robert-Nicoud, 2019; Rubinton,

2019; Moretti, 2019). New progress in the technology frontier creates

transformative entrepreneurship, which may largely contribute to job

creation and productivity growth (Decker et al., 2014). We find a moderate
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but statistically significant role of innovation in driving top-city

advantages in providing higher wages to IT-skilled labor. The surprising

finding is that this factor matters most in recent years and not before the

2010s.

Fourth, the paper adds to the large literature on the “great divergence”

in wages across regions, according to which urban agglomeration

contributes to the widening skilled wage gap (Moretti, 2013; Baum-Snow

and Pavan, 2013; Baum-Snow, Freedman and Pavan, 2018). Like the

literature, we find a large-city premium in IT wages. We also find that

agglomeration appears to play a more significant role in recent years.

Population size accounted for an increasing fraction of the local IT wage

premium in top cities since 2012. Our results contribute new insights by

analyzing the entire wage distribution for skilled labor and comparing

across occupations across areas.

2 Background and Data

We shed light on the wage distribution of IT-skilled workers in the United

States by analyzing patterns in regional IT labor markets. We focus on the

comparison between IT and other STEM occupations, using aggregate

annual wage statistics within each occupation category and geographic

area (CBSA). This enables us to match it with data on characteristics of the

regional labor market, as well as the demographic profile and industrial

composition of major urban areas. This section describes these data

sources and the other issues related to processing the data.
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2.1 Aggregate Wage Statistics by Occupation and CBSA

We collect statistics on annual wage distribution across U.S. labor markets

for all occupations and locations from 2000 to 2018. The data is available

through the Occupational Employment Statistics (OES). The level of

granularity for location is a core-based statistical area (CBSA). For

occupation, detailed categories are defined by 6-digit codes under the

Standard Occupation Classification (SOC). Wages are denominated in

contemporary dollars (USD). Available statistics include the mean,

median, top and bottom quartiles and deciles of the wage distribution.1

There are about 900 occupation codes in the United States, each

defined by a 6-digit SOC code. The Standard Occupation Classification

system makes adjustments to the occupational categories once every few

years. The SOC codes to classify occupations changed in 2010 and 2017,

and we use a crosswalk file to match these codes across years. We focus on

a panel of annual wages in all IT occupations and other STEM occupations

from 2000 to 2018.

According to the BLS Occupational Outlook Handbook, the

Information Technology (IT) class consists of a few different categories,

and the exact number of categories changed over time. All IT occupations

belong to the broader class of around 90 STEM occupations. For the skill

requirement of these occupations, jobs in most IT categories (except for IT

support specialists) require at least a college degree. Some IT occupations

have a higher average level of education, e.g., computer research scientists

1The public data may not contain all quantiles, e.g., in an area with a small population,
and top wages are coded as missing. We impute missing quantiles by multiplying the next
(lower) available quantile with the average ratio between the two quantiles in the overall
data.
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earned a master’s or higher degree on average.

In 2010, the SOC system defined new occupations, replacing some of

the old categories and expanding the number of IT occupations from 10 to

14.2 We combine some of these categories into one group, to match the

definitions before and after 2010. The resulting grouping of IT occupations

(standardized across all years) consists of eight categories: Computer

Programmers, Research Computer Scientists, Applications Software

Engineers, Systems Software Engineers, Database Administrators,

Computer Network Occupations, Computer Support Specialists, and

Other Computer Occupations.

We assemble wage data in the largest metropolitan areas in the United

States in terms of population size (in 2010). Our analyses, therefore, do

not cover rural areas and small cities. We do not include small regions for

several reasons. For a small region, wage data is more likely to be missing

in at least one year. That typically arises due to few workers in a particular

occupation, and either the statistics protect privacy by not publishing any

data, or the region may not be sampled at all. Considerable evidence also

2After 2010, the occupation codes and names associated with IT include the following:
15-1111 Computer and Information Research Scientists; 15-1122 Information Security
Analysts; 15-1121 Computer Systems Analysts; 15-1122 Information Security Analysts;
15-1131 Computer Programmers; 15-1132 Software Developers, Applications; 15-1133
Software Developers, Systems Software; 15-1134 Web Developers; 15-1141 Database
Administrators; 15-1142 Network and Computer Systems Administrators; 15-1143
Computer Network Architects; 15-1151 Computer User Support Specialists; 15-1152
Computer Network Support Specialists; 15-1199 All Other Computer Occupations. The
2000 SOC system classified IT occupations into ten categories: 15-1011 Computer and
Information Scientists, Research; 15-1021 Computer Programmers; 15-1031 Computer
Software Engineers, Applications; 15-1032 Computer Software Engineers, Systems
Software; 15-1041 Computer Support Specialists; 15-1051 Computer Systems Analysts; 15-
1061 Database Administrators; 15-1071 Network and Computer Systems Administrators;
15-1081 Network Systems and Data Communications Analysts; 15-1099 All Other
Computer Specialists.
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suggests that some smaller regions and low density areas of the U.S. did not

have access to frontier IT infrastructure during this time (Greenstein, 2020).

Though this variance in supply and availability has been documented at

sporadic intervals, for our purposes we would require consistent data about

supply constraints across locations for close to two decades, which is not

available to our knowledge.

The final data sample consists of annual wage statistics in 142 CBSAs

spanning two decades. These statistics include moments of the wage

distribution other than the mean. To illustrate the contents of the dataset,

Table 1 includes the average wage for six IT occupations and for a

representative sample of a dozen different STEM occupations. We show

median and ninetieth quantile for San Francisco, which is near the high

end of the wage distribution in 2018, Indianapolis, which is close to the

middle, and Little Rock, which is near the lowest end. We also show their

comparable wage levels for 2000, 2006, and 2012, and the comparative rank

of these areas among the 142 areas.

Table 1 illustrates a few salient features of the dataset. First, the spread

in wages across occupations is substantial. The IT occupation with the

highest median wage in San Francisco is a computer and information

research scientist, which is 90% higher than a computer support specialist,

the IT occupation with the lowest median wage. A similar spread arises in

other locations and in each year. Second, STEM wages deserve a similar

observation. Among the highest-paying STEM occupations in San

Francisco is an architectural and engineering manager, and it is 55% higher

than a median STEM occupation (statistician), and 156% higher than the

lowest STEM occupation (surveying and mapping technician). Again, a
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similar spread arises in other locations and in each year. Third, the spread

between the highest and lowest location is quite substantial. Focusing just

on computer and information research scientists (the highest paid IT

occupation), San Francisco is 45% higher on average than Indianapolis, the

location with the median, and the lowest-paying locations do not employ

research scientists. Lastly, the rank of a location in the distribution appears

to be persistent, but not fixed. It changes over time. While San Francisco

remains either the highest or next highest location for IT wages,

Indianapolis was ranked 81 in 2012, 58 in 2006, and 95 in 2000. Among the

lowest in 2018, Little Rock was ranked, respectively, 128, 122, and 129. A

goal of this study is to characterize that variance and persistence.

The data allows us to derive inequality measures and look into other

properties of the wage distribution than the average wage level. Appendix

A.2 and A.3 describe two methods to approximate the full distribution of

annual wages. Both methods impose additional assumptions to fit the

parameters that best approximate the full wage distribution within a given

occupation category and CBSA.

3 Stylized Facts

This section presents a few stylized facts that demonstrate trends over the

past two decades in returns to IT-skilled labor. We focus within and

between region patterns and compare the trends in IT with those in STEM

more broadly.
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3.1 IT and Other STEM Wage Distributions over Time

STEM occupations are a significant share of the U.S. high-skilled labor

market. As noted, among STEM occupations, IT occupations are a

substantial category accounting for 40-50% of all STEM jobs. The total

number of IT employees increased from about 3.4 million in 2000 to over

4.6 million in 2016. While IT occupations are perceived to be among the

highest-paying professions even at the entry-level, it is an open question

whether the past few years have witnessed rising returns to IT skills in

comparison to other skilled labor.

In this section, we document stylized facts that together do not support

the hypothesis that the growth in IT wage is “exceptional”. We compare

the wage distribution of IT labor with the rest of STEM labor. To do this,

we use the aggregate wage statistics to approximate the entire wage

distribution within an occupation in a given location. We simulate

individual-level wage data from the approximate distribution and

generate random samples of worker wages using total employment within

a category as frequency weight. Appendix A.2 explains the details of this

procedure to construct random samples based on aggregate wage

moments.

The first observation is that the distribution of IT wages and that of

STEM wages appear broadly similar from 2000 to 2018. Figure 1 shows the

annual wage distributions of IT wages (solid line) and other STEM wages

(dashed line) spanning the last two decades. The density functions of the

returns in the two types of labor markets have similar means and spreads

and they do not show different trends over time. This evidence is
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inconsistent with the hypothesis that IT jobs provide particularly high

returns setting it apart from the rest of the skilled labor force.

There is another side to the same coin. Across various occupations,

STEM wages have increased steadily between 2000 and 2018. The average

STEM worker earned about 50,000 USD in 2000, and 80,000 USD in 2018.3

The average wages appear to grow at similar rates in the IT labor market

as in the market for other types of STEM labor.

The IT wage distribution has become increasingly unequal since the

2000s. In Figure 1, the shape of the density function flattened and the mass

at the tails of the wage distribution increased over time. That pattern

masks the underlying causes. It still could be the case that the increasing

influence of tech companies in Silicon Valley and other large cities may

have led to booming local IT job opportunities that benefit only a relatively

small part of the workforce. It also could be the case that technological

progress has increased the returns to top-skilled workers, though

encountered other factors that depressed it at the same time. This

motivates our later investigation into the causes of regional variance.

3.2 Rising Regional Inequality in IT Wages

In this subsection, we examine the second dimension of wages, regional

variance. This analysis provides evidence that regional inequality accounts

for a large part of the rise in overall wage inequality in IT occupations. We

find that the IT sector opportunities are concentrated in a small number

of places, which led to rising wage inequality between regions. Booming

markets in some cities benefit workers across the local wage distribution,

3Wages are measured in contemporary dollars.
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possibly at the expense of shrinking opportunities in other locations and

out-migration from declining areas.

To assess the extent to which regional factors contribute to overall

inequality in the IT labor market, we decompose total wage inequality into

within-region and between-region components. The Occupational

Employment Statistics (OES) data contains only aggregate statistics, such

as the mean, median, top and bottom quartiles, and deciles of the wage

distribution within an occupation category and a CBSA. Appendix A.3

describes how we approximate the wage distributions using parametric

assumptions and estimate the parameters to fit the aggregate statistics. The

decomposition into between- and within-region components can be

directly calculated from the estimated parameters, after weighting by

employment shares across regions.

Figure 2 plots a between-region inequality measure for IT and other

STEM wages annually from 2000 to 2018. The Y-axis of Figure 2 is an

inequality index – the Generalized Entropy index GE(1), also referred to as

Theil’s T. The left panel shows the between-region Theil’s T in all 142

largest CBSAs in the United States, among IT wages (solid line) and other

STEM wages (dashed line), respectively. The right panel shows the

between-region Theil’s T, after excluding the top CBSAs that pay the

highest IT wages among all U.S. regions. The excluded CBSAs are a few

tech clusters and superstar cities – Silicon Valley, San Francisco, Seattle,

Washington DC, and New York City.

Patterns in Figure 2 suggests between-region inequality increased from

2000 to 2018 in both IT and other STEM labor markets, but particularly
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sharply for IT occupations4. While the regional disparity in IT wages grew

by 60% since the early 2000s, wages of non-IT STEM labor increased only

by about 30%. The trajectories of regional wage disparity between IT and

non-IT STEM labor diverged particularly after 2012, as the wage difference

between top cities and the rest of the country increased sharply in IT but

not other parts of the STEM labor market.

The rise in regional inequality in IT labor markets can be attributed to a

small number of CBSAs with the highest overall returns to IT-skilled

workers. The five CBSAs that appear to contribute to the entire increase in

regional inequality are regions that have historically been the most

attractive places for IT talent. These regions are also where most

high-growth IT companies locate their headquarters. After excluding these

regions from the decomposition, between-region inequality appears to be

flat over time, in both IT and non-IT STEM wages. In the rest of large U.S.

urban areas, the STEM labor markets experience overall similar returns in

the 2000s as in the 2010s.

In Figure 3, we plot the distribution of IT wages in the top five CBSAs

(solid line) and the rest of large metropolitan areas (dashed line), every six

years over a two-decade period from 2000 to 2018. The wage distribution

in top CBSAs diverged from the distribution in other large cities. It shifted

to the right gradually over time, indicating that the average wage pulled

ahead of the rest of the large CBSAs in the country.

To summarize, IT wage growth has shown increasingly similar patterns

4Different measures of inequality decomposition print broadly similar pictures of the
time trajectory of between-region wage inequality. Appendix A.3 presents the same
decomposition using alternative inequality decomposition approaches, including Theil’s
L and total variance. Theil’s L is more sensitive to differences at the bottom of the wage
distribution relative to Theil’s T.
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to wage growth in the STEM labor market, but it is also distinct in several

ways. A small number of superstar cities have been pulling ahead of the

rest of the country in returns to IT-skilled labor, while their advantages in

STEM wages have been lower and remained relatively stable since the early

2000s.

4 Regional Wage Premium and Inequality

This section examines whether regional premium in IT wages are driven by

extremely high returns to the top-skilled IT workers, what the literature has

labeled as superstar effect. In recent years, frontier IT skills are demanded

only by large firms in only a few places such as Silicon Valley and New

York City, but these skills are highly rewarded and pay much more relative

to older and more traditional IT skills (Tambe, 2014).

To assess this question empirically, we compare the average level and

the 90th-50th percentile spread of the wage distribution within each CBSA.

If the top end of the wage distribution drives the widening regional gap

between local IT labor markets, then we should expect to see strong

correlation between the wage spread in a CBSA and the average wage

level in that location. On the other hand, if the local labor market rewards

the average-skilled worker, then the wage spread would not positively

correlate with wage level within a CBSA.

This approach is less effective when data on top wages are missing,

which is the case for some data in the Occupational Employment Statistics

(OES). OES masks some wage statistics if they are above a threshold that

varies from year to year. The top quantiles in CBSAs with higher returns

are more likely to be missing. We impute missing wage quantiles using the
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ratio between moments of the wage distribution in other parts of the data.

In addition, the wage data does not contain information about

non-wage compensation, and therefore may not fully reflect the overall

returns to IT work. For example, some jobs with high earning potential

(e.g., founders of high-growth IT startups) reward workers with stock

options, which are not recorded in the OES data. While this is unlikely to

affect the middle of the wage distribution in the vast majority of the

occupations we examine, it can have consequences for creating new

recipients in the upper tail of entrepreneurially-oriented IT and STEM

occupations, the so-called 1% of income, particularly during prosperous

economic years. This is an important open question.

4.1 Decomposition of Wage Level and Spread

To focus on the location-specific component of wage levels and spreads,

we need to account for compositional differences that drive overall wage

levels of IT workers. For example, if firms in Location A employ more

programmers than location B, where more research scientists receive

employment, then we need to account for whether programmer positions

or research scientists receive higher compensation (typically, the latter do).

The total difference in wages between these locations will partially reflect

the difference in the composition of IT jobs in various occupations, rather

than the location-specific premium for all IT jobs within the local labor

market.

To account for differences in the composition of occupation within each

location, we estimate the following fixed-effects regression models in

Equations 1 and 2. These regression models control for occupation-specific
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fixed effects, so that estimates of location-specific fixed effects β jt and γjt

reflect solely the wage premium associated with advantages of any given

location, rather than the composition of jobs with intrinsically different

characteristics and returns. We call these estimated fixed effects “indexes”

of wage levels and spreads.

log(Wavg
ijt ) = β jt + ξit + εijt (1)

log

Wp90
ijt

Wp50
ijt

 = γjt + ψit + νijt (2)

In the equations above, Ws
ijt denotes the annual wage statistic in

occupation i, CBSA j, and year t. The wage statistic denoted by s takes

values from among the set of moments in the available data, including the

average, the median, and the top and bottom quartiles and deciles.

The estimation is conducted for each year separately, on annual wage

statistics from 2000 to 2018. To estimate the wage level index, we use only

the average wage of each location and occupation, in the outcome variable

of equation 1; to derive the wage spread index, we use the ratio between the

top decile and median wage, in the outcome variable of equation 2.5

We focus on wage differences at the higher end of the wage

distribution (instead of, e.g., the median to bottom decile ratio) for the

wage spread index, because our goal is to test whether top-skilled IT

5The fixed-effects estimation in equation 1 identifies the difference in the effects between
each location (and similarly, occupation and statistic type) and a base CBSA. We need
to omit one occupation and one CBSA each to estimate the contribution of all other
occupations and CBSAs relative to the base category. To be consistent across years, we
choose the same base categories in all years of regressions. We select San Francisco (CBSA
code 41860) as the omitted location, and Computer Programmer (2010 SOC code 15-1021)
as the omitted occupation.
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workers drive average returns to IT skills to be particularly high in

top-wage regions.

Appendix Table A.1 and A.2 list CBSAs with the largest wage level

index and wage spread index respectively. Each column shows the average

index over a 3-year period: 2000-2002, 2006-2008, 2011-2013, and

2016-2018. The omitted category (San Francisco) has an index of 0 by

default, and therefore all the other indexes are relative to San Francisco.

For example, a location j with a wage level index of β jt pays on average(
β jt × 100%

)
higher in IT wages than San Francisco in year t.

To relate the level and spread of the wage distribution within CBSAs,

we estimate the regression model in Equation 3. We estimate the equation

for IT workers and other STEM workers separately.

γ̂jt =
2018

∑
τ=2000

ατ

[
β jt × 1(t = τ)

]
+ ejt (3)

Each coefficient ατ for a particular year τ estimates the correlation

between the wage level index β jτ and the wage spread index γjτ of CBSA j

in year τ. A negative ατ indicates that in a location with a higher average

wage, the within-CBSA inequality is generally lower among IT (or non-IT

STEM) workers.

4.2 Correlation Between Regional Wage Level and Spread

This subsection describes the results of estimation, which shows the trends

in location-specific wage indexes over time and present coefficient

estimates of the relationship between the level and spread indexes in each

CBSA. Appendix A.4 contains a partial list of CBSAs with the highest
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estimated level and spread indexes.

The patterns in regional wage differences persist over time. The

highest-wage locations have been the same CBSAs from the early 2000s to

present day. Tech clusters, especially Silicon Valley and San Francisco Bay

Area have sustained substantial premiums in returns to IT-skilled labor

over the last two decades, where IT jobs pay at least 10–15% more than in a

city ranked the 6th in wage level index. The wage premiums in these

locations have increased even more in recent years compared to the 2000s.

For example, IT workers in San Francisco earn about 7% higher wages in

the early 2000s relative to those in the 6th-ranked CBSA, but this SF wage

premium increased to a much larger 13% in 2016 – 2018.

On the other hand, the lowest-earning locations are not that different

from middle-earning places. IT jobs in CBSAs with the lowest wage level

indexes pay about 50% less than in those in Silicon Valley and San Francisco,

but the gap did not grow between 2000 and 2018.

The set of locations with the highest wage spread indexes consists of an

entirely different list of CBSAs, compared to places where the wage level

premiums are the highest. It is not “the usual suspects,” and we believe

there is information in pattern because none of the top-wage locations make

it to the list of “most unequal” CBSAs, which have the largest top-decile to

median ratios in within-region IT wage distribution. More broadly, wage

levels and spreads are negatively correlated across locations, particularly

for IT occupations after 2012. Figure 4 plots the relationship between the

wage spread index and the wage level index, in 2000, 2006, 2012, and 2018

respectively. The relationship between these indexes for the IT labor market

slopes downward since 2012. Importantly, this latter pattern that does not
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generalize to other STEM labor markets.

Figure 5 plot all the coefficients from estimating Equation 3 in multiple

years from 2000 to 2018. It shows the time trend in the relationship

between wage levels and spreads within CBSAs, for IT occupations (solid

line) and non-IT STEM occupations (dashed line) respectively. The

coefficients for IT occupations were significantly below zero in most years

after 2012, while it diverged away from STEM trends around the same

time. This pattern appears persistent and does not seem to be associated

with the 2008 financial crisis. It arises in years after the economy started to

recover from the aftermath of the Great Recession.

Two main trends emerged from analyzing the differences in regional

premium in local IT labor markets across large metropolitan areas in the

United States. On the one hand, the gap between the top-earning CBSAs

and the rest of the country widened gradually over the two decades after

the millennium, a trend that notably accelerated in the most recent years.

On the other hand, locations paying higher average levels of wages have

become more attractive locations to median-skilled workers, and the tech-

hub premiums in returns to IT skills are not limited to paying top-ability

workers extremely high salaries. Most important, these trends are specific

to regional IT labor markets – they are not observed broadly in other STEM

labor markets outside of IT.
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5 Oaxaca-Blinder Decomposition of IT-Wage

Premium

Previous sections have revealed diverging regional trends as the dominant

pattern in IT wages over the last two decades. The goal of the empirical

exercise in the remainder of the paper is to show the extent to which

different regional factors explain differences in IT wage premium. What

factors contribute to the different labor market experience for IT

occupations in the leading cities? We propose to use and modify the

Oaxaca-Blinder decomposition to test the relevance of different

explanations.

5.1 Comparing Across Locations

We conduct an Oaxaca-Blinder decomposition over the total IT wage

difference between top CBSAs and other areas. This approach focuses on

explaining the wage premium in the top five CBSAs relative to the rest of

the U.S. labor market for IT skills. These top five CBSAs include San

Jose-Sunnyvale-Santa Clara MSA (Silicon Valley), San

Francisco-Oakland-Hayward MSA, Seattle-Tacoma-Bellevue MSA, New

York-Newark-Jersey City MSA, and Washington-Arlington-Alexandria

MSA. To test each explanation, we include one explanatory variable at a

time. After this, we pick all the explanatory variables that explain a

substantial portion of the group difference to add to the regressions. The

last step estimates the relative contribution of each factor to the total wage

gap between top CBSAs and the rest of the locations.

The first step in the Oaxaca-Blinder decomposition procedure involves
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estimating separate OLS regression models of wages on all the explanatory

factors for each group. Then the same model is estimated on the pooled

data containing both groups, resulting in reference coefficients that are

taken to be parameters of an “unbiased” model assumed absent any group

discrimination. The explained difference attributed to each regional factor

is directly calculated from the difference between the coefficient estimates

of the group-specific models and the reference coefficients.

Each factor Xjt is a CBSA-level variable for location j that can possibly

explain the wage premium of top locations in year t. The first stage of

Oaxaca-Blinder estimates the following OLS model in Equation 4, for the

set of top CBSAs and the rest of the locations separately.

log
(

Wm
ijt

)
= βXjt + γControlsjt + ψm

t + ξit + εm
ijt (4)

Each observation is associated with an aggregate wage level statistic m,

for each occupation i and CBSA j. The estimation weighs each observation

by the size of employment. The model in Equation 4 controls for

occupation fixed effects ξit to account for differences in occupational

composition across regions. We also control for statistic fixed effects ψm
t .

We use all available quantiles of the wage distribution, not only the

average wage level, to estimate Equation 4.

One advantage of the decomposition is its ability to highlight changes

in different explanations over time. Technological progress may

increasingly reward some firms (e.g., large established corporations versus

small young businesses) and particular tasks (e.g., cognitive non-routine

jobs and communication tasks) more than others. Hence the explanatory
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power of different regional features may shift over time, as they interact

with changes in organizational structures and job functions in IT-intensive

industries. The other advantage is related. The decomposition provides

explanations consistent with the descriptive facts in Sections 3 and 4 about

changes in IT labor market inequality patterns over time. For example, the

wage gap between top CBSAs and other locations has been rising

consistently over the last two decades, but particularly after 2012, which

marks somewhat diverging trends between IT and other STEM skills.

This approach also has one drawback. Changes in skill requirement

and job tasks associated with an occupation are not reflected in the OES

wage data. Such shifting within-occupation trends can directly affect

returns to IT labor, which cannot be distinguished from explanations based

solely on observed regional factors. Related, as the same occupation code

may include a different set of tasks over time, the nature of jobs in each IT

occupation may have evolved over two decades. The same occupation

category may entail more frontier skills in some CBSAs than others,

particularly given the geographic concentration of some frontier IT.

5.2 Regional Characteristics and Explanatory Variables

For the decomposition exercise we collect data on regional characteristics.

For more details about data collection and variable construction for

regional features, Appendix A.1 contains a thorough discussion. Several

explanations provide paths to testing potential location-driven

explanations for changes in IT wage inequality patterns over time. We

organize data collection around these explanations.
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IT Capital Complementarity and Marshallian Externalities

One set of explanations focus on the complementarity between the usage

of IT capital and skilled labor. Firm-level IT intensity can affect labor

market returns to complementary professional activity. Rising top-city

premiums in IT wages also may be due to distinct demand-side

characteristics of firms producing IT. Many of the most valuable public

companies are in IT-intensive sectors, for example, and tend to be

collocated. Many IT-producing firms also tend to be IT-intensive. Prior

work has, fortunately, developed methods for distinguishing between high

and low IT-intensity, and we follow these definitions (Jorgenson et al.,

2005; Forman, Goldfarb and Greenstein, 2012), but with updated analysis

to account for more recent changes in practice (Calvino et al., 2018). More

specifically, we use the global indicator defined in Calvino et al. (2018) to

classify as IT-using the set of sectors with medium-high or high digital

intensity in both 2000s and 2010s. 6 We also use a traditional definition for

IT-producing sectors and add communications to account for the spread of

digitization.7

6The indicators are grouped by International Standard Industrial Classification (ISIC)
Rev. 4 codes, which we map into 5-digit NAICS industries using a crosswalk file from
Census Bureau.

7We classify industries as IT-producing and IT-using by the International Standard
Industrial Classification (ISIC) Rev. 4 codes. The following sectors are IT-producing:
Computer, electronic and optical products (26), Telecommunications (61), and IT and
other information services (62-63). The following industries are IT-using: Wood and
paper products, and printing (16-18), Computer, electronic and optical products (26),
Electrical equipment (27), Machinery and equipment (28), Transport equipment (29-30),
Furniture, other manufacturing, repairs of computers (31-33), Wholesale and retail trade,
repair (45-47), Publishing, audiovisual and broadcasting (58-60), Telecommunications
(61), IT and other information services (62-63), Finance and insurance (64-66), Legal
and accounting activities (69-71), Scientific research and development (72), Advertising
and market research, other business services (73-75), Administrative and support service
activities (77-82), Public administration and defense (84), and Other service activities (94-
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We next use County Business Patterns (CBP) data to measure the

number of establishments in a given industry (NAICS) and CBSA. The

CBP data is reported at an annual frequency between 1999 and 2017 and

contains the number of establishments of different sizes within each CBSA

and 6-digit NAICS industry. We construct the share of establishments in

IT-using and IT-producing sectors within each location. Even though a

firm may have multiple establishments across different CBSAs, we are

interested in the share (rather than the total number) of IT-intensive firms,

using establishment counts to construct the IT-intensity measures

associated with a given location is a reasonable approach. It is also

plausible that large firms differ in productivity levels from small firms, and

contribute disproportionately to local labor market patterns. Therefore, we

also use data on the number of establishments within different ranges of

employment sizes to construct a measure for the share of large IT-intensive

establishments (defined as those employing at least 500 workers) for

IT-using and IT-producing sectors respectively.

Agglomeration Economies and Labor Pooling

Another set of explanations highlights the role of urban agglomeration and

the size of the local labor market. At least three mechanisms lead to

advantages of the urban environment in generating high-earning

opportunities for skilled labor. First, a large labor market facilitates the

matching between firms and the pool of local workers (Duranton and Kerr,

2015). Large urban areas increasingly draw inflows of migration of

highly-educated workers (Diamond, 2016). When an abundant supply of

96).
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high-skilled workers concentrates in the local area, this high-quality talent

pool attracts more firms to co-locate with the local labor market, in order to

gain better access to these highly productive workers as potential hires.

According to this explanation, agglomeration helps matches on facets of

skilled labor, such as adaptability to new requirements with rapid learning,

sound judgment with discretion, and the ability to perform cognitive tasks

quickly.

A second mechanism highlights that the demand for IT skills is

exceptionally high in a small number of superstar cities. The geographic

concentration of tech activity may create a shortage for particular types of

frontier IT skills, bidding up IT wages in local areas where such skills are

in high demand. IT workers possessing frontier skills (or the ability to

acquire these skills quickly) are a scarce resource for firms, even in regions

with relatively abundant overall labor supply. This contributes to an IT

wage premium as firms align themselves in digital transformation across a

variety of industries.

Finally, the concentration of highly skilled workers in an urban

location generates productivity spillovers among local workers, who may

or may not possess similar skill. For example, such knowledge spillovers

are associated with agglomeration economies that boost inventor

productivity (Moretti, 2019), and innovation appears to benefit more from

clustering in concentrated locations than industrial activity more broadly

(Carlino and Kerr, 2015).

To test this set of explanations, we use CBSA-level demographic

profiles to construct variables that measure the size of the local labor

market and supply of educated workers. Specifically, we collect
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demographic statistics for each CBSA in the sample, using the American

Community Survey data available from 2005 to 2017. We also use the 1999

census data to construct the same set of local demographics, but for each

MSA in the year of 2000. Some of the variables include total population

and share of college-educated adults (aged 25 and above) within each

CBSA. We also construct a set of control variables related to regional

characteristics from the American Community Survey (post-2005) and U.S.

Census (2000) data. These include control variables, such as the age and

racial composition of the population living in the area. They also include

net migration inflows, as well as poverty and unemployment statistics.

Patents, Innovation, and Entrepreneurship

A third set of explanations stresses variance in regional innovation,

high-growth entrepreneurship, and business dynamism. Startups and

young firms are essential contributors to job creation and productivity

growth. Before 2010, young firms generated about one-sixth of all new jobs

and startups account for 20 percent of gross job creation but less than 10

percent of all firms (Decker et al., 2014). Although most startups fail, a

small fraction of firms that survive become highly productive, and

experience transformative growth and have a disproportionate impact on

productivity and employment in the economy.

Invention tends to occur in geographically concentrated clusters,

measured by aggregate venture capital and patenting activities (Kerr and

Robert-Nicoud, 2019). Recent research documents the rising geographic

concentration of IT patents in the United States (Forman and Goldfarb,

2020). In addition, evidence suggests innovation enhances firm
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productivity and raises worker compensation (Kline et al., 2019). The

commercialization of innovation and frontier-stretching activities can lead

to higher wages in occupations related to, but not directly engaged in

invention activities. The IT sector is vibrant with startup entry and

dynamic changes, where new launches of products and services frequently

redefine boundaries of the industry and leading trends.

We proxy for inventive activity within a CBSA using the total number

of Computers & Communication patents assigned to inventors in the

CBSA (Forman and Goldfarb, 2020). To measure business dynamism and

entrepreneurial activity, we use Kauffman Indicators (available on

Kauffman Foundation website) and newly registered businesses (available

from the business formation data by the Census Bureau). The data are both

aggregated to the state level and available from 1999 to 2017. In Kauffman

Indicators, “transformative” high-growth entrepreneurship is separately

measured from other types of new firms (which may include small

businesses that do not grow in size). The Kauffman Indicator is a z-score

constructed from combining four variables that track startup activity in the

U.S. across states annually. These four variables are the rate of new

entrepreneurs, opportunity (non-subsistence) share of new entrepreneurs,

startup job creation, and startup survival rate.

The patent data are available for each CBSA, while the Kauffman data

are available only at the state level. In only a few large states (specifically,

California and Texas), the Kauffman indicator are coarser than ideal

because there are more than a few large CBSAs with varying labor market

characteristics and business formation dynamics. However, most states

have very few CBSAs that are large enough to make it into our IT wage
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data sample. Therefore, state-level indicators reflect variations in local

startup activities in the largest CBSAs for most of our data.

5.3 Empirical Results and Discussion

We start by testing each factor by including them in the Oaxaca-Blinder

decomposition, one variable at a time. Table 2 shows the list of explanatory

factors we test, and whether they appear to explain a non-trivial portion of

the wage difference between top cities and the rest of large metropolitan

areas at some point over the last two decades. Other background regional

characteristics are also added as control variables, including the age and

racial composition, poverty status, unemployment rate, and migration

inflow in each CBSA.

The measures associated with IT-capital complementarity appear to

explain very little of the top-CBSA wage premium. The share of overall

establishments in IT-intensive sectors (either IT-using or IT-producing)

does contribute to the total wage gap. Large establishments (with 500 or

more employees) in IT-using sectors appear to have a moderate association

with the wage premium in top locations. It appears industrial clusters do

not contribute much to the advantage of CBSAs in rewarding IT skills.

This suggests that demand-side factors may have been less critical in

shaping returns to IT labor than anticipated.

The factors associated with agglomeration spillovers and labor pooling

appear to robustly predict the top CBSA premium in IT wages in recent

years. The share of college-educated adults and the total population size

explain a substantial part of the wage differences from 2016 to 2018.

The patterns around the contribution of innovation and
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entrepreneurship to top region wage premiums are a bit more complicated.

They appear to have started to account for a moderate but significant part

of the regional inequalities after 2013 and shortly after the economy began

to recover from the Great Recession. However, in the 2000s and early

2010s, regional innovation activities did not explain in any non-trivial

degree the advantages of top CBSAs in rewarding IT-skilled labor.

After identifying the regional factors that explain a non-trivial portion of

the wage premium in top locations, we assess their relative contributions to

regional IT wage inequality over time. Figure 6 visualizes the results of this

assessment, showing the explained share of the total wage gap each year

between 2006 and 2018 (left panel), along with the percentage contribution

of each factor to total explained group difference (right panel).

Consistent with what we have found in the descriptive section, the

wage premium in top cities have been rising over time, and increased

particularly sharply after 2012. Figure 6 left panel also suggests that

known factors identified from theory do not sufficiently explain the sharp

increase in the wage gap post-2012. The explained portion of the wage gap

remained stable around the same level, suggesting that the differential

changes in wage structure between top CBSAs and the rest of the country

may have been a primary reason for the higher top-location premium in IT

wages after 2012.

One explanation of differential changes in “wage structure” between

top CBSAs and other locations is that technical progress may have

transformed digital business models, particularly among firms in the

Silicon Valley and other tech clusters, but less so elsewhere.

The right panel of Figure 6 breaks down the contribution of each factor
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to the share of top-CBSA wage premium explained by differences in

observed characteristics. All results are scaled to reflect the fraction

explained by each variable. After 2012, the fraction of wage difference

explained by the local supply of high-skilled labor fell by almost 40%. The

fraction of wage difference explained by population size also decreased

from 2012 to 2013 but increased year after year since then.

Interestingly, the fraction of wage difference explained by IT-related

patents increased after 2012, and account for 6% of the total explained IT

wage gap between top CBSAs and other locations. This number is

moderate compared to the relative contribution of skill supply, but it

demonstrates trends of increasing relevance over time, especially since

2012.

These results suggest that agglomeration economics and innovation in

information technology may have contributed increasingly to the regional

gap in IT wages in recent years. The trends reflect the wage premium in the

top clusters and largest metropolises more precisely, rather than the general

difference between, e.g., the 10th ranked city and the bottom city in terms

of IT wages. We focus on explaining this particular type of regional gap in

IT wages because most of the changes in IT labor market inequality over

the last two decades reflect a few top cities pulling ahead of the rest of the

country, as documented in Section 3.

Table 3 shows Oaxaca-Blinder decomposition results at different points

in time over the last two decades. Column 1 shows the results estimated

from wage statistics in 2000. Columns 2 – 4 show results on pooled

samples over three-year periods starting in 2006, 2011, and 2016. The

regional variables in 2000 come from the 1999 census, and those in all later
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years come from the American Community Survey, which did not start to

collect data until 2005. Hence the regional factors and control variables are

not available between 2001 and 2004, for which we cannot assess each

factor’s relative contribution.

There is a substantial IT wage premium associated with a larger pool of

high-skilled (college-educated) labor in all years. This suggests that the

supply of skills in the local labor market has been a primary driver of

productivity and IT wages throughout the last two decades.

The coefficients on population and IT-related patents in Table 3 have

increased over time, suggesting that agglomeration spillovers and technical

innovations have played a more significant role in driving top CBSA wage

premium in recent years. On the other hand, population size was not a

driver of regional advantage in 2000, where the coefficient on the logarithm

of population size was negative. Neither did IT patents contribute much to

top-location wage premium in 2000.

Between 2016 and 2018, the top CBSAs paid about 25.5% more in IT

wages than other large U.S. metropolitan areas. Observed regional factors,

including demographics and other control variables, explained 69% of this

wage gap. While the high-skilled share (college-educated adults) accounted

for 25% of the explained difference, population size accounted for 10.2%,

and IT-related patents 6.3% of the explained difference.

The increasing importance of technological innovation in driving IT

wage premiums in top cities may be explained by frontier IT skills (e.g.,

big data), which tend to be sought by the largest firms in a small number of

tech clusters (Tambe, 2014). Returns to frontier skills have been growing

quickly, relative to other parts of the IT labor.
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Other control variables, especially the share of the white population and

population below the poverty line, appear to explain a moderate fraction

of top-location premium in IT wages since 2006. The relative explanatory

power of these demographic control variables did not vary systematically

over the last decade.

The IT wage structure in the United States appears to experience

changes in recent years that affect top cities differently from the rest of the

country. The “unexplained” share of overall wage premium in top CBSAs

has been growing and accounted for almost the entire increase in the

regional wage gap since 2012. The same set of local factors from previous

years cannot fully explain this more recent increase in top-city wage

premium.

6 Conclusion

This study examines whether exceptional factors shape returns to IT-skilled

labor rather than being part of general STEM wage trends. We also analyze

changes over time in the contribution of different factors in regional labor

markets to the IT wage premium.

The evidence points to rejecting any narrative that stresses

IT-exceptionalism after the dot-com era, and that suggests the rise of IT

wages in that era may have been an aberration from long term trends. We

conclude that IT wages increasingly followed the patterns consistent with

long-run skill-biased technical change. Returns for highly skilled IT

workers are not substantially higher than those to the rest of the IT labor

market. Instead of idiosyncratic IT wage trends, general economy-wide

forces associated with skill-biased technical change appear to shape the
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overall wage structure of STEM labor more broadly. Since the end of the

dot-com boom in the early 2000s, wages of IT-skilled labor and STEM labor

in fields other than IT have evolved onto similar paths.

Large urban areas feature an IT wage premium above and beyond

overall returns to STEM labor. Such an advantage concentrates in only a

few superstar cities – Silicon Valley, San Francisco, Seattle, New York, and

Washington DC – which pulled ahead of all other U.S. regions in terms of

IT wage and employment. Shifts in the composition of occupations in local

labor markets do not shape these patterns. Instead, they reflect wage

growth within occupational categories.

While the popular sentiment may surmise that exceptionally high

returns to IT skills contribute to rising wage inequality within the United

States, we document a surprising and previously unrecognized effect

working in the opposite direction. We find empirical support for the

declining spread between the top and median IT wage earners, in some

urban areas and particularly locations with higher average IT wages. The

correlation between earnings average and spread within a location has

been significantly negative in recent years.

Since the recovery from the Great Recession, IT wages have become

less unequal in top CBSAs than elsewhere, at the same time as these top

cities experience faster productivity and wage growth. Other U.S.

metropolitan areas appear to be lagging behind, and place-based policies

to stimulate productivity growth and improve job opportunities may be

particularly useful to these areas.

Using an Oaxaca-Blinder decomposition approach, we analyze the

underlying causes behind the spread between cities. We find that an
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increasing amount of top-CBSA wage premium is not explained by

regional factors that previously explained a large part of the regional wage

gap before 2012. Top-CBSA wage premium grew particularly rapidly after

2012 and most of this growth is explained by differential changes in the IT

wage structure in top cities relative to the rest of the country.

The supply of high-skilled labor appears to have accounted for a

substantial portion of around 16% of total IT wage difference between the

top CBSAs and other regions. One source of the advantage of star cities is

their superior talent pool of highly skilled workers. As firms adapt to rapid

digital transformation, high-quality IT labor is an increasingly valuable

resource that experiences rising demand even in locations with relatively

abundant skill supply.

Agglomeration economies and innovation appear to play an increasing

role in driving the advantage of tech clusters and large metropolises in

attracting IT talent. The explanatory coefficients on population size and

IT-related patents have increased since 2012. On the other hand, aggregate

IT-intensity of local firms did not contribute substantially to rising top-city

wage premiums in recent years.

These findings have implications for economic policies. Our results

also suggest that a range of regional growth policies to recruit IT

producers, which have been commonly pursued over the last few decades,

have not paid off with higher local wages. Instead, recruitment of any

professionally skilled and innovative labor led to distinctively high wage

growth. Policy focused on the IT wage premium or on digital skills would

have been too narrow an approach. Instead, a more effective policy should

encourage the development of STEM-based skills more generally. In
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addition, while innovation may have contributed to IT worker

productivity, policies to encourage innovation and entrepreneurship had,

at best, only a moderate effect on wage growth. Among the most effective

policies were those that made a location attractive to skilled workers and

their employers.

Our results raise numerous questions about the interplay between

regional composition of labor supply and the demand for distinct types of

skill, which creates the regional variance in skill-biased technical change.

Our findings reinforce models that stress the benefits to scale that operate

at the regional level. Yet, that also leaves some questions open. For

example, what type of competition between a few superstar cities

generates a negative correlation between mean levels and spread of wage

premiums? Our findings also raise numerous questions about models of

superstar cities that solely depend on the size of cities, or the matching of

supply and demand of specialized labor. Competition between cities must

play a role in shaping the composition of skill-biased returns within the

cities.

Finally, our findings used the ups and downs of macroeconomic trends

as markers for change in patterns over time. While our sample was limited

to two decades of wage premiums, we implicitly adopted the view taken

throughout the literature that these processes operate over long horizons

and decadal time scales. That too raises questions about how the

opportunities and limits associated with a growing national economy or

stagnated economic activity shapes regional comparative advantages and

the effect of skill-bias on wages.
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Figure 1: Overall IT and Other STEM Wage Distributions
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Notes: This figure shows snapshots of wage distributions (in contemporary dollars) for STEM
occupations, in four years 2000, 2006, 2012, and 2018. The solid lines represent the estimated kernel
density function of wages in IT occupations, while the dashed lines represent the estimated kernel density
function of wages in non-IT STEM occupations in all large U.S. cities. The X-axes shows wage earned
annually (in thousand USD), and all graphs are fixed to be comparable on the same scale and axis ranges.
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Figure 2: IT and Other STEM Wage Inequality Between CBSAs
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Notes: This figure shows the between-CBSA wage inequality among IT occupations (solid) and non-IT
STEM occupations (dashed) respectively, in each year between 2000 and 2018. The X-axes represent each
year from 2000 to 2018. The Y-axes represent the between-CBSA component of an inequality index. The
inequality index is measured using Theil’s T – General Entropy Index GE(1), which is more sensitive to
the top part of the wage distribution, and constructed from CBSA-occupation level wage statistics (mean,
10th, 25th, 50th, 75th, and 90th percentiles). The left panel plots annual regional wage inequality for all
CBSAs, and the right panel plots the same measure but excluding five areas – Silicon Valley, San Francisco,
Seattle, New York City, and Washington DC.
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Figure 3: Difference in IT Wage Distribution Between Top Locations and Other CBSAs
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Notes: This figure shows snapshots of wage distributions (in contemporary dollars) for IT occupations,
in four years 2000, 2006, 2012, and 2018. The solid lines represent the estimated kernel density function
of IT wages in the top CBSAs – Santa Clara (Silicon) Valley, San Francisco, Seattle, New York City, and
Washington DC. The dashed lines represent the estimated kernel density function of IT wages in all other
large U.S. cities. The X-axes shows wage earned annually (in thousand USD), and all graphs are fixed to
be comparable on the same scale and axis ranges.
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Figure 4: Binscatter Plots: Wage Level and Spread Indexes
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Notes: This figure plots the relationship of CBSA indexes between wage level and wage spread, for IT
occupations (diamond shape) and non-IT STEM occupations (plus mark) respectively in each year of 2000,
2006, 2012, and 2018. The X-axes represent the wage level index – the CBSA fixed-effect estimates from
the wage level decomposition regressions. The Y-axes represent the 90th-50th percentiles wage spread
index – the CBSA fixed-effect estimates from the wage spread decomposition regressions.
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Figure 5: Relationship Between Wage Level and Spread Indexes, All Years
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Notes: This figure plots the relationship of CBSA indexes between wage level and wage spread, for IT
occupations (solid) and non-IT STEM occupations (dashed) respectively from 2000 to 2018. The X-axis
represent the year, and the Y-axis represent the correlation between the 90th-50th percentiles spread and
wage level indexes, estimated from the decomposition regressions.
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Figure 6: Contribution to Top City IT-Wage Premium of Explanatory Factors Over Time
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Notes: This figure shows the total wage premium in top cities, and the contribution of major explanatory
factors to the wage difference across locations. The results are derived from an Oaxaca-Blinder
decomposition on annual wages. The left panel shows, from 2006 to 2018, the total difference (solid) and
explained difference (dashed) between average wages in top locations – Santa Clara (Silicon) Valley, San
Francisco, Seattle, New York City, and Washington DC – and the rest of large CBSAs in the United States.
The right panel shows the relative contribution, of each regional explanatory factor, to total explained
wage difference, from 2006 to 2018.
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Table 1: Annual Wage Summary Statistics by Occupation and CBSA

Mean P50 P90 Mean P50 P90 Mean P50 P90

Computer Scientists, Research 141 137 216 117 112 165 / / /
Software Engineers, Systems 137 135 193 87 82 123 83 79 118
Software Engineers, Applications 144 138 206 89 82 128 85 82 126
Database Administrators 108 109 160 79 77 119 79 78 113
Computer Programmers 106 106 151 85 76 130 76 72 115
Computer Network Occupations 112 110 161 83 78 124 70 66 102
Computer Support Specialists 74 71 109 50 47 76 47 46 64

Average Level and Ranking by Year Mean Rank Mean Rank Mean Rank
   2000 69.5 2 53.2 55 43.4 124
   2006 84.8 2 63.0 51 52.6 122
   2012 98.6 2 72.8 53 61.8 120
   2018 120.9 2 79.7 71 70.0 121

Architectural and Engineering Managers 184 170 259 122 118 171 118 118 165
Aerospace Engineers 133 130 171 97 94 130 120 120 167
Statisticians 119 117 169 71 60 122 59 52 93
Architects 100 96 157 79 72 129 73 68 115
Mechanical Drafters 72 71 110 52 49 75 51 53 75
Surveying and Mapping Technicians 72 72 108 43 40 62 39 37 57

Average Level and Ranking by Year Mean Rank Mean Rank Mean Rank
   2000 71.7 2 52.0 95 47.9 129
   2006 86.4 3 67.4 58 57.7 122
   2012 106.1 2 76.3 81 66.7 128
   2018 121.0 2 87.9 65 75.7 127

Annual Wages ($ Thous.) San Francisco, CA Little Rock, ARIndianapolis, IN

IT Occupations (2018)

Non-IT STEM Occupations (2018)

Notes: This table shows the average wage moments in the final data sample. We select three locations, at
the top, middle, and bottom parts of IT wage level in 2018 across all 142 major CBSAs. We list the mean,
median, and top decile of 2018 wages in each of these locations for selected STEM occupations. We also
list the aggregate level and ranking (among the 142 CBSAs) of each location in 2000, 2006, 2012, and 2018,
in terms of wages in all IT and non-IT STEM occupations respectively.
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Table 2: List of Regional Explanatory Factors to Top City IT-Wage Premium

Explanatory Factors 2016 - 2018

Agglomeration spillovers
   Share college-educated 17.7%
   Total population 12.5%
IT capital complementarity
   # IT-producing establishments 0.1%
   # large IT-producing establishments -0.1%
   # IT-using establishments -1.0%
   # large IT-using establishments 1.8%
Innovation and entrepreneurship
   Number of IT-related patents 6.4%
   Kauffman Entrepreneurship Index 1.7%

Notes: This table reports the results from testing regional factors potentially explaining the
average wage difference between top locations – Santa Clara (Silicon) Valley, San Francisco,
Seattle, New York City, and Washington DC – and the rest of the large CBSAs. For three
categories of explanatory theories, the table shows the percentage explained by each regional
factor between 2016 and 2018.
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Table 3: Oaxaca-Blinder Decomposition Results

2000 2006 - 2008 2011 - 2013 2016 - 2018
(1) (2) (3) (4)

0.175*** 0.209*** 0.232*** 0.255***
(5.08) (11.08) (11.57) (11.38)

   Share of College-Educated Adults 0.037*** 0.064*** 0.052*** 0.042***
(4.42) (21.48) (14.67) (13.09)

   Log (Total Population) -0.009* 0.011*** 0.006** 0.018***
(-2.51) (6.62) (3.11) (10.10)

   Log (# Large IT-Using Establishments) -0.000 0.002*** 0.002*** 0.000
(-0.04) (3.93) (4.28) (0.11)

   Log (Total IT Patents) 0.005 0.007*** 0.007*** 0.011***
(0.97) (4.56) (5.28) (8.05)

Control Variables
   20 <= Age < 35 0.005 0.008*** -0.003** -0.002*

(1.37) (8.87) (-3.28) (-2.11)
   35 <= Age < 45 0.049*** 0.006** -0.005** -0.003

(7.17) (2.59) (-2.61) (-1.43)
   45 <= Age < 55 0.010* -0.002 0.011*** 0.007***

(2.52) (-1.84) (9.64) (4.90)
   55 <= Age < 65 -0.000 0.003* -0.000 -0.003***

(-0.19) (2.06) (-0.66) (-5.72)
   Age >= 65 -0.013*** 0.000 0.001* 0.006***

(-4.11) (1.10) (1.97) (6.88)
   Unemployment Rate -0.003 -0.010*** -0.007*** -0.006***

(-1.87) (-11.65) (-7.66) (-8.52)
   Share Below Poverty Line 0.002 0.020*** 0.022*** 0.018***

(0.73) (13.79) (9.48) (9.67)
   White 0.078*** 0.052*** 0.098*** 0.040***

(6.52) (11.49) (16.48) (5.94)
   Black -0.009** -0.009*** -0.005* 0.002

(-2.70) (-5.57) (-2.11) (1.96)
   Native American 0.000 0.001*** 0.001*** 0.001***

(0.35) (3.60) (4.24) (4.87)
   Asian -0.074*** -0.036*** -0.063*** 0.001

(-5.29) (-7.16) (-8.93) (0.09)
   Net Population Inflow 0.030 / -0.002* -0.006***

(1.68) / (-1.98) (-3.39)
   Missing Population Inflow -0.020 / 0.002 0.004*

(-1.42) / (1.59) (2.57)

Unexplained Difference 0.053* 0.055*** 0.074*** 0.080***
(2.11) (4.16) (5.17) (4.43)

4914 15342 15570 15648No. Obs.

Total Difference

Top-City Premium in Log (Annual Wages)

IT Capital Complementarity and Marshallian Externalities

Agglomeration Economies and Labor Pooling

Patents, Innovation, and Entrepreneurship

Notes: This table presents coefficient estimates from the Oaxaca-Blinder decomposition
on regional differences in wages, between the top locations – Santa Clara (Silicon) Valley,
San Francisco, Seattle, New York City, and Washington DC – and the rest of large CBSAs
in the United States. Each column shows decomposition results that include the average
wage of each of the two groups being compared, as well as the total difference, divided
into an explained (endowment) and an unexplained (structural) component. It also lists
the contribution of each explanatory regional factor to total difference. Column 1 shows
results on wage data in 2000. Columns 2 – 4 show results on wage data over three-year
periods, starting in 2006, 2011, and 2016, respectively. The estimation of all columns use
aggregate data at the CBSA-occupation level, weighting observations by total employment,
and pool together all available statistics, including the mean, the 10th, 25th, 50th, 75th, and
90th percentiles of the subgroup’s wage distribution.
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A Appendix

A.1 Data Sources for Regional Explanatory and Control

Variables

To assess explanations to regional variation in wages, we also collect data

on features of each major metropolitan area. These data come from public

sources, and the following discussion summarizes data sources and key

variables.

American Community Survey. We collect data on regional features by

CBSA. We use the American Community Survey data on land area size,

population and population density, and demographic profile (e.g.

education attainment, unemployment rate, age composition, etc). Data

availability starts in 2005.

Census 1999. The Census of 1999 provides demographics by

metropolitan statistical areas. The variables available are similar to those in

the American Community Survey, but for an earlier year. We obtain

information about MSA-level population, median household income,

education level, and ethnicity.

County Business Patterns. We use data from County Business Patterns

to measure regional concentration of a number of industries, e.g. ICT

(information and communication technology), FIRE (finance, insurance,

and real estate), manufacturing, healthcare, etc. Measures include

employment size, annual payroll, number of establishments, and number

of large (over 100 workers) establishments. Data availability starts in 1999.

USPTO Patent Data. We measure the number of patents by category
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in each MSA, to capture the data to measure the aggregate number of ICT-

related patents in each MSA over time, to proxy for the amount of IT-related

innovation. Data is available for all years from 1999 to 2017.

Business Formation and Entrepreneurship. For new business

formation and entrepreneurial activities, we use two sets of aggregate data

– Census Business Formation and Kauffman Indicators8. These data are

available at the state level, for all years from 1999 to 2017.

The frequency of all the data are at the annual level. Regional

explanatory and control variables except business formation and

Kauffman indicators are available at the level of core-based statistical area,

and available for all 142 major metropolitan areas which have the largest

population in the United States. We use regional features as regressors

with a 1-year lag. We do this to account for the fact that some of the

changes in the surroundings may take time to lead to changes in labor

market outcomes.

A.2 Approximating Full Wage Distributions from

Aggregate Statistics

The kernel density function for wage distributions in Section 3 is estimated

on a simulated random sample, rather than an actual representative

sample of STEM workers across large metropolitan cities in the United

States. To generate such a random sample involves a few steps and some

assumptions, as this section will describe.

The BLS Occupational Employment Statistics (OES) data contains, for

8Data available from https://www.census.gov/programs-surveys/bfs.html and
https://www.kauffman.org/historical-kauffman-index/microdata respectively.
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each occupation (defined by the Standard Occupation Classification codes)

and CBSA, the average and key quantiles of the distribution of annual

wages. The key quantiles include the 10th, 25th, 50th, 75th, and 90th

percentile wages. Data are masked without being reported for higher

quantiles, if the value exceeds a certain threshold which varies across

years. Therefore, we have a right-censored raw data set, which renders the

data set not directly comparable across years consider this issue and a

number of other differences in the underlying sampling scheme to

generate these statistics.

We approximate the cumulative density function of the wage

distribution based on these summary statistics. To do this, we use linear

interpolation on the wage quantiles, and make an assumption about the

minimum of the wage numbers that is reasonable given the log-normal

shape of the wage distribution, and then derive the maximum wage to fit

the average wage level. After we get the approximated CDF of each

distribution, we use inverse transform sampling to generate a random

sample that from the CDF.

Each CBSA and occupation has a different wage distribution, and

employ different numbers of workers. To create a full random sample, we

sample from the cumulative density function for each occupation and

CBSA, using the total employment in each group as weights. The scaling

factor is 100 – for each 100 workers in a particular category, we generate

one data point randomly from the interpolated density function. The full

random sample consists around 1.1 million simulated data points on

STEM workers across the 150 largest MSAs from 2000 to 2018. Around 47%

of these simulated observations are IT worker wages.
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A.3 Decomposing Wage Inequality into Between- and

Within-CBSA Components

We use standard measures of wage inequality, such as Theil’s T (GE1), to

decompose total wage inequality into a within-region component, and a

between-region component. Other inequality measures suitable for the

decomposition are Theil’s L (GE0) and variance. For data generated

according to a log normal distribution, such decomposition entails

closed-form formulas that are easy to compute.

We do not have individual-level wage data for a representative sample

of workers, hence cannot decompose the wages without imposing

assumptions on the shape of the wage distributions. Instead, we have a

number of summary statistics on wages (i.e., the mean, 10th, 25th, 50th,

75th, and 90th percentiles) in each occupation and CBSA (for the largest

150 metropolitan area in the United States). The summary statistics of

occupational and regional wages suggest high similarity between the raw

wage distribution and the family of log normal distributions. Therefore,

we approximate the wages with a log normal distribution within each

aggregate group, and calculate the scale and shape parameters that best fit

the available wage statistics, by minimizing the sum of squared deviations.

We fit a log-normal distribution to the log of the quantile and mean

statistics in the data, to minimize the sum-of-squared-errors. Given the

quantiles, and assume functional form for the CDF of the wage

distribution, assuming Y is within (0, ∞). Let log Y ∼ N(µ, σ2).

Pr (Y ≤ y) =
1
2
+

1
2

er f
[

ln y− µ√
2σ2

]
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Then the theoretical mean of Y is

E[Y] = exp
(

µ +
σ2

2

)
(5)

Fitting the quantiles gives for each τ ∈ {0.1, 0.25, 0.5, 0.75, 0.9}

yτ = exp
(

µ +
√

2σ2 · er f−1(2τ − 1)
)

(6)

We have at most 6 equations and 2 unknown
(
µ, σ2). We can solve for µ

and σ2 by minimizing the sum of least-squares deviations of the log of these

statistics

L(µ, σ) =

(
µ +

σ2

2
− log ȳ

)2

+ ∑
τ

(
µ +
√

2σer f−1(2τ − 1)− log yτ

)2

Taking the first-order conditions of Equations 5 and 6, we get the

following system of equations

(N + 1)µ +
σ2

2
− log ȳ +

[
√

2∑
τ

er f−1(2τ − 1)

]
σ =

∑
τ

log yτ(
µ +

σ2

2
− log ȳ

)
σ +

[
√

2∑
τ

er f−1(2τ − 1)

]
µ + 2∑

τ

[
er f−1(2τ − 1)

]2
σ =

√
2∑

τ

er f−1(2τ − 1) log yτ

Solving the above system of equations gives estimates of µ and σ2 that

parametrizes the wage distribution in the log-normal family to minimize

the total least-squared errors in fitting the available wage statistics.
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Using the estimated parameters, we can then derive approximations to

inequality measures for each category, as well as aggregate these measures

into an overall within-region component and a between-region component.

We focus on the class of Generalized Entropy measures of inequality,

e.g., Theil’s T (GE1) and Theil’s L (GE0). The theoretical values of these

measures for a given random variable Y are calculated as

GE(0) = ln E[Y]− E[ln Y]

GE(1) =
E[Y ln Y]

E[Y]
− ln E[Y]

If we restrict Y to have a log normal distribution with scale and shape

parameters
(
µ, σ2), then the expressions for the inequality measures can be

simplified, because both GE0 and GE1 are equal to σ2

2 under the assumption

that Y is log-normal.

This simplification makes regional decomposition particularly

straight-forward. The goal is to use category-level estimated wage

distribution parameters to derive aggregate inequality measures as well as

divide these measures into between-region and within-region components.

We construct a number of inequality measures (i.e total variance and

generalized entropy) and decompose them into within- and

between-region components according to the standard procedures in the

literature, such as described in Leibbrandt, Finn and Woolard (2012). To

collect these measures at the level of subgroups, and combine them into

the larger group, we derive the following from the definition of each

inequality decomposition.

Let one category (e.g. CBSA) be indexed by j, and the subgroup
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category (e.g. occupation) be denoted by i. To derive the approximate

overall wage inequality in each CBSA j, we calculate the following from

estimated inequality measures in the subcategory (indexed by ij). Let Y

denote annual wage, and y denote the logarithm of annual wage. The

Generalized Entropy measures of the wage distribution, and the total

variance in the logarithm of wages can be expressed as

GE(0)j = ∑
i

Nij

Nj
GE(0)ij + ∑

i

Nij

Nj
ln

Ȳj

Ȳij

GE(1)j = ∑
i

NijȲij

NjȲj
GE(1)ij + ∑

i

NijȲij

NjȲj
ln

Ȳij

Ȳj

Var(yj) = ∑
i

Nij

Nj
Var(yij) + ∑

i

Nij

Nj

(
ȳij − ȳj

)2

Section 2 reports the between-region component of wage inequality

using Theil’s T (GE1) as the measure for inequality. In this appendix, we

show that other inequality measure yield broadly similar patterns of rising

between-region inequality over time. Figures A.2 shows inequality

decomposition patterns using GE(0) (Theil’s L) and total variance in log

wages.

A.4 Patterns in Estimated CBSA Indexes for Wage Level

and Wage Spread

In Section 4, we estimated indexes for the wage level and spreads in each

CBSA, based on Equations 1 and 2. In this appendix, we list these indexes

across a number of years ranging the last two decades, to support the

descriptive analyses in the main part of the paper. Table A.1 shows the

CBSA indexes for wage level, and Table A.2 shows the CBSA indexes for
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wage spread (top decile to median), for the top six locations with highest

indexes in each 3-year time period.

From Table A.1, top cities have always had the highest-paying IT jobs,

throughout the past two decades. Silicon Valley and San Francisco, in

particular, have sustained top wages in all years, where IT workers earned

at least 7–14% more than in the 6th highest-paying CBSA. The very top

locations also experienced faster wage growth. In recent years, a few

metropolises and urban areas, including Washington DC and New York

City, have become particularly attractive to local IT labor, paying the

largest IT-wage premiums relative to other U.S. metroplitan areas.

On the other hand, there is almost no overlap between the lists of CBSAs

in Table A.1 and in Table A.2. The places that pay least equal wages to local

IT workers are not the top CBSAs that attract the most well-paid IT talent.

This is consistent with Section 4.2 which finds that wage level and wage

spreads are negatively correlated among U.S. cities.

We also show the estimated occupation indexes in Table A.3 and A.4

for wage level and wage spread (top decile to median) respectively. The

numbers suggested that the wage gap across locations widened

substantially from 2000 to 2018. The wage difference between research

scientists (highest-paying) and support specialists (lowest-paying)

increased from 55% in 2000 – 2002 to 72% in 2016 – 2018. This change can

potentially be explained by the skill level, as theories of skill-biased

technical change explains wages growing apart between jobs that require

different degrees of education. For example, computer research (and

information) scientist positions typically require at least a master’s degree,

and they also pay the highest wages among IT occupations. Computer
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support specialists do not require a college degree, and they also pay the

lowest wages on average.
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Figure A.1: IT and Other STEM Wage Inequality (Theil’s T) Within CBSAs
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Notes: This figure shows the within-CBSA wage inequality among IT occupations (solid) and non-IT
STEM occupations (dashed) respectively, in each year between 2000 and 2018. The X-axes represent each
year from 2000 to 2018. The Y-axes represent the between-CBSA component of an inequality index. The
inequality index is measured using Theil’s T – General Entropy Index GE(1), which is more sensitive to
the top part of the wage distribution, and constructed from CBSA-occupation level wage statistics (mean,
10th, 25th, 50th, 75th, and 90th percentiles). The left panel plots annual regional wage inequality for all
CBSAs, and the right panel plots the same measure but excluding five areas – Silicon Valley, San Francisco,
Seattle, New York City, and Washington DC.
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Figure A.2: Between- and Within-CBSA Components of Wage Inequality
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(b) Variance in Log Wages
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Notes: This figure presents the decomposition of wage inequality into a between-CBSA component (left)
and the sum of within-CBSA components (right). It shows the decomposition among IT occupations
(solid) and non-IT STEM occupations (dashed) respectively, in each year between 2000 and 2018. The
X-axes represent each year from 2000 to 2018. The Y-axes represent the between-CBSA component of an
inequality index. The inequality index is measured with Theil’s L – General Entropy Index GE(0) in the
top panel, and the variance in log wages in the bottom panel. These inequality measures are derived using
aggregate wage statistics, and detailed data construction steps are outlined in Appendix Section A.3.

64



Table A.1: Selected List of CBSA IT-Wage Level Indexes

0.066 0.079 0.080 0.056
(0.025) (0.022) (0.018) (0.031)

0.000 0.000 0.000 0.000
(/) (/) (/) (/)

-0.071 -0.049 -0.021 -0.047
(0.039) (0.018) (0.027) (0.038)

-0.072 -0.058 -0.058 -0.073
(0.037) (0.024) (0.016) (0.017)

-0.074 -0.061 -0.059 -0.092
(0.022) (0.031) (0.013) (0.021)

-0.074 -0.065 -0.087 -0.126
(0.022) (0.014) (0.046) (0.027)

2011 - 2013 2016 - 2018

Seattle-Tacoma-Bellevue, 
WA

New York-Newark-Jersey 
City, NY-NJ-PA

6 Worcester, MA-CT New York-Newark-Jersey 
City, NY-NJ-PA

Durham-Chapel Hill, NC Bridgeport-Stamford-
Norwalk, CT

Washington-Arlington-
Alexandria, DC-VA-MD-WV

Seattle-Tacoma-Bellevue, 
WA

4 Seattle-Tacoma-Bellevue, 
WA

Washington-Arlington-
Alexandria, DC-VA-MD-WV

Boston-Cambridge-Nashua, 
MA-NH

Washington-Arlington-
Alexandria, DC-VA-MD-WV

San Jose-Sunnyvale-Santa 
Clara, CA

San Jose-Sunnyvale-Santa 
Clara, CA

2 San Francisco-Oakland-
Hayward, CA

San Francisco-Oakland-
Hayward, CA

San Francisco-Oakland-
Hayward, CA

San Francisco-Oakland-
Hayward, CA

Rank
1 San Jose-Sunnyvale-Santa 

Clara, CA
San Jose-Sunnyvale-Santa 

Clara, CA

3 New York-Newark-Jersey 
City, NY-NJ-PA

Boston-Cambridge-Nashua, 
MA-NH

5 Boston-Cambridge-Nashua, 
MA-NH

Bridgeport-Stamford-
Norwalk, CT

2000 - 2002 2006 - 2008

Notes: This table shows the CBSA indexes for the top six CBSAs ranked from highest to lowest – estimated from the fixed-
effects regression for the level of IT wages. The name of each CBSA is listed, along with the fixed-effects estimates and standard
errors. The indexes are estimated relative to one omitted location – San Francisco, and the values can be interpreted as the
difference in overall IT wage levels between each CBSA and San Francisco, after accounting for the composition of occupations
in each CBSA.
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Table A.2: Selected List of CBSA IT-Wage Spread Indexes

0.217 0.128 0.143 0.198
(0.069) (0.077) (0.076) (0.092)

0.118 0.127 0.140 0.117
(0.058) (0.047) (0.086) (0.054)

0.118 0.070 0.134 0.098
(0.061) (0.030) (0.065) (0.037)

0.094 0.067 0.130 0.098
(0.039) (0.058) (0.038) (0.044)

0.0932 0.066 0.119 0.098
(0.048) (0.044) (0.053) (0.055)

0.089 0.065 0.108 0.084
(0.079) (0.036) (0.043) (0.022)

2016 - 2018

6 Port St. Lucie, FL Brownsville-Harlingen, TX McAllen-Edinburg-Mission, 
TX

Miami-Fort Lauderdale-West 
Palm Beach, FL

5 El Paso, TX Orlando-Kissimmee-
Sanford, FL

Beaumont-Port Arthur, TX Santa Maria-Santa Barbara, 
CA

3 North Port-Sarasota-
Bradenton, FL

Santa Maria-Santa Barbara, 
CA

Provo-Orem, UT Greenville-Anderson-
Mauldin, SC

4 Houston-The Woodlands-
Sugar Land, TX

North Port-Sarasota-
Bradenton, FL

Springfield, MO Port St. Lucie, FL

Provo-Orem, UT

1 Fayetteville-Springdale-
Rogers, AR-MO

Port St. Lucie, FL Dallas-Fort Worth-Arlington, 
TX

Asheville, NC

Rank

2 Santa Rosa, CA Provo-Orem, UT Brownsville-Harlingen, TX

2000 - 2002 2006 - 2008 2011 - 2013

Notes: This table shows the CBSA indexes for the top six CBSAs ranked from highest to lowest – estimated from the fixed-
effects regression for the spread of IT wages. The name of each CBSA is listed, along with the fixed-effects estimates and
standard errors. The indexes are estimated relative to one omitted location – San Francisco, and the values can be interpreted
as the difference in overall IT wage spreads (top decile to median) between each CBSA and San Francisco, after accounting for
the composition of occupations in each CBSA.
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Table A.3: List of IT Occupation Wage Level Indexes

0.172 0.304 0.241 0.256
(0.017) (0.016) (0.018) (0.018)

0.152 0.200 0.229 0.195
(0.010) (0.008) (0.007) (0.009)

0.142 0.157 0.155 0.158
(0.008) (0.007) (0.006) (0.007)

0 0.006 0.018 0.038
(/) (0.006) (0.011) (0.008)

-0.01 0 0.014 0
0.006 (/) (0.007) (/)

-0.052 -0.018 0 -0.010
(0.009) (0.013) (/) (0.006)

-0.374 -0.429 -0.409 -0.459
(0.010) (0.008) (0.006) (0.007)

Computer Network 
Occupations

2000 - 2002 2006 - 2008 2011 - 2013 2016 - 2018
Computer Scientists, 

Research
Computer Scientists, 

Research

Computer Support 
Specialists

Computer Support 
Specialists

Computer Scientists, 
Research

Software Engineers, 
Systems

Software Engineers, 
Applications

Computer Network 
Occupations

Computer 
Programmers

Database 
Administrators

Computer 
Programmers

Database 
Administrators

Computer Scientists, 
Research

Computer Support 
Specialists

Software Engineers, 
Systems

Software Engineers, 
Applications

Database 
Administrators

Computer 
Programmers

Software Engineers, 
Systems

Software Engineers, 
Applications

Computer 
Programmers

Computer Network 
Occupations

Software Engineers, 
Applications

Software Engineers, 
Systems

7
6
5 Computer Network 

Occupations

Database 
Administrators

Computer Support 
Specialists

Rank
1
2
3
4

Notes: This table shows the occupation indexes for all IT occupations ranked from highest to lowest – estimated from the
fixed-effects regression for the level of IT wages. The name of each occupation is listed, along with the fixed-effects estimates
and standard errors. The indexes are estimated relative to one omitted occupation – computer programmers, and the values
can be interpreted as the difference in overall IT wage levels between each occupation and computer programmers, after
controling for location fixed effects.
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Table A.4: List of IT Occupation Wage Spread Indexes

0.038 0.007 0.031 0.049
(0.009) (0.006) (0.007) (0.008)

0.038 0 0 0.009
(0.009) (/) (/) (0.007)

0 -0.007 -0.021 0.006
(/) (0.008) (0.007) (0.009)

-0.021 -0.037 -0.024 -0.003
(0.019) (0.011) (0.006) (/)

-0.05 -0.046 -0.039 -0.003
(0.005) (0.007) (0.022) (0.007)

-0.057 -0.064 -0.041 -0.025
(0.008) (0.013) (0.007) (0.008)

-0.063 -0.064 -0.046 -0.043
(0.008) (0.007) (0.012) (0.016)

2016 - 2018

7

Database 
Administrators

Software Engineers, 
Systems

Software Engineers, 
Systems

Computer Scientists, 
Research

Computer Network 
Occupations

Software Engineers, 
Applications

Software Engineers, 
Systems

5

Computer 
Programmers

Software Engineers, 
Applications

Computer Scientists, 
Research

Software Engineers, 
Applications

6

Computer Support 
Specialists

Computer Scientists, 
Research

Software Engineers, 
Applications

Software Engineers, 
Systems

3 Database 
Administrators

Database 
Administrators

Database 
Administrators

4 Computer Scientists, 
Research

Computer Network 
Occupations

Computer Network 
Occupations

Computer 
Programmers

Computer Support 
Specialists

2 Computer 
Programmers

Computer 
Programmers

Computer Network 
Occupations

Rank 2000 - 2002 2006 - 2008 2011 - 2013
1 Computer Support 

Specialists
Computer Support 

Specialists

Notes: This table shows the occupation indexes for all IT occupations ranked from highest to lowest – estimated from the
fixed-effects regression for the spread of IT wages. The name of each occupation is listed, along with the fixed-effects estimates
and standard errors. The indexes are estimated relative to one omitted occupation – computer programmers, and the values
can be interpreted as the difference in overall IT wage spreads (top decile to median) between each occupation and computer
programmers, after controling for location fixed effects.
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