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Abstract

We study the impact of skilled immigrants on the employment structures of U.S. firms
using matched employer-employee data. Unlike most previous work, we use the firm as
the lens of analysis to account for a greater level of heterogeneity and the fact that many
skilled immigrant admissions are driven by firms themselves (e.g., the H-1B visa). OLS
and IV specifications find rising overall employment of skilled workers with increased skilled
immigrant employment by firm. Employment expansion is greater for younger natives than
their older counterparts, and departure rates for older workers appear higher for those in
STEM occupations compared to younger worker.
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1 Introduction

The immigration of skilled workers is of deep importance to the United States. In 2008, immi-
grants represented 16% of the U.S. workforce with a bachelor’s education, and they accounted
for 29% of the growth in this workforce during the 1995-2008 period. In occupations closely
linked to innovation and technology commercialization, the share of immigrants is even higher
at almost 24%. As the U.S. workforce ages and baby boomers retire, the importance of skilled
immigration has the potential to increase significantly. Perhaps due to this impact, the appropri-
ate policies and admissions levels for skilled workers remain bitterly debated. Many advocates
of higher rates of skilled immigration have recently adopted the phrase "national suicide" to
describe the limited admissions of skilled workers compared to low-skilled immigrants to the
United States. On the other hand, expansions of admissions are passionately opposed by critics
who believe that skilled immigration is already too high.
This study analyzes how the hiring of skilled immigrants affects the employment structures

of U.S. firms. Our focus on the firm is both rare and important. From an academic perspective,
there is very little tradition for considering firms in analyses of immigration. As one vivid
example, the word "firm" does not appear in the 51 pages of the classic survey of Borjas (1994)
on the economics of immigration, and more recent surveys also tend to pay little attention to
firms. As described in greater detail below, economists instead typically approach immigration
through the conceptual framework of shifts in the supply of workers to a labor market. Firms
provide some underlying demand for workers, but their role is abstracted from. Much of the
debate in the literature is then about what constitutes the appropriate labor market and how
its equilibrium is determined.
While this approach is perhaps the correct lens for low-skilled immigration, it seems quite

incomplete for skilled migration. First, the structure of many skilled immigration admissions is
designed in part to allow companies to select the workers that they want to hire, rather than mi-
grants being selected by the U.S. government. It thus seems particularly valuable to understand
the impact of these admissions on the firms themselves. A firm-level analysis also allows us to ac-
count for heterogeneity that is not captured with other approaches. This is especially important
since firms hold specific assets that are often instrumental in determining employment outcomes
and their organizational structures more generally. The development of new employer-employee
data offers great promise for expanding our understanding of the immigration process from both
empirical and theoretical perspectives. The literature on international trade, for example, has
benefitted deeply in recent years from greater consideration of the role of the firm.
While our analysis is about skilled immigration more generally, a prime example of the

legal role that firms play in skilled immigration is the H-1B visa, which is the largest program
for temporary skilled immigration to the United States. The H-1B is a firm-sponsored visa,
meaning that a company first identifies the worker that it wants to hire and then applies to the
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U.S. government to obtain the visa. Once the work has started, the immigrant is effectively tied
to the firm until obtaining permanent residency or obtaining another visa. This lock-in effect is
particularly strong if the firm further sponsors the immigrant for permanent residency. Moreover,
most of the arguments in the public debate about the impact of skilled immigration in the United
States are also firm-level statements. For example, in the context of the H-1B, Bill Gates has
stated in congressional testimony that Microsoft hires four additional employees to support
each worker hired on the visa. On the other hand, Matloff (2003) argues that U.S. companies
hire skilled immigrants through the H-1B program to displace older citizen workers with high
salaries, thereby lowering their cost structures, and presents case studies about displacement
within individual firms. Other examples are National Foundation for American Policy (2008,
2010) and Hira (2010).
Given this context, this paper looks at the role of young skilled immigrants within the firm.

We focus on the immigration of young workers as they account for a large portion of skilled
immigrants; for example, 90% of H-1B workers are under the age of 40. This is likely due
to the characteristics of firm demand as well as the preferences of foreign workers to immi-
grate when they are young. At the center of this project is a confidential database maintained
by the U.S. Census Bureau called the Longitudinal Employer-Household Dynamics (LEHD)
database. Sourced from required state unemployment insurance reporting, the LEHD provides
linked employer-employee records for all private sector firms in 29 covered states. Among the
information included for each employee is the worker’s quarterly salary, age, gender, citizenship
status, and place of birth. This wealth of information allows us to observe directly the hiring of
skilled immigrants and the associated changes in firm employment structures (e.g., the hiring or
departures of skilled U.S.-born workers over the age of 40).
From the LEHD data set, we develop an unbalanced panel of 319 firms over the 1995-2008

period. Our selection criteria emphasize top employer firms and top patenting firms in the
United States, given that much of the discussion of the effects of skilled immigration focuses
on employment outcomes, innovation rates, and the high-tech sector in particular. Given the
skewness of the firm size distribution (Axtell, 2001; Gabaix, 2011), our sample accounts for
10%-20% of the workforce in covered states (including over 67 million employees in total during
the period) and about 34% of U.S. patenting. We construct an annual panel that describes the
employment and hiring of skilled immigrants and use the panel to quantify the link between
young skilled immigration and firm employment structures.
Ordinary least squares (OLS) estimations find a strong link between expansions in a firm’s

young skilled immigrant employment, where young workers are defined as those under 40 years
old, and expansions in other parts of the firm’s skilled workforce. With this framework, we
estimate that a 10% increase in a firm’s young skilled immigrant employment correlates with a
6% increase in the total skilled workforce of the firm. Expansion is evident and mostly balanced
for older and younger native skilled workers. Increases of a similar magnitude are also found
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for the firm overall, including lower-skilled workers, with the firm experiencing a small increase
in the skilled worker share. Similar elasticities are evident on the hiring margin itself– that is,
looking at the relationship between changes in the rates at which immigrant and native groups
are hired within a year. We quantify effects through a first-differenced framework that removes
permanent differences across firms and includes multiple controls in the spirit of other approaches
to studying immigration.
OLS estimations are potentially biased by omitted factors, measurement error in immigrant

hiring, or measurement error induced by corporate restructurings. We thus turn to instrumental
variable (IV) estimations that use national changes in the H-1B visa program’s size over the
1995-2008 period interacted with how important H-1B workers are for each firm. While our
focus is more broadly on skilled immigration, the H-1B program’s substantial size provides
useful identifying variation for understanding these impacts. National changes in the H-1B
program’s size are measured through annual population estimates developed by Lindsey Lowell
or through summations of recent H-1B visa caps. Our first instruments measure the dependencies
of firms by their Labor Condition Applications (LCAs), a first step towards applying for H-1B
visas. We also develop alternative dependency measures through the initial shares of each firm’s
skilled workforce that come from Chinese and Indian economies or that are employed in Science,
Technology, Engineering, and Mathematics (STEM) occupations.
We present our IV estimations in two ways. A first set of estimations does not place any

structure on the underlying growth process of the firm. With this approach, we only have valid
instruments using the H-1B population trend to model national changes (but not the summation
of recent visa caps), and even these estimations are sensitive to specification choice. These limits
are not too surprising given that we are attempting to predict annual changes in relative hiring by
firms over a 14-year period. As a second approach, we provide greater structure to the underlying
growth dynamics of firms by controlling for contemporaneous changes in their medium-skilled
workforces, a group of workers mutually exclusive from the skilled workforce and defined precisely
below. In these latter estimations, we can no longer examine total firm size as an outcome, but
we are able to quantify changes in skilled workforce composition. This second approach offers
greater alternatives for instrument design and facilitates many extensions. These IV analyses of
the skilled worker composition thus form the centerpiece of this study’s findings and where we
place our emphasis.
Within these empirical boundaries, the IV estimations deliver several consistent results. First,

the IV estimations generally agree with OLS that the overall skilled component of the firm’s
workforce expands with greater employment of young skilled immigrants. Moreover, the IV
estimations consistently find that this expansion comes disproportionately through young skilled
native workers and older skilled immigrant workers as opposed to older native workers. While
OLS estimations find increases in the immigrant share of the firm and shifts towards younger
skilled workers, the IV estimations suggest that OLS underestimates the extent of these changes.
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The decline in the older worker share is again not solely due to the mechanical effect of employing
more young skilled immigrants, as we also find a relative decline for older workers among native
employees only.
To summarize, we find evidence that increased employment of young skilled immigrants

raises the overall employment of skilled workers in the firm, increases the immigrant share
of these workers, and reduces the older worker share of skilled employees. The latter effect is
evident even among natives only. As to whether the older worker skilled employment increases or
declines in absolute level, the evidence is mixed but suggests that absolute declines are not likely.
These estimates suggest that age is an important dimension on which firms make decisions and
that there may be lower complementarity between young skilled immigrants and older domestic
workers. This finding is consistent with some of the arguments made in the public debate about
skilled immigration and suggests that age is an important dimension along which immigration
may have heterogeneous impacts. The particular direction of these findings is not obvious ex
ante (e.g., one could have imagined the highest complementarity existing between the seasoned
experience of older natives and the technical skills of young immigrants). Finally, OLS results
consistently find that the overall size of the firm increases with higher employment of young
skilled immigrants, but the IV estimates are inconclusive on this dimension.
Building on these results, we consider an extension to our primary estimations by looking at

employment effects across occupations. The Current Population Survey (CPS) collects employ-
ment data from a random group of workers in the U.S. economy in each year. A bridge has been
established between the 1986-1997 CPS and the LEHD. While our sample period mostly comes
after this link is available, we are able to ascertain the primary occupations of over 25,000 work-
ers in our firm sample at the time of their inclusion in the CPS survey. This platform allows us
to evaluate whether workers linked to occupations related to STEM exhibit different responses
when skilled immigration increases. As we show below, this might be true because the elasticity
of substitution by worker age in these occupations is higher than in other fields. Our evidence is
suggestive on this dimension. On one hand, there is a higher departure rate of older workers in
STEM occupations with greater young skilled immigration into the firm. This heightened old-
young differential is especially pronounced for workers earning over $75,000 a year. On the other
hand, while the coeffi cients for older workers in STEM occupations are higher than for older
workers in non-STEM occupations, the magnitude of the differences between these estimates are
not statistically significant or economically large. Breaking down the results across occupations
to the extent feasible with our data, relative departure rates for older workers appear higher in
STEM occupations, reflective of the high age elasticity of substitution in this field.
These results provide a multi-faceted view of how young skilled immigration shapes the

employment structures of U.S. firms. Interestingly, these results do not align with any single
popular account and suggest that greater caution in public discourse is warranted. The next
section of this paper reviews some of the literature on the impacts of immigration and discusses
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a conceptual framework that motivates our empirical specification. Section 3 presents a descrip-
tion of our employment data, and Section 4 discusses our OLS employment analyses. Our IV
estimations are then presented in Section 5. Section 6 discusses our occupational results, and
the final section concludes.

2 Literature Review and Conceptual Framework

Firms are mostly absent from the literature on the impact of immigration. Instead, economists
have sought to define labor markets and then model immigration as an adjustment in the po-
tential supply of labor to that market. A natural consequence of this approach has been a
debate about what constitutes the appropriate labor market. Even more debate and research
has followed about related questions like: Do natives move out of the labor markets in response
to immigration (and thereby dampen the supply increase)? How quickly do other factors of
production, like capital or technology, respond to labor inflows (and thereby alter relative price
effects)? What are the non-employment effects of immigration? These and similar questions have
typically been directed toward general immigration and so are not reviewed here.1 We instead
focus on the initial question by outlining the approaches past work has taken for defining the
labor market, identifying skilled immigration studies that follow each approach, and describing
how the perspective of a firm may be captured or not.
A first approach defines labor markets as local areas like cities or states and is most closely

associated with the analysis of Card (2001). With this lens, immigrants to Boston are thought to
most directly impact the opportunities of natives currently living in Boston, with less emphasis on
other attributes like the relative ages of workers. Kerr and Lincoln (2010), Hunt and Gauthier-
Loiselle (2010), and Peri et al. (2013) are examples of this approach with respect to skilled
immigration and innovation.2 To the extent that a firm makes employee choices within a single
local area, either because the firm is relatively small or because local units have high autonomy,
then the behavior of the city at large may be reflective of the underlying firms. One possible
limitation with respect to the firms we study is the fact that our firms typically extend across
multiple geographic areas.
Another approach, most closely associated with Borjas (2003), instead describes a national

labor market among workers with similar education and age/experience profiles. With this lens, a
25-year-old immigrant with a bachelor’s education in San Francisco may affect the opportunities
of a 25-year-old native graduating from college in Boston. Moreover, this effect may be larger
than the effects of competition from older natives of a similar level of education who also live in

1General surveys of the immigration literature include Borjas (1994), Friedberg and Hunt (1995), Freeman
(2006), Dustmann et al. (2008), and Kerr and Kerr (2011). An incomplete list of some of the most recent work
more generally includes Lewis (2011), Cortes (2008), Lach (2007), and Lubotsky (2007). Kerr (2013) reviews the
high-skilled immigration empirical literature.

2Examples of studies using this approach for broader immigration patterns include Card (1990), Hunt (1992),
and Peri (2011, 2012). Longhi et al. (2005, 2006) provide meta-reviews.
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Boston. While there are reasons to suspect that the labor market for highly educated workers
is broad in spatial scope, this approach has not been used for analyzing skilled immigration.
This is in large part due to the fact that the highest education group in these frameworks is
typically a bachelor’s education or greater– a level which is usually taken as the starting point
for defining skilled immigration.
The age-education framework also does not capture elements of the hiring decision given

that firms optimize over a full wage bill, internalizing potential complementaries across worker
groups. And while the displacement effects identified by Borjas (2003) are frequently cited by
critics of skilled immigration, some of their strongest claims rest on substitution margins that
this basic framework does not allow.3 One notable example is the argument made by Matloff
(2003) that firms’usage of the H-1B visa is primarily about a worker’s age. Matloffproposes that
the H-1B program offers firms two types of potential savings. One type of savings centers on the
fact that a 25-year-old Indian H-1B programmer might be paid less than a 25-year-old American
programmer. He argues that this emphasis is entirely misplaced and that the real savings to the
firm come instead from displacing a 50-year-old American programmer whose salary has grown
with time. More generally, firms may have internal personnel policies (e.g., wage ladders with
tenure) that interact with immigration. Firms and workers may also have implicit contracts or
expectations that can be fortified or broken (e.g., Schleifer and Summers 1988).
A third approach, which is less common generally but important for the analysis of skilled im-

migration, considers labor markets to be specialized fields of study or expertise (e.g., Friedberg,
2001). Examples of this work with respect to skilled immigration include Borjas and Doran’s
(2012) study of the migration of Russian mathematicians following the Soviet Union’s collapse
and Moser et al.’s (2012) study of Jewish scientist expellees from Nazi Germany. This work
again partially captures the firm’s economics and partially does not. For example, the Borjas
and Doran (2012) study is set in an institutional environment with limited room for overall
growth and mostly lacking complementary inputs. Firms, which are often engaged in global
competition, frequently suggest that the skilled immigrants they seek are necessary to grow the
firm. In contrast to the substitution argument, this view suggests that skilled immigrants pos-
sess complementarities with domestic workers that can unlock greater opportunities. Moreover,
firms tend to have greater flexibility than other institutions in the speed with which they can
adjust their scale and worker composition, suggesting that their responses may differ from those
measured across university departments.4

3Recent work builds more nesting into these models (e.g., Ottaviano and Peri 2012, Borjas et al. 2012).
4Borjas (2005, 2006) and Chellaraj et al. (2008) examine the impact of immigrant graduate students on

natives. Stephan and Levin (2001), Hunt (2011, 2012), Hayes and Lofstrom (2012), Mithas and Lucas (2010),
and Gaule and Piacentini (2012) assess quality differences between immigrants and natives with respect to
innovation. Firm-level studies on skilled immigration include Kerr and Lincoln (2010), Clemens (2012), Foley
and Kerr (2013), and Kerr et al. (2013). Broader work that examines general immigration using the LEHD
includes Andersson et al. (2009, 2012). Olney (2012) considers how firm counts increase when immigration
shocks impact a city. Work outside of the United States includes Nathan (2011), Barth et al. (2012), Åslund et
al. (2012), Choudhury (2012), and Ozden and Wagner (2013).

6



Turning from the academic literature, much of the discussion in the public debate over skilled
immigration revolves around arguments over whether skilled immigrants are complements or sub-
stitutes for citizen workers. In popular accounts, this is frequently expressed as cost minimization
versus access to scarce resources/skills. These views are often expressed by employees who claim
to be displaced: workers feel they are being dismissed so that the firm can save money, the firm
argues that the true issue is that the immigrant has scarce skills that would complement other
workers’skills, the displaced worker debates how scarce that skill really is, and so on.
For the most part, this study does not observe the occupations of workers and so to an

important degree we are not able to analyze these issues as precisely as we would like. Moreover,
to the extent that we observe occupations in Section 6, the level of detail is too coarse to settle
definitively the claims made in the public debate (e.g., discussions about computer programmer
substitution are often about specific computer languages and how quickly one can or cannot
learn these languages). Our study instead represents a broader inquiry into the patterns of
hiring and employee departures associated with greater employment of skilled immigrants. By
separating the dimensions of employee hiring and employee departures, we can shed some light
on the activity that lies behind net employment changes for firms. We can ascertain whether
some skilled employees are being hired, perhaps due to complementary skills. For example,
Peri and Sparber (2009, 2011) emphasize how skilled immigrants can specialize in occupations
demanding quantitative and analytical skills, while native workers take on occupations requiring
interactive and communication skills. Other studies emphasize the benefits of diversity (e.g.,
Nathan 2011, Parrotta et al. 2013). And we can similarly identify when others are departing,
perhaps due to displacement in some form. While interpretation of these margins should be
cautious, they provide substantially greater information than previously available.5 ,6

To gain some simple intuition for our empirical approach, we utilize a conceptual model from
Desai et al. (2009). The original application of this model was for cross-border employment in
U.S. multinationals, but a similar set of conditions represents one way to motivate our empirical
specification. The model considers a firm that makes output using two types of labor– domestic
and immigrant– with the concave production function Q = Q (LD, LI) . Increases in the em-
ployment of either group have a diminishing effect on output levels, holding the other fixed
(∂Q/∂LD > 0, ∂2Q/∂L2D < 0, ∂Q/∂LI > 0, ∂2Q/∂L2I < 0). Our focus is on the cross-elasticity
∂2Q/∂LD∂LI .

5We will also study these complementarity differences by worker age, which has been far less developed
theoretically or empirically. One can, for example, easily imagine that older native workers with deep experience
could best complement younger skilled immigrants. An alternative hypothesis would be that the interface is best
between similar age groups (e.g., a young marketing team that best works with innovative technical products
developed by skilled immigrants). We do not have a strong ex ante hypothesis about these relative effects.

6While this focus on the firm is an important step, the hiring of skilled immigrants likely has spillovers outside
of the firm’s boundaries. One employment-related example is how a firm’s hiring decision and revelations of
information about employees enrich future labor pools from which all firms draw (e.g., Tervio 2009, Pallais
2011). The conditions are in fact one reason why tied employment relationships exist with the H-1B program.
While spillovers are important, the choice of firms to hire immigrants depends most on their own economics, and
so an accurate portrait of these conditions is needed and the subject of the study.

7



The concave revenue function of the firm is R (Q, y), with y representing economic conditions
exogenous to the firm (e.g., price levels). The firm maximizes R (Q, y) − cDLD − cILI , where
cD is the cost for domestic workers and cI is the cost for immigrant workers. This leads to the
familiar conditions for profit maximization that

∂R

∂Q

∂Q

∂LD
= cD and

∂R

∂Q

∂Q

∂LI
= cI . (1)

In this model, a reduction in the cost of employing an immigrant dcI increases the employment
of immigrants in the firm. This expansion in turn affects the employment of domestic workers
through the concavity of the output and revenue functions. This can be seen by totally differ-
entiating the first expression in (1). Denote the change in immigrant employment by dLI , and
the induced change in domestic employment by dLD. The total differentiation is

∂Q

∂LD

∂2R

∂Q2

[
∂Q

∂LD
dLD +

∂Q

∂LI
dLI

]
+
∂R

∂Q

[
∂2Q

∂L2D
dLD +

∂2Q

∂LD∂LI
dLI

]
+

∂Q

∂LD

∂2R

∂Q∂y
dy = dcD. (2)

We make two important assumptions. First, we assume that dcD/dLI = 0. This is equivalent
to assuming that immigration rates into the firm do not affect the employment costs of domestic
employees. This is a fiercely debated topic, but the available empirical evidence suggests this
assumption is plausible. For example, Kerr and Lincoln (2010) do not find any wage effects
for domestic workers in a state-level analysis of expansions in the H-1B program. Second, we
assume that dy/dLI = 0. The concept behind this assumption is that the firm’s revenue function
does not change contemporaneously with the change in immigrant employment costs. In our
IV application, this represents the important empirical claim that the factors that reduce the
immigrant employment cost are not correlated with factors changing the firm’s profit function.
With these assumptions, we can rearrange the remaining terms in (2) to be

dLD =

[
∂Q
∂LD

∂Q
∂LI

∂2R
∂Q2

+ ∂R
∂Q

∂2Q
∂LD∂LI

]
−
[(

∂Q
∂LD

)2
∂2R
∂Q2

+ ∂R
∂Q

∂2Q
∂L2D

]dLI . (3)

The denominator on the right hand side of the expression (3) is positive given the properties of the
revenue and production functions ∂Q/∂LD > 0, ∂2R/∂Q2 < 0, ∂R/∂Q > 0, and ∂2Q/∂L2D < 0.
The sign of the numerator in expression (3) hinges on the cross-elasticity term ∂2Q/∂LD∂LI .
The relationship between dLD and dLI will be positive only if ∂2Q/∂LD∂LI > 0 and is suffi -
ciently large to offset the magnitude of the first term in the summation of the numerator. This
makes sense intuitively– if domestic and immigrant worker employment are complementary and
suffi ciently strong to overcome the concavity of the output revenue functions, then we should
see a positive relationship between growth in domestic employment and growth in immigrant
employment in the data.
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3 Firm-Level Employment Data

In this section we provide a description of the data that we use for our analyses. We first discuss
the construction of the Longitudinal Employer-Household Dynamics (LEHD) database, how we
select the firms in our panel, our definitions of employee hiring and departures, and descriptive
statistics on our sample. As the LEHD has not been used extensively in prior research, we detail
a number of the choices that we make in constructing our sample.

3.1 Firm Panel Selection

Our employment records come from the LEHD database, which is housed by the U.S. Census
Bureau. The LEHD contains linked employer-employee records for all private sector firms covered
by state unemployment insurance reporting requirements. The LEHD does not contain public
sector workers at present. There are currently 29 states participating in the LEHD database,
and these states are indicated by the shaded areas in Figure 1. At present, the employment
records for all states extend through 2008, but the starting dates differ by state. Our primary
sample uses a balanced panel of 18 states that have reporting starting by 1995. These states are
indicated by a star in Figure 1 and they notably include big (and high-immigration) states like
California, Florida, Illinois, and Texas. Examples of major states not included are New York,
Michigan, and Pennsylvania.
Our sample of firms taken from the LEHD focuses on large U.S. employers and major U.S.

patenting firms. We select these two facets of firm behavior as the criteria for choosing our firm
sample since much of skilled immigration is for work in high-tech industries. It is also the case
that employment and innovation outcomes are frequently emphasized in debates about skilled
immigration to the United States. Throughout much of this paper, we analyze these two groups
together as there is extensive overlap; where warranted, we also report separate results using
variation across the major patenting firms only. We describe here the selection of our initial
sample and the creation of composite firms that account for major corporate restructurings.
We identify major employers using a number of different sources. While our analysis mostly

focuses on employee records contained in the LEHD data set, the partial state coverage of the
LEHD data noted above raises conceptual challenges about how to best select firms. Our basic
approach first develops a candidate firm list using nationally-based employment records and
then restricts the sample to those candidate firms that satisfy a certain coverage ratio in LEHD
states.
Our specific procedure starts with the Census Bureau’s Longitudinal Business Database

(LBD), which contains annual employment records for all establishments in the United States.
We link the name of each establishment to the LBD from the Standard Statistical Establishment
List. Aggregating to the firm level by summing across establishments, we compile the names
of the top 100 employers in every year from 1990 to 2008. We also supplement this list with
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firm names that are not contained in the first step but that rank in the top 100 U.S. firms
for worldwide sales or employment contained in Compustat over the full 1990-2008 period. We
further include those listed as Fortune 200 companies in 2009.7

For our major patenting firms, we first extract from filings downloaded from the United States
Patent and Trademark Offi ce the patent assignee names that account for more than 0.05% of
patents applied for during the 2001-2004 period. Given that roughly half of USPTO patents are
filed by foreign inventors and firms, we restrict our analysis to patents with inventors residing
in the United States at the time of their USPTO application. We then identify these major
patenting firms in the Census Bureau data.8

With this assembled list of names, we next define firms and collect the Census Bureau firm
identifiers and the federal Employer Identification Number (EIN) associated with them. In many
cases, there are multiple firm identifiers and EINs for these entities that we combine together. An
alternative approach would be to use the Census Bureau firm identifiers from the top employment
companies in the raw data. We use a manual approach in part due to the fact that we observe
cases where the provided firm identifiers display irregular properties (e.g., employment shifting
briefly to another entity and back). While labor intensive, our manual approach ensures very
consistent firm definitions for both our top employers and major patenting firms.
We also use this manual approach as a means of accounting for major corporate restructur-

ings. Our 1995-2008 sample period contains some significant mergers and acquisitions, corporate
spin-offs, and similar events that can create discontinuous changes in firm employment patterns.
To address this issue, we create composite firms that combine the records of both entities be-
fore and after the major corporate restructuring. For example, if two firms merge in 2001, we
combine their records already in the 1995-2000 period. Unidentified restructurings will result
in non-classical measurement error, with an empirical bias discussed below. This building of
composite firms represented the longest data development step with the LEHD, but keeping the
restructuring components separate before and after the event is not feasible or appropriate due
to the resulting changes in employment reporting.9 ,10

7The additions with these latter two steps are fairly small in number, as most of these firms are picked up by
the LBD employer name search directly. These steps ensure the robustness of the sample design for including
major employer firms. We are also not allowed to disclose the names of the firms in our sample, but these
publicly-available lists document the types of companies targeted.

8This patent assignee matching builds upon the prior work of Balasubramanian and Sivadasan (2011), Kerr
and Fu (2008), and an internal Census Bureau report by Kaushik Ghosh and William Kerr. The list of included
patenting firms does not depend much upon the years employed due to persistence in patenting rates, and we
find a similar sample set when using patenting over the 1995-2008 period.

9We create these composite firms with a hinge date of 2005. That is, if the corporate restructuring occurs in
2005 or prior, we combine the employer records. If the event falls after 2005, we do not correct for it by creating
a composite firm but instead end the firm records one year prior to the event. The 2005 cutoff date balances the
competing objectives of retaining firms that undergo significant restructuring but not mandating adjustments for
very late restructurings in the sample period where it is simply better to treat the entities separately. The firms
that we identify as undergoing significant restructurings are somewhat more likely to be related to STEM work,
but we also see a significant number of these changes in other industries as well.
10On average, the firms in our sample contain roughly 3.5 Census Bureau firm identifiers and 58 federal EINs.

There is no one-to-one mapping between a Census firm identifier and what one might think of as "an individual
firm" in our context. Companies have multiple firm identifiers, for example, due to past mergers and acquisitions,
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Following these steps, our initial list of companies contains 453 firms. This list is reduced
to 319 firms due to the following exclusions: small employment share in the core 18 LEHD
states (64), temporary help firm (19), merged entities (15), not reliably found in LBD or LEHD
(11), and poor data quality (25). We discuss the first two exclusions in further detail shortly,
and examples of the latter cases are intellectual property holding companies or companies with
very severe jumps in employment that we are unable to explain by any events in the company
history. Consistent with the fact that the firm size distribution is quite skewed, the final 319
firms account for a large share of economic activity. They contain 10%-20% of all employment
spells in the LEHD, depending upon the state, and 20%-30% of all workers in the LEHD are
employed by these firms at some point during the period of analysis. The sample also accounts
for over one-third of U.S. patenting. The sectoral composition of the sample is approximately
30% manufacturing; 25% wholesale and retail trade; 30% finance, insurance, real estate, and
services; and 15% other sectors.
Returning to the exclusions, the most important relates to firm coverage in the core 18

LEHD states. We restrict our final sample to 319 composite firms that have at least 25% of
their employment in the core 18 LEHD states. This threshold is calculated from the LBD, where
we observe the full employment counts of each firm by state. This serves two purposes. First,
it is important that the observed employment patterns represent a meaningful portion of the
firm in order to have an accurate portrait of the firm’s decisions. For example, as the LEHD
lacks data on New York, it would not be appropriate to study two small establishments located
in an LEHD state of a New York-based finance firm if these two establishments contained only
2% of the New York-based firm’s overall employment. Second, as described in greater detail
below, this approach limits the potential for within-firm relocations of workers to be erroneously
categorized as hiring/departures.
We also exclude 19 temporary help agencies. These agencies have very different employment

relationships, derive their demand from other firms, and often move workers across multiple
clients in a short period. Potential job creation or displacement effects are most likely to occur
in client firms. These dynamics are certainly worthy of study but are beyond the conceptual
boundaries of this study. It is important to note that temporary help agencies constitute a
significant portion of H-1B visa demand, which this paper touches upon at various points. As
such, our results should only be viewed as providing evidence about the subset of firms that we
consider.

administrative reasons related to bankruptcy or other restructurings, and other reasons that are not obvious from
the LBD or the LEHD alone. In many situations, this is skewed in that one Census firm identifier contains the
vast majority of the firm’s employment, with other identifiers having much smaller contributions. We consider a
total of 154 restructuring events with our sample.

11



3.2 LEHD Employment Data Description

We use the LEHD’s Business Register Bridge (BRB) file to link in the employment records
contained in the LEHD for these 319 firms. The primary basis in the LEHD for identifying
employer-employee linkages is the State Employer Identification Number (SEIN) that identifies
individual establishments. The BRB includes for each SEIN the associated federal EIN and
Census Bureau firm identifier by year. From the BRB, we collect the SEINs that are associated
with our firms at any point in time. This collection of complete SEIN records is important as
firms occasionally change SEINs for reasons unrelated to our interests, and these legal adjust-
ments could otherwise be confused with actual changes in the company’s employment dynamics.
With the collected SEINs, we then prepare the employment records for our firm sample. We
need each SEIN to be uniquely associated with a firm, and therefore we research any overlap-
ping identifiers and assign them to the appropriate company. On average, our composite firms
contain roughly 200 SEINs; these firms account for 1%-3% of establishment-quarter records in
the LEHD, depending upon the state. For each SEIN, the employer characteristics files provide
the establishment’s industry, county location, and total annual payroll and employment. We
also collect the unique employee identifiers by SEIN, which are used to collect associated worker
employment histories from the individual employment histories files.
In addition, the individual characteristics files contain important person-level information

collected mainly through the Social Security Administration, Statistical Administrative Records
system (StARS), and the Unemployment Insurance Administration. Information on person-
level characteristics contained in the LEHD include gender, date of birth, date of death, place of
birth, citizenship, and race. The place-of-birth variable provides information on which country
the person was born in, and we utilize this variation extensively below. We also use this variable
for identifying immigrants. We can group workers as belonging to one of three categories: U.S.
citizens from birth, naturalized U.S. citizens, and non-citizens. Among non-citizens, the data
unfortunately do not distinguish temporary visa holders from permanent residents. We use these
data to define a worker as an immigrant if they are a naturalized citizen or a non-citizen. Thus,
while we use variation in the number of H-1B visas in some of our estimations and this is the
largest program for temporary skilled immigration to the United States, our analysis is more
directly about the impact of young skilled immigration.
We merge these person-level characteristics into their quarterly employment histories that

contain their total earnings by employer. Workers are then characterized as being "skilled" or
"not skilled." Given the LEHD’s limitations for describing worker education levels, we use a
worker’s long-term earnings to assign skill levels in our analysis. This approach has the benefit
of capturing variation in unobservable characteristics that are not necessarily accounted for with
a measure of educational attainment. Our primary wage threshold for describing a skilled worker
is that the worker’s median annual earnings over the 1995-2008 period exceeds $50,000 in real
2008 dollars, and this threshold is held constant through the course of our analysis. To put
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the $50,000 figure in perspective, the U.S. Citizenship and Immigration Services (USCIS) has
reported that the 25th percentile of proposed H-1B worker salaries on approved petitions in 2005
was $43,000, which represents $47,403 in real 2008 dollars. We only consider workers aged 18-64
in our study.11 ,12

Our final step takes the assembled worker records and aggregates them to measure the em-
ployment composition of the company by year. The construction from the micro-data allows
us to analyze several dimensions of a firm’s workforce simultaneously (e.g., native workers over
40 years old earning $50,000). Our primary empirical approach considers firm-years as the unit
of observation. For these analyses, we only include the 18 states present in the LEHD since
1995 for calculating employment patterns. Thus, we use a balanced state panel for drawing data
while the firm panel itself is unbalanced. We find similar results in a robustness check that uses
a firm-state-year panel with all 29 states available.

3.3 Hiring/Departing Definitions and Descriptive Statistics

As one of our main focuses is on the hiring of skilled immigrant workers, it is useful to describe
our empirical approach and the nuances imposed by the LEHD’s structure in further detail. We
define the hiring of a worker as the first time that she is paid a salary by a given firm. We define
the departure of an employee as the final time that a person is paid a wage. It is important
to emphasize that we do not observe whether a worker’s departure was voluntary or whether
she was dismissed by the firm. We create these measures over the total employment spell of the
worker with the firm. That is, we do not consider an employee not being paid for several quarters
by the firm to be a departure and then a re-hiring. We cannot distinguish hiring and departures
at the sample end-points and so we drop these years from the analysis when appropriate.
The LEHD’s structure allows us to observe workers within the firm across the different states

in our sample. We do not consider employee migration across states within the same firm to be
a worker departure and re-hiring. As noted, however, we only observe worker-level employment
records for firms in 29 states in the LEHD. Thus, we cannot capture these employment changes
if the within-firm migration is to or from a non-LEHD state. This is one rationale for requiring
that firms have at least 25% of their employment in the core 18 LEHD states. We obtain similar

11The LEHD reports wages by quarter, and we define the $50,000 threshold using quarterly observations
expressed in annualized terms. Periods when the worker is not observed in the LEHD are not used for this
calculation. Earnings are deflated to 2008 values using the Bureau of Labor Statistics’All Urban Consumers
CPI series. We find similar results to those presented below when using alternative approaches to define skilled
workers (e.g., considering initial salaries). Kerr and Lincoln (2010) find little impact of greater inflows of foreign
skilled workers on native wages over short time horizons. This suggests that our skill definitions are not likely to
be materially influenced by the immigration also being considered.
12The LEHD contains an imputed education level for each worker, based on a model using the 1990 Decennial

Census long form data. The imputation uses the person’s age, state of residence, industry and earnings to come
up with a probable level of education. As these traits are some of the key variables in our analysis, using the
imputation would not be prudent. The Census Bureau also warns against placing too much confidence in the
imputed education level available in the current vintage file (LEHD 2008) and does not recommend its use for
research. Nonetheless, similar patterns to our results below are evident when defining skilled workers as those
with a bachelor’s degree.
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results when using higher thresholds, and our main reason for a lower cutoff is to have a greater
level of identifying variation.13

When analyzing hiring and departing, we decompose employment changes for a firm as
consisting of (i) hires in continuing firm-states, (ii) departures in continuing firm-states, and (iii)
employment changes due to firms entering or leaving states completely. The first two components
are our central focus. The third component is mostly outside of the scope of our approach, and
unreported tests find these changes mostly uncorrelated with our variables of interest.
Table 1 provides descriptive statistics on our main sample. The data contain 319 firms in

total and 129 in our subsample of top patenting firms. These companies average about 22,000
employees in the 18 core LEHD states, with an underlying range of less than 200 employees to
several hundred thousand. Within these firms, 50% of the workforce is classified as skilled by
achieving a median annual earnings of $50,000 or more during 1995-2008. The underlying range
for this share is less than 10% to greater than 90%. Of the skilled group, older natives account
for about 50%, younger natives for 31%, older immigrants for 9%, and younger immigrants for
10%. Annual rates of skilled worker hiring and departing are 13% and 14%, respectively.14

3.4 CPS-LEHD Match Occupations

The LEHD generally does not contain worker occupations, which would be a valuable input for
our study. We can, however, make some progress with a special match that has been made by
the Census Bureau between the 1986-1997 Current Population Surveys and the LEHD. The CPS
is a random sample of individuals, and our firms employ 25,765 CPS workers that have median
annualized earnings during the 1995-2008 period of $20,000 or more. In total, these employees
comprise 132,507 person-year observations during our sample period. While we do not observe
time-varying information on these workers, we utilize below the person’s primary occupation at
the time of the CPS survey response to identify those who were connected to STEM occupations.
In our main employment analyses, we use this STEM variable as one approach to measuring
a firm’s dependency on skilled immigrants. In a later analysis, we consider differences across
occupations in a firm for departure rates. The mean age of these workers at the time of the
LEHD observation is 43, and 9.3% of them were connected to STEM occupations when the CPS
survey was conducted.

13Using the available data, we find the rate of cross-state mobility within a firm to be very low at 0.3%. This
rate uses all 29 LEHD states and is inclusive of M&A activity. The intrastate mobility rate within a firm is
higher, although this rate is more diffi cult to interpret since it is driven to a higher degree by M&A activity (i.e.,
if a merger changes the SEIN of individuals, this is counted as a move for this purpose). For large states, the
rate tends to be between 5% and 7% for the firms in our sample. For small states, the rate tends to be less than
3%.
14The correlations of LBD employment levels to young skilled immigrant and total skilled immigrant shares

are -0.24 and -0.25, respectively, reflective of the smaller patenting firms in the sample that depend more on
skilled immigrants. The correlations of LBD employment levels to the total older worker and native older worker
shares are 0.14 and 0.12, respectively. The first two correlations are statistically significant, while the latter two
correlations are not.
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4 Firm-Level OLS Employment Analysis

This section describes our estimating framework and presents our OLS results. These estimations
provide a benchmark for our IV results in Section 5.

4.1 Estimation Framework for Employment Analysis

As our paper provides a first empirical depiction of skilled immigration and the employment
structures of U.S. firms, we choose a simple estimating equation, outlined below, for the bulk of
our analysis. This estimating framework quantifies how expansions in young skilled immigrant
employment by a firm are associated with employment changes for other worker groups in the
firm. This empirical approach describes the data in a transparent way and is a straightforward
extension of the conceptual framework laid out in Section 2. Our choice of this framework is also
motivated by the many popular discussions and policy questions about the employment effects
of these immigrants. As described in the introduction, these statements are often about how
many workers are hired or departing as a firm takes on a new immigrant. These estimations are
informative for these statements as well.
Our general approach takes the form

Yf,t = β · ln(EmpY SIf,t ) + ν ·Xf,t + φf + ηi,t + εf,t, (4)

where ln(EmpY SIf,t ) is the log number of young skilled immigrants (denoted with superscript
Y SI) employed in year t by firm f . Yf,t is the outcome variable of interest, and Xf,t is a vector
of firm-year controls described shortly. We include a vector of firm fixed effects φf that control
for permanent differences across firms. We also control for sector-year fixed effects ηi,t, where
the sector i for each firm is defined as the industry in which the firm employs the most workers
in the initial period. We define sectors as manufacturing; wholesale and retail trade; finance,
insurance, real estate, and services; and other. As firms span multiple industries, we also include
an interaction of linear time trends with the firm’s initial share of employment in the first three
sector groups as a control variable. We further include an interaction term of a linear time
trend with the firm’s initial technology intensity measured as patents per skilled worker. When
calculating initial values for firms, we use the first three years that the firm is observed in the
sample.
Our estimations first-difference the above equation,

∆Yf,t = β ·∆ ln(EmpY SIf,t ) + ν ·∆Xf,t + ηi,t + ξf,t, (5)

with the covariates in the Xf,t appropriately adjusted and where ξf,t = εf,t − εf,t−1.15 Our

15The effi ciency of this first-differences form versus the levels specification turns on whether the error term εcit
is autoregressive. If autoregressive deviations are substantial, the first-differences form is preferred; a unit-root
error is fully corrected. If there is no serial correlation, however, first differencing introduces a moving-average
error component. Estimations of the autoregressive parameter in the levels specification for this study find serial
correlations of 0.75, while 0.22 is evident in the first-differenced form.
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baseline regressions contain 3,374 observations, cluster standard errors at the level of the firm,
and are weighted by the log of the initial young skilled immigrant employment in the firm. The
regression weights in our baseline estimations provide a greater sense of the average treatment
effect and emphasize better-measured data. They also implicitly give more weight to firms that
have a greater share of their employment in covered LEHD states. They sit conceptually in-
between unweighted estimations and those that use raw employment counts as weights, and we
obtain similar results using alternative weighting approaches.
The vector of controls includes several basic components beyond the sector-year fixed effects

noted earlier. Following the influential work of Card (2001) and related papers, we include
several measures related to the general employment conditions of the local area in which the
company operates. Firms often have multiple facilities, and they may shift activity across
locations depending upon conditions. We thus calculate these controls through weighted averages
using the employment distribution of the initial counties in which the firm is operating at the
start of the sample period. These weights are kept constant for each firm over time. Our local
area controls include log LEHD employment, the log immigrant share, and the log share of
workers who are over the age of 40. This approach forms a set of geographic controls for firm
activity.
Second, we include two additional measures related to the supply-push framework developed

by Card (2001). We start by calculating each firm’s initial skilled immigrant distribution across
12 basic groups based on ethnic and geographic lines. We then calculate each firm’s initial
skilled immigrant distribution across these different groups. We further calculate the growth in
each group relative to 1995 among skilled workers across LEHD states. The supply-push factor
then sums across these groups, interacting the initial distributions of workers in the firm with
the growth of skilled immigrants at the national level by group. We use an identical procedure
to construct a supply-push factor directed at lower-skilled immigration based upon the initial
composition of the firm’s lower-skilled workers and their national trends. These measures help
control for the well-documented clustering of employees of the same ethnicity and country of
origin in the workplace.16

Third, following the influential work of Borjas (2003) and related papers, we construct a
measure that reflects the potential impact of national immigration trends by workers of different
ages and education levels. We use the LEHD’s education estimates for this work. We build six
age-education cells that consider our young and old age groups along with three education levels
(i.e., high school diploma or less, some college, and college degree). We then calculate the firm’s

16Six of these groups are within Asia and include Greater China, South Asia (i.e., India, Pakistan, and
Bangladesh), Japan, Vietnam, Korea, and other Asian countries. We specifically separate some of these countries
due to their importance to U.S. skilled immigration (e.g., the H-1B program draws about 40% of its workers
from India). Five groups of broader geographic definition include Europe, the Middle East, countries of the
former Soviet Union, Latin America, and Africa. We also have a group of dispersed countries of Anglo-Saxon
heritage (e.g., Canada, United Kingdom, Australia) and a residual group. The residual group is not included in
the supply-push calculations. For evidence of clustering of employees by ethnicity and country of origin see, for
example, Mandorff (2007), Andersson et al. (2009, 2012), and Åslund et al. (2012).

16



initial skilled employment distribution across these six cells. We also calculate for each cell the
national growth in skilled immigration compared to 1995 using the public CPS files. Interacting
each firm’s initial distribution with the national growth by cell, our age-education immigration
measure sums over these six groups.
Beyond these baseline controls, we also consider specifications that control for the underlying

growth process of the firm by using the employment changes observed for medium-skilled workers.
These workers are defined to be those with median salaries of $25,000-$50,000 across the sample
period; this group is mutually exclusive from the skilled worker group. When using this control,
we naturally sacrifice our ability to study how immigration employment relates to overall firm
size, instead shifting attention to effects among skilled worker groups. On the other hand, we
gain several benefits. For OLS estimations, the key benefit is having greater robustness to
corporate restructuring events or dramatic changes in firm size not linked to immigration. We
discuss in the next section even larger benefits for the IV estimations from this control.

4.2 OLS Employment Estimations

Table 2 provides our baseline OLS results using specification (5), where column headers indicate
the outcome variables Yf,t considered by each specification. The title of each panel describes the
sample employed and the included controls Xf,t. Column 1 of Panel A quantifies the correlation
between the change in log employment of older native skilled workers and the change in log
employment of young skilled immigrants in the firm without covariates. The β coeffi cient is well
measured and can be interpreted as a 10% increase in skilled immigrant employment for the
firm correlating with a 6% increase in the employment of older skilled natives. Column 2 finds
a similar expansion of 7% for young skilled native workers. Column 3 displays a slightly larger
increase for older skilled immigrant workers, and Column 4 finds the overall elasticity of skilled
worker employment in the firm to be 0.64.
The next three columns of Table 2 document changes in some simple employment traits of

the firm’s skilled workforce. Across the sample in Panel A, a 10% increase in young skilled
immigrant employment for the firm corresponds with a 0.3% increase in the share of skilled
workers who are immigrants. The share of skilled workers in the firm who are over the age of 40
also declines by 0.3%. This older worker share decline is not solely due to the mechanical effect
of employing more young skilled immigrants, as Column 7 shows a 0.2% decline among native
workers only. A similar test shows that a 10% increase in the young skilled immigrant workforce
lowers the average age of the firm’s skilled workforce by 0.1%.
Columns 8 and 9 analyze the overall U.S. employment of the firm in LEHD states and the

skilled immigrant share. A 10% increase in skilled immigrant employment for the firm correlates
with a 6% increase in total firm employment. A similar elasticity is evident for lower-skilled
workers by themselves. Given the comparability of these elasticities, the final column shows
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only a slight increase in the skilled worker share of the firm.17

Panel B then adds the basic controls to the estimation framework, which do not materially
influence the estimated elasticities from Panel A. Panel C further adds the log change in the
firm’s medium-skilled workforce, which has a larger substantive effect on the coeffi cient estimates.
The overall employment elasticity in Column 4 declines to 0.47. Thus, a 10% increase in the
young skilled immigrant workforce of the firm correlates with a 5% increase in the total skilled
workforce of the firm. Looking at Columns 1-3, this expansion tends to favor young natives and
older immigrants compared to older natives. Accordingly, Columns 4-7 show stronger shifts in
the immigrant and older worker shares of the firm. Finally, Panel D finds similar effects when
looking at the subsample of top patenting firms.

4.3 OLS Hiring and Departing Estimations

Tables 3a and 3b next consider the hiring and departing of various worker groups contempora-
neous with the hiring of young skilled immigrants. We continue to use specification (5), with
the key regressor being ∆ ln(HiringY SIf,t ). Thus, we are quantifying how changes in the rate at
which firms hire young skilled immigrants are associated with changes in the hiring or departing
rates of other groups. The hiring of skilled immigrants in this analysis is not restricted to new
arrivals, but includes any immigrant regardless of how long they have been working in United
States. The Panels A-D are defined as in Table 2.
Columns 1-4 consider as outcomes the log hiring of different groups. Elasticities on this

margin are similar to those measured for the total change in the workforce in Table 2. In Panel
C, a 10% increase in young skilled immigrant hiring is associated with a 5%-6% increase in older
and younger native hiring. We generally find similar results when including additional controls
or restricting the sample to the top patenting firms. Columns 5-8 consider as outcomes the log
departing rates of groups. Panels A and B find no material changes in leaving rates associated
with increased young skilled immigrant hiring. Panels C and D incorporate the medium-skilled
worker control and find a decline in departing rates for skilled workers when young skilled
immigration hiring increases.
Table 3b then relates these hiring changes to shifts in the overall composition of the firm’s

skilled workforce, similar to Table 2. The coeffi cient estimates are substantially lower here than
in Table 2 due to our focus just on changes in the hiring dimension rather than net changes in
overall employment. The specification in Panel C suggests that a 10% increase in the hiring of

17One thing to note with respect to our results in Columns 4-6 and 8-9 is that the employment of young skilled
immigrants is naturally a component of the dependent variable in each specification. We report these outcomes
as their magnitudes are informative and non-obvious. For example, the expanding employment of young skilled
immigrants clearly plays a direct role in the positive increase in the immigrant share of skilled workers in Column
5. This share is nevertheless an important summary statistic and the overall response could even have been
negative if the expanding employment of young skilled immigrants is associated with large increases in native
employment (e.g., the claims made about hiring alongside the H-1B program noted in the Introduction). The
econometric issues with having the young skilled immigrants as component of the dependent variable should be
kept in mind when viewing these results.
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young skilled immigrants increases the total skilled workforce of the firm by about 0.5%. Growth
is strongest in the immigrant worker group documented in Column 4, but it is also present for
other groups of workers as well. Growth is again weakest among older natives.18

We have repeated this analysis without the log transformation of variables. While the non-log
approach introduces scale effects, it is useful to consider them given that the claims of advocacy
groups are often expressed in raw counts. The hiring of one young skilled immigrant worker
is associated with a total employment expansion of 4.5 workers. This includes about 1.4 older
native workers, 1.7 younger native workers, and 0.4 older immigrant workers. It also includes
the net addition of a little less than one young skilled immigrant worker after accounting for
departures. More importantly, the overall depiction of the results is quite similar to the approach
using logs. The lower elasticity of older natives in the log format in part reflects the larger base
of older natives in the workforce.

4.4 OLS Robustness Analysis

The OLS estimation results overall speak to increased hiring and employment of natives when
the young skilled immigrant workforce of a firm expands. These results are robust to a number
of different approaches. To mention a few important ones, we first find similar results using a
firm-state approach that allows us to include all 29 states. The elasticity estimates are somewhat
lower with this approach than in the firm panel, which may indicate that the firm as a whole
operates differently compared to individual units (e.g., shifting production across facilities). We
also find similar results when raising the inclusion threshold to 66% employment in LEHD states,
when splitting the sample by the long-term growth rates of the firms, when setting minimum
employment thresholds for companies, when using different weighting strategies, and when using
the alternative definitions of skilled workers noted in the previous section.

5 Firm-Level IV Employment Analysis

The OLS patterns documented in Section 4 are striking and novel to observe. There are, how-
ever, two clear concerns. The first is that the hiring of young skilled immigrants is likely to
be influenced by other factors impacting the firm. The resulting biases could be upwards or
downwards in direction. For example, an upward bias might result from the firm having a new
product that it wants to launch, where the firm hires both natives and young skilled immigrants
to pursue the opportunity. Likewise, large-scale employment declines for a shrinking firm can hit
all groups at once and induce a correlation. On the other hand, a downward bias could emerge
to the extent that young skilled immigrants are being recruited to provide staffi ng in diffi cult
hiring situations. This latter scenario, in fact, is one of the original intentions of the H-1B visa

18These patterns look very similar when also considering "new arrival" immigrant hiring as the explanatory
variable, where new arrival is defined to be the first time the immigrant is observed in the LEHD dataset.
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program, and multiple studies have documented the role of immigrants in these situations (e.g.,
Borjas 2001, Kerr 2010, Ruiz et al. 2012).
The second concern is more mundane but also important. While building from the micro-

data, our right-hand-side variables are measured with error. First, we will have some degree
of classical measurement error due to inaccurate reporting (e.g., an individual’s place of birth
is inaccurately transcribed). This measurement error downward biases coeffi cient estimates to-
wards zero. Second, there are corporate mergers and acquisitions that we have not been able to
account for with our composite firms. This type of issue will bias our estimates upwards to a
degree that depends upon how similar the employment distribution of the joining firm is to the
base firm. As one specific example, if the employment structure of an acquired firm is an exact
match to the base firm employment structure, the bias would be towards one.19 This section
develops and presents IV estimations to address these concerns.

5.1 IV Design

Before describing the specifics of our IV design, it is helpful to start with a discussion of what
using the instruments is attempting to accomplish. We begin by considering our control variable,
the supply-push immigration factor for skilled workers. Recall that this measure interacts the
initial place-of-birth distribution of a firm’s skilled workers with aggregate changes in skilled
immigration from various countries across LEHD states. This factor is a strong predictor of
increased young skilled immigrant employment in the firm, and one potential approach would
have been to use this supply-push factor as an instrument. In doing so, we would encounter
two potential concerns to address. The first would be whether the initial distribution of country
groups for skilled immigrants used in the interaction is correlated with something else that affects
the measured outcomes. The second concern for this type of instrument is whether the national
trends used for immigration groups are endogenous to the needs or opportunities of the firms that
employed them. For example, immigration flows from Japan to the United States might increase
when firms that rely heavily on skilled Japanese workers have better opportunities. Thus, even
though we would instrument for the direct hiring of the firm, the instrument’s reliance on the
national trends might not be a complete solution.
A stronger IV approach would instead consider mandated rates of immigration to the United

States by country. U.S. immigration policy does not generally contain such country-specific
controls on immigration, but it does provide some empirical footholds through the H-1B program.

19It is impossible to calculate exactly the typical employment ratio of an acquired firm. First, in large part,
these acquisitions are not observed. Second, and more conceptually, it can be diffi cult to distinguish precisely
which firm is the true acquirer (e.g., mergers among equals). We can make some headway on this issue, however,
by comparing the descriptive statistics of the firms in our sample that have undergone significant M&A to the
sample as a whole. The M&A group has a very similar average size to the full sample. The most noticeable
difference is that their workforces tend to be more skilled than the full sample. Within the skilled workforce
group, these major M&A firms are slightly tilted towards a greater immigrant share, but the age and citizenship
profiles are otherwise quite balanced. As a whole, this suggests that biases due to un-modeled M&A will be in
the neighborhood of unit elasticity when considering our primary outcomes focused on the composition of the
skilled workforce.
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We next describe the H-1B program in greater detail and the instruments that we have developed
based on changes in this program. The construction of our instruments is conceptually similar
to the supply-push framework just discussed. We will seek, however, to use the program’s legal
structure to deal with some of the concerns that would have existed for a traditional supply-push
framework (which still serves as a control variable).
The H-1B is a temporary immigration visa that allows U.S. employers to seek short-term

help from skilled foreigners in "specialty occupations." These occupations are defined as those
requiring theoretical and practical application of specialized knowledge like engineering or ac-
counting; virtually all successful H-1B applicants have a bachelor’s education or higher. The
visa is used especially for STEM occupations, which account for roughly 60% of successful ap-
plications. The worker can come from anywhere in the world, and the application specifies the
local area in which the employee will work in the United States. Approximately 40% and 10%
of H-1B recipients over 2000-2005 came from India and China, respectively. Shares for other
individual countries are less than 5%.
Since the Immigration Act of 1990, there has been an annual cap on the number of H-1B

visas that can be issued. The cap governs new H-1B visa issuances only; renewals for the second
three-year term are exempt, and so the maximum length of stay on an H-1B is effectively six
years. While most aspects of the program have remained constant since its inception, the cap
has fluctuated significantly. Figure 2 uses fiscal year data from the USCIS to plot the evolution
of the numerical cap. The 65,000 cap was not binding in the early 1990s but became so by
the middle of the decade. Legislation in 1998 and 2000 sharply increased this limit over the
next five years to 195,000 visas. These short-term increases were then allowed to expire in
2004, when visa demand fell short of the cap. The numerical limit returned to the 65,000 level
and became binding again, despite being subsequently raised by 20,000 through an "advanced
degree" exemption.20

While the level of the cap is published by the USCIS, H-1B entry rates and population stocks
are not definitively known. Lowell (2000) builds a demographic model for this purpose that
factors in new admissions and depletions of the existing H-1B pool by transitions to permanent
residency, emigration, or death. While H-1B inflows are reasonably well measured, constructing
the latter outflow estimates requires combining available statistics with modelling assumptions.
In Lowell’s model, emigration and adjustment to permanent residency are roughly comparable in
magnitude, with the time spent from entry to either event being estimated through typical H-1B
experiences. Figure 2 shows updated estimates provided to us by Lowell. The H-1B population
grew rapidly in the late 1990s before leveling off after 2000. The lack of growth immediately
after this point can be traced to weak U.S. employment opportunities during this period. When
demand returned, however, the reduced supply of H-1B visas restricted further growth.

20Kerr and Lincoln (2010) provide a more extended discussion of the program and its history. This study also
discusses the two temporary work visas that are the most similar to the H-1B, the L-1 and TN visas. These
programs show limited substitutability with the H-1B visa. See also Lowell and Christian (2000).
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These shifts in the size of the H-1B program, driven in large part by legislative changes,
provide an attractive alternative to using national immigration trends by country. We thus
construct instruments that are similar in spirit to the supply-push approach but that are more
exogenous. The basic approach for the construction of each of these instruments is to first
measure a fixed dependency for the firm on the H-1B program. We then interact this dependency
with the log change in the program’s size to define an instrument for the log change in young
skilled immigrant employment in the firm.
We measure the fixed dependency of the firm in three ways. Our first measure is the log ratio

of the firm’s Labor Condition Applications (LCAs) to its skilled employment in 2001. To obtain
an H-1B visa, an employer must first file an LCA with the U.S. Department of Labor (DOL). The
primary purpose of the LCA is to demonstrate that the worker in question will be employed in
accordance with U.S. law. The second step in the application process after the LCA is approved
is to file a petition with the USCIS, which makes the ultimate determination about the visa
application. The DOL releases micro-records on all applications that it receives, numbering 1.8
million for 2001-2006. These records include firm names and proposed work locations. We use
these records to describe firm dependencies (in the 18 core LEHD states) from the earliest year
that is available (2001). It is important to note that this measure does not indicate granted visas
but instead the demand that firms have for the visas. One drawback of this measure, however,
is that it is measured in the middle of our sample period.
We complement this LCA-based measure with two other indicators of a firm’s sensitivity

to changes in the H-1B visa program. Given the program’s heavy reliance on Chinese and
Indian immigrants, our second measure uses the LEHD records to define the firm’s initial share
of skilled immigrant workers that were born in these countries. Likewise, as the program is
particularly important for STEM occupations, we define our third measure as the share of the
firm’s workforce in STEM occupations using the LEHD-CPS match. We measure this in the
first three years where matched employees are observed, which may be later than the typical
initial period. Given the limited LEHD-CPS match counts for some firms, this metric has higher
measurement error than the other two approaches. These raw measures are quite skewed, and
so we winsorize these shares at their 5% and 95% values. The pairwise correlation of the three
measures is 0.59 between the LCA-based measure and the initial Chinese and Indian share,
0.45 between the LCA-based measure and the initial STEM share, and 0.59 between the initial
Chinese and Indian share and the initial STEM share.
We then interact these three measures, in turn, with a measure of the H-1B program’s size.

Our primary measure of program size is Lowell’s set of H-1B population estimates, expressed in
logs. The Lowell estimates have the advantage that they reflect the population’s true develop-
ment and experienced growth that was predominantly governed by a mandated cap. They have
the disadvantage that they may retain some endogeneity given the slow growth in the program’s
size during the high-tech recession when demand fell well short of the cap. As a result, in robust-
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ness checks we consider a second measure of the log of the summation of the previous six years’
numerical visa caps. The time frame is chosen due to the fact that the H-1B visa is effectively
of a length of six years, inclusive of visa renewal. The advantage of this measure is that it is
more exogenous. There is a key period in the early 2000s, however, when H-1B demand declined
substantially at the same time that the cap was still high, and thus the six-year summation is
not as reflective of the program’s size. We describe further below the limitations of using cap
summations.
The exogeneity of the instruments requires that the initial shares used in their construction

be uncorrelated with the error term. The natural worry would be that a measure like the
initial Chinese and Indian share is associated with some other firm trait besides H-1B usage
that affects employment outcomes during the period of study. The most plausible candidates
would include a firm’s innovation intensity or its economic sector, and so we must assert that
the existing covariates are suffi cient in this regard. Likewise, we rely on our "supply push"
controls to account for ethnic hiring networks outside of the visa changes. We will further test
below including an interaction of the initial traits with time trends, in order to require that
the identification come off the non-linear movements of the H-1B trend. This will help provide
comfort against slow-moving, linear omitted factors that could be correlated with the initial
shares.
Finally, it is worth noting that our sample contains a large proportion of the United States’

H-1B workers and that these workers also represent a large portion of the young skilled immigrant
group within these firms. We do not know either of these shares precisely, but we can make
some rough calculations. Within the 18 LEHD states, our final sample contains about 16,400
LCAs in 2001, out of a raw sample of 127,000. After removing non-U.S. companies, universities
and public-sector institutions, and similar users of H-1B visas, we estimate that about 15%-20%
of LCAs are included in our firm group, representing a substantial share of the program. In
2001, the vast majority (86%) of firms in our sample filed for an LCA, and the average number
of applications for those firms found in the LCA data was 97.21 For the second figure, the 0.8%
LCA dependency average in Table 1 represents one year of applications made by our firms. We
multiply this share by five to represent the six-year nature of the program but also the fact
that 2001 was a high year for H-1B visas. Dividing this figure by the 9.5% average share for
young skilled immigrants in Table 1 suggests that about 42% of the young skilled immigrant
workers in these firms are H-1B holders. A broader calculation of 35% is derived by comparing
Lowell’s estimate of 501,000 H-1B workers in 2001 to the CPS estimate of 1.4 million non-citizen
immigrants with bachelor’s educations in the same year. These estimates do not count past
H-1B holders who have transitioned to permanent residency.

21As a side note, LCA usage is comparable in the firms that we excluded when building the final sample. For
example, 77% of excluded companies file an LCA, compared to 86% in the final sample. Included firms file 1.9x
as many LCAs as excluded firms, but they are also 1.8x larger on average.
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5.2 IV Estimations

Tables 4-7 report our IV results. Standard errors are clustered by firm across our different
specifications. Table 4 begins with IV estimations that do not contain the medium-skilled
workforce control. The order of columns in Table 4 mirrors that in Table 2. Panel A presents
results that use the LCA-based dependency measure, Panel B considers estimations that use
the initial Chinese/Indian share of skilled workers, and Panel C presents results that use the
initial STEM worker shares. Each of these dependencies is interacted with the Lowell population
estimate for the national size of the program. The fit of the first stage estimations, indicated
beneath each panel, pass standard criteria in Panels A and B. The first stage in Panel C is weak.
Generally, across our IV estimations, the first stages tend to be weaker for the occupation-based
measure, which is not surprising given measurement error from the CPS sample noted above.
The second-stage estimations resemble and differ from the OLS estimates in meaningful ways.

The first four columns again consider changes in employment levels of skilled groups. The IV
estimations generally suggest in Column 4 that the skilled workforce of the firms grows with
expansions in immigrant employment, although Panel A finds no response. On the other hand,
looking at Columns 1-3, IV estimations agree that young native employment expands with the
hiring of young skilled immigrants. The ambiguity for the total workforce comes from differences
across the IV estimations in whether the older skilled native workforce expands. In Panel A, a
decline is evident, while in Panels B and C increases are evident. Even in the latter two cases,
coeffi cient estimates tend to be significantly smaller for older skilled natives than for younger
skilled natives.
With this background, it is not surprising that the strongest points of similarity are on the

ratios provided in Columns 5-7 of Table 4. IV estimations consistently find that the immigrant
share rises and the older worker share falls with expansions in skilled immigrant employment
in the firm. On this dimension, the IV estimations are larger in magnitude than the OLS
specifications. Thus, the IV specifications suggest that OLS estimations understate the extent
to which the employment structure of the firm shifts to favor immigrants and younger workers
when the young skilled immigrant group expands. In the last two columns, we consider firm
size and skilled worker shares. Table 4’s IV estimations do not confirm the growth in total
firm size observed in the OLS estimations, but the increase in the skilled worker share is again
observed. The qualifications noted earlier for specifications where the employment of young
skilled immigrants is a component of the dependent variable holds in these IV results.
Unfortunately, we are unable to make further progress with this unstructured approach.

We are not able, for example, to substitute in the cap summation for the Lowell population
trend as doing so delivers an insuffi cient first-stage fit. Moreover, these estimates are sensitive
to various reasonable adjustments like removing sample weights. The underlying challenge is
straightforward. We are attempting with the IV to predict the year-by-year changes in young
skilled immigrant hiring for firms across the 1995-2008 period. With such a long time period,
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there are many other forces that impact these firms, weakening our first-stage fit. The cap
summation approach is also very diffi cult here given the behavior of the H-1B cap during the
high-tech recession.
To gain further traction, we introduce additional structure on the firm growth process in

Table 5 by controlling for the contemporaneous changes in medium-skilled worker employment
in the firm. By doing so, we sacrifice the ability to estimate changes in total firm size, but we
are able to consider changes among skilled workers. Table 5 generally agrees with Table 4. It
continues to be true that expansions in young skilled employment in firms connect to a higher
immigrant share of skilled workers and a younger age structure. With this framework, we find
more substantial agreement across the IV estimations that the total skilled workforce size grows.
This empirical specification in Table 5 provides substantially more traction, and the next

two tables extend this work. Table 6 considers an alternative instrument that uses the log of the
summation of the previous six years’numerical visa caps as a measure of H-1B program size.
As mentioned above, this measure has the benefit that it is likely more exogenous but has the
liability that it is not as reflective of the program’s true size. Results here are generally similar
to those in the preceding two tables but tend to be somewhat sharper in terms of statistical
significance. In particular, we find consistent evidence of larger responses amongst young natives
to young skilled immigrant employment expansions relative to older natives. Estimations also
find significant increases in the total skilled workforce in response to greater employment of young
skilled immigrants. We consider instruments separately as joint estimation fails overidentification
tests in the first stage.
Tables 7a and 7b provide some further robustness checks on Tables 5 and 6, respectively.

Panel A shows similar results using the sample of major patenting firms. Panel B finds similar
results with unweighted specifications. Panel C includes an additional control for the fixed LCA-
based dependency in the first-differenced regression, equivalent to a linear time trend interacted
with the dependency in a levels regression. The same patterns are again evident with this
control, with the results even more accentuated. This robustness holds true when alternatively
considering our other interaction measures. Panel D reports similar results using a balanced
panel of firms present across the full sample period. Finally, Panel E shows similar results when
dropping firms that lobby about immigration issues (Kerr et al., 2013).22 ,23

On the other hand, it is important to note two limitations of these IV analyses. We have

22Unreported estimations split the sample into firms primarily engaged in manufacturing, trade, or ser-
vices/other. These demarcations roughly split the sample into equal-sized bins. Disclosure restrictions prevent
us from showing these results separately by industry group, but we can report that overall these groups behave
fairly similarly. All three groups show an instrumented elasticity for log total skilled employment between 0.2
and 0.6 from young skilled immigrant employment growth, compared to the full sample’s 0.4 elasticity. Each
group further displays a coeffi cient for the immigrant share analysis between 0.07 and 0.10, compared to the full
sample’s overall coeffi cient of 0.075. Likewise, declines in total older worker and native older worker shares with
higher young skilled immigrant hiring are present and economically important in all three categories, ranging
from -0.07 to -0.26, compared to the full sample’s coeffi cient of -0.149. The age profile shifts are smallest in
manufacturing.
23The results are robust to dropping the major M&A firms. The ratios are almost identical to those reported

for the full sample, and the employment size responses grow by about 10%.
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tested various approaches that adjust the dates of the major H-1B changes by a couple of years
forward or back from the true reforms. When doing so, the patterns are mixed. We often
find contemporaneous effects to be the most important, but the patterns are unfortunately too
sensitive to draw conclusions. Likewise, while our results are robust to dropping a few years
at the beginning or end of the sample period, they are not robust to major changes in sample
duration (e.g., dropping years prior to 2002) due to the much smaller sample size and reduced
variation in the H-1B population changes.

6 Occupation-Level Estimations

This section considers how employment effects might differ across workers by occupation within a
firm. In particular, we focus on whether older workers in STEM occupations are more vulnerable
to displacement effects from young skilled immigration. We first undertake some calculations on
the age elasticities of substitution for skilled workers by occupation to provide a more systematic
foundation for understanding why this might be case. We then study departure patterns by
occupation in our data using the CPS-LEHD matched sample.

6.1 Occupation-Level Elasticities of Substitution by Age

Starting with Borjas (2003), a number of studies within the immigration literature consider
estimating elasticities of substitution using a CES production function. Skipping some of the
theoretical background that is provided, for example, by Borjas et al. (2012), we similarly focus
on estimating the elasticity of substitution between worker groups along a specified dimension.
For our purposes this estimation takes the form

ln(Wagea,t) = γ · ln(Empa,t) + φa + ηt + εa,t, (6)

where a indicates worker age groups and t indicates time. This estimation is intuitively a panel
analysis of how the employment of an age group correlates with the earnings of workers in that
age group. If there is very little substitution across age groups, the increase in employment of
workers in one age category relative to the other groups should depress the wages of the workers
in that group (a negative γ coeffi cient). On the other hand, if substitution across the groups is
very easy, then the increased employment of one group should not influence that group’s relative
wage significantly (a γ coeffi cient of zero). This measure can also be expressed as the elasticity
of substitution −1/γ, with larger elasticities indicating greater levels of substitution.
The specification is estimated at the occupational level using workers with bachelor’s degrees

or higher in the CPS from 1995-2008. We consider workers aged 20-59 and define our four age
categories as 20-29, 30-39, 40-49, and 50-59. We further group the CPS’s base occupations into
larger groups to provide a suffi cient level of identifying variance and more meaningful compar-
isons. The elasticities with respect to age are substantially higher in the STEM-related fields
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than among other workers. STEM fields account for three of the four highest elasticities that we
estimate (elasticity and standard error): computer-related occupations at 27.4 (19.7), engineers
at 14.6 (8.3), social workers at 8.6 (4.8), and scientists at 7.4 (3.5). Management-related occu-
pations are next at 7.0 (1.6), and many occupations have elasticities between five and seven,
including lawyers, accountants, administrators, and doctors. Some occupations like teachers
have elasticities of substitution close to zero.
Higher elasticities of substitution by age for STEM occupations give one indication as to

why older natives may experience displacement from young skilled immigration. In terms of the
recent nested models emphasized by Ottaviano and Peri (2012), the argument surrounding STEM
substitution can be essentially thought of as a four-level system with the order of education,
occupation, age, and then immigration status. We are focusing on workers with at least a
bachelor’s education, and we allow for different elasticities over ages by occupation. Finding a
very high elasticity of substitution by age in an occupation suggests that immigrants in one age
group of the occupation can substitute equally as well for natives in other age groups as they
can for natives in their own age group.
Some visual evidence for this effect can be seen in a descriptive exercise using the CPS. Figure

3 plots immigration and age profiles in computer occupations in the top five H-1B dependent
states relative to the rest of the United States. We focus on computer occupations given the high
elasticities just identified. We plot three series: (i) the relative rate of immigration employment
in computer-related occupations in the top five H-1B states to other states; (ii) the relative rate
of older worker employment in computer-related occupations in top five H-1B states to other
states; and (iii) the relative rate of older worker employment in all occupations in top five H-1B
states to other states. As can be seen in the figure, the second series varies inversely with the
first series, while the third series is relatively flat. This is true both with respect to the expansion
of the H-1B visa program as well as when the legislation behind this expansion expired and the
program reverted back to its original size in 2004.24

6.2 Departure Rates by Occupation

With this background, Table 8 provides some simple estimations of departure rates by occupation
within our firms and how they correlate with the hiring of young skilled immigrants. It is worth
stressing again that an employee’s occupation is observed once during the 1986-1997 period, and
we are applying that past trait forward to the 1995-2008 period. Our sample includes U.S.-
born workers aged 20-65 in the observation year of the LEHD. Included workers have median
annualized earnings during the 1995-2008 period of $20,000, and our final data set comprises
132,507 person-year observations with 25,765 workers.
To study substitution across different types of workers, we consider a linear probability model

24Caution should be exercised in considering levels changes between 2002 and 2003 since the CPS was redesigned
during this period. See also Brown and Linden (2011) and Wadhwa (2010).
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where the outcome variable is an indicator variable for an individual departing from his or her
firm. Our analysis here uses OLS and thus should be considered descriptive. The key explanatory
variable is the growth in young skilled immigrant employment in the firm by year. To study
occupational and age differences in an intuitive way, we interact this immigration regressor with
three indicator variables for (i) older worker in STEM occupations, (ii) young worker in STEM
occupations, and (iii) older worker in non-STEM occupations. With this approach, the reference
category is young workers in non-STEM occupations. We include in all regressions a vector of
fixed effects for current worker ages using the bins 20-29, 30-39, 40-49, 50-59, and 60+ years old.
Regressions are unweighted and cluster standard errors by firm.
Column 1 of Table 8 reports the base results that include year fixed effects. The first row finds

that higher growth of young skilled immigration to the firm is associated with lower departure
rates for young natives in non-STEM occupations. These baseline estimates are consistent
with the idea that firms on a positive growth trajectory may better retain employees and also
recruit new ones. There are, however, substantial differences across worker types. There is no
reduction in departure rates for older workers in STEM fields at the time of increased young
skilled immigration into the firm, and the departure rate for young natives in STEM fields
is only modestly affected. Column 2 finds similar results with an alternative approach where
we include firm-year fixed effects. With these fixed effects, we no longer estimate the main
effect of young skilled immigrants into the firm, and the coeffi cients still provide age-occupation
comparisons to the omitted category of young native workers in non-STEM occupations. Young
skilled immigration is most closely associated with departures of older STEM workers in the
firm, although the differences by age across STEM occupations are not statistically significant.
Columns 3 and 4 take a second step of splitting workers based upon salary levels, which are

estimated using the LEHD and are allowed to be time varying. We define high-wage workers
to be those earning more than $75,000 in real 2008 dollars on an annualized basis. This added
dimension uncovers several interesting comparison points. Among older STEM workers, the
higher departure rates are exclusively in the higher wage group, with the differences by salary
levels statistically significant. There is not a comparable pattern for young STEM workers. On
the other hand, one observes in the non-STEM occupations directionally similar patterns. The
results in Column 4 show that this finding is robust to including age-occupation fixed effects.
In this specification, the differences across salary levels for older STEM and non-STEM workers
are 0.192 (0.093) and 0.110 (0.032), respectively. While the former is larger in magnitude, the
base effects for higher earners are not significantly different from each other at 0.102 (0.039) and
0.086 (0.027), respectively.
We have extended this analysis in several ways. First, Column 5 examines firm-level hiring

of these matched workers and does not find this pattern, indicating this is not due to greater
churn in the labor market. We find similar results that are sometimes even sharper when using
the estimated age elasticities by occupation from the CPS calculated in Section 6.1. We adopt
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Table 8’s indicator variable approach for reported results given its intuitive nature. Finally,
because the CPS-LEHD match predates our sample period, we cannot use it to describe the
immigrants in the firms. We can, however, obtain a glimpse using the occupations listed on the
LCA applications the firm makes in 2001. Using the elasticities calculated in Section 6.1, we
identify the weighted elasticity of substitution by age across the applications that the firm makes.
The differentials estimated across salary levels are almost three times higher for firms whose LCA
applications display an average elasticity above the sample median compared to firms below the
median. These tests provide some additional verification that the age elasticity of substitution
for occupations can have an important moderating effect for how firm employment structures
are influenced by young skilled immigration.

7 Conclusions

In summary, the results of this study provide a multi-faceted view of the impact of young skilled
immigrants on the employment structures of U.S. firms. We find consistent evidence linking the
hiring of young skilled immigrants to greater employment of skilled workers by the firm, a greater
share of the firm’s workforce being skilled, a higher share of skilled workers being immigrants,
and a lower share of skilled workers being over the age of 40. Results on whether total firm size
increases or not are mixed. There is also consistent evidence in our IV specifications that older
native employment expands very little, which is different from the other employment groups.
Unlike this lack of growth, however, there is limited evidence connecting actual departures of
workers to the hiring of young skilled immigrants. The closest connection is a relative statement
across occupations within a firm that suggests that departure rates for older STEM occupations
may be higher.
Beyond this specific application, our study makes the larger point that the firm needs to take

a much bigger role in immigration work going forward. This approach accounts for a greater
level of heterogeneity and makes sense intuitively given that substantial portions of the U.S.
immigration framework have been designed to allow U.S. firms to choose the immigrants that
they want to hire. Some of the most prominent features of this analysis would have been obscured
with standard approaches to immigration’s effects. Our results have important implications for
the competitiveness of U.S. firms, the job opportunities of natives and immigrants employed by
the firms, our larger national innovative capacity (e.g., Furman et al. 2002), and much beyond.
This study is a first step towards this characterization, and in current research we are linking
these employment changes to changes in patenting levels for firms. We hope that future work
continues in this vein.
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Notes:  The figure indicates with shading the states that are covered by the LEHD. Alaska is not covered. Stars indicate the 18 
states whose coverage begins by 1995 that constitute our primary sample. Coverage for all states ends in 2008. 

Figure 1: LEHD state coverage 
Stars indicate primary sample of 18 states whose coverage begins by 1995 

Start by 
1995 



Notes:  Figure plots H-1B population estimates and numerical caps by USCIS fiscal year. 

Figure 2: H-1B population estimates and numerical caps 
Population estimates on left-hand axis; numerical caps on right-hand axis 



Notes:  Relative rates for older workers are calculated by comparing the share of workers aged 40-65 in the top five H-1B states 
(CA, DC, MA, NJ, NY) to the share in the other 45 states. Relative immigration rates are similarly defined. Data are from the 
Current Population Survey. Caution should be exercised on the levels between 2002 and 2003 as the CPS was redesigned during 
this period. 

Figure 3: Immigration and age profiles in computer occupations  
National trends from CPS comparing top five H-1B states to the rest of country 



Mean Standard deviation Mean Standard deviation

Total employment 21,238 29,029 19,631 30,041

    Immigrant share 19.8% 11.7% 21.9% 12.9%

    Skilled employment share 50.0% 23.8% 64.7% 18.3%

Skilled employment 9,887 15,487 12,921 21,383

    Native over-40 share 50.3% 15.6% 47.5% 15.2%

    Native under-40 share 31.2% 12.5% 31.5% 9.6%

    Immigrant over-40 share 9.0% 6.0% 9.5% 5.4%

    Immigrant under-40 share 9.5% 7.8% 11.5% 9.0%

    Hiring rate 13.1% 8.3% 12.7% 7.9%

    Departure rate 14.4% 7.5% 12.5% 5.9%

Medium-skilled employment 7,928 11,528 5,342 8,037

Initial LCA dependency 0.8% 1.7% 1.0% 1.5%

Initial Chinese/Indian share 17.6% 12.2% 19.7% 11.8%

STEM Occupation share 12.1% 16.0% 18.2% 16.8%

Table 1:  Descriptive statistics

Full sample Top patenting sample

Notes: Descriptive statistics are taken from the LEHD. The sample is an unbalanced panel of 319 firms and their employments in 18 states during 

the 1995-2008 period. State inclusion is dictated by the LEHD data coverage, and firms must satisfy minimum employment coverage ratios in 

these states to be included. The sample includes major patenting firms and major U.S. employers as described in the text. Skilled workers are 

defined as those with median annual earnings over the 1995-2008 period exceeding $50,000 in constant 2008 dollars. Medium-skilled workers are 

defined as those with median annual earnings over the 1995-2008 period of $25,000-$50,000 in constant 2008 dollars. Younger workers are those 

less than 40 years old. 



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7) (8) (9)

0.578 0.673 0.719 0.637 0.031 -0.031 -0.019 0.585 0.011

(0.022) (0.021) (0.045) (0.020) (0.005) (0.003) (0.003) (0.022) (0.005)

0.564 0.656 0.709 0.626 0.032 -0.031 -0.019 0.574 0.012

(0.021) (0.020) (0.045) (0.020) (0.005) (0.003) (0.003) (0.022) (0.006)

0.378 0.500 0.578 0.469 0.046 -0.042 -0.025 n.a. n.a.

(0.020) (0.022) (0.050) (0.021) (0.006) (0.003) (0.003)

0.478 0.570 0.743 0.573 0.057 -0.037 -0.021 n.a. n.a.

(0.048) (0.038) (0.043) (0.038) (0.006) (0.007) (0.007)

Panel D: Panel C restricted to top patenting firm sample

Δ Log employment of 

young skilled immigrants

Notes: OLS estimations consider the relationship between the change in log employment of young skilled immigrants and the change in log employment of other workers in 

the firm in the same year. Table 1 describes the firm sample and variable definitions. Outcome variables are indicated by column headers. Panel B incorporates a base set of 

controls that include: sector-year effects where the sector is defined to be the dominant sector of the firm; time trends interacted with the firm's initial share of employment in 

each sector; a time trend interacted with the firm's initial patent per worker intensity; an age-education immigration factor developed through the firm's initial skilled 

employment distribution by age and education cells interacted with national immigrant growth in these cells; supply-push immigration factors developed through the firm's 

initial immigrant distribution by country-of-origin interacted with national immigrant growth by country in the United States (done separately for skilled and lower-skilled 

workers); and local area controls for expansion of employment in the firm's counties, the immigrant worker share of the firm's counties, and the share of workers over the age 

of 40 in the firm's counties. Panel C further includes as a control the contemporaneous change in the firm's medium-skilled employees. Regressions contain 3,374 and 1,002 

observations in Panels A-C and D, respectively. Regressions are weighted by log initial young immigrant skilled employment in the firm and cluster standard errors by firm.

Panel C: Panel B including control for contemporaneous change in medium-skilled workers in firm

Δ Log employment of 

young skilled immigrants

Panel A: OLS estimations with no controls

Δ Log employment of 

young skilled immigrants

Panel B: OLS estimations with base controls

Δ Log employment of 

young skilled immigrants

Table 2: OLS estimations of young skilled immigrant employment and firm employment structures

Δ Log employment of skilled worker group:

Δ Immigrant 

share of 

skilled 

workers

Δ Older 

worker share 

of skilled 

workers

Δ Older worker 

share of native 

skilled workers

Δ Log overall 

firm size

Δ Skilled 

worker share 

of total firm



Older 

natives

Young 

natives

Older 

immigrants

Young 

immigrants

Older 

natives

Young 

natives

Older 

immigrants

Young 

immigrants

(1) (2) (3) (4) (5) (6) (7) (8)

0.579 0.591 0.672 n.a. -0.008 0.027 -0.001 0.085

(0.026) (0.024) (0.030) (0.020) (0.020) (0.027) (0.026)

0.577 0.584 0.670 n.a. -0.021 0.012 -0.013 0.069

(0.027) (0.024) (0.030) (0.020) (0.020) (0.027) (0.027)

0.527 0.535 0.642 n.a. -0.122 -0.083 -0.114 -0.023

(0.028) (0.025) (0.032) (0.021) (0.021) (0.028) (0.027)

0.590 0.603 0.746 n.a. -0.199 -0.161 -0.236 -0.110

(0.056) (0.042) (0.051) (0.043) (0.038) (0.054) (0.041)

Notes: See Table 2. OLS estimations consider the relationship between log changes in young skilled immigrant hiring and log changes in the 

hiring/departures of other skilled workers in the firm in the same year.

Panel C: Panel B including control for contemporaneous change in medium-skilled workers in firm

Δ Log hiring of young 

skilled immigrants

Panel D: Panel C restricted to top patenting firm sample

Δ Log hiring of young 

skilled immigrants

Δ Log hiring of young 

skilled immigrants

Panel B: OLS estimations with base controls

Table 3a: OLS estimations of worker hiring and departing margins

Δ Log hires of skilled worker group: Δ Log departures of skilled worker group:

Panel A: OLS estimations with no controls

Δ Log hiring of young 

skilled immigrants



Δ Log employment of 

older native skilled 

workers

Δ Log employment of 

young native skilled 

workers

Δ Log employment of 

older skilled immigrant 

workers

Δ Log employment of 

young skilled immigrant 

workers

Δ Log total employment 

of skilled workers

(1) (2) (3) (4) (5)

0.100 0.122 0.125 0.194 0.115

(0.009) (0.009) (0.011) (0.011) (0.009)

0.095 0.115 0.120 0.190 0.110

(0.009) (0.008) (0.010) (0.011) (0.009)

0.038 0.058 0.062 0.137 0.054

(0.006) (0.005) (0.007) (0.009) (0.005)

0.043 0.062 0.058 0.122 0.061

(0.014) (0.011) (0.010) (0.010) (0.011)

Panel D: Panel C restricted to top patenting firm sample

Δ Log hiring of young 

skilled immigrants

Notes: See Table 3a.

Panel C: Panel B including control for contemporaneous change in medium-skilled workers in firm

Δ Log hiring of young 

skilled immigrants

Table 3b: Continuation of Table 3a

Panel A: OLS estimations with no controls

Δ Log hiring of young 

skilled immigrants

Panel B: OLS estimations with base controls

Δ Log hiring of young 

skilled immigrants



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7) (8) (9)

-0.189 0.333 0.119 0.123 0.105 -0.180 -0.148 -0.174 0.053

(0.302) (0.183) (0.275) (0.223) (0.029) (0.054) (0.048) (0.280) (0.034)

Exogeneity test p-value 0.000 0.004 0.001 0.000 0.000 0.000 0.000 0.000 0.181

0.449 0.740 0.597 0.632 0.051 -0.110 -0.090 0.381 0.096

(0.115) (0.083) (0.104) (0.081) (0.014) (0.022) (0.022) (0.108) (0.026)

Exogeneity test p-value 0.137 0.220 0.215 0.926 0.035 0.000 0.000 0.005 0.000

0.330 0.630 0.360 0.583 0.060 -0.140 -0.104 0.115 0.143

(0.261) (0.170) (0.297) (0.167) (0.028) (0.057) (0.049) (0.291) (0.063)

Exogeneity test p-value 0.116 0.841 0.047 0.714 0.121 0.000 0.001 0.001 0.001

Panel C: IV using initial STEM occupation shares interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 2.82, F-statistic 5.36

Notes: See Table 2. Instruments utilizing H-1B fluctuations interact a fixed dependency on the program for each firm with a measure of the national size of the H-1B 

program. The instrument for the change in young skilled immigrant employment for the firm is the change in this factor. The fixed dependency in Panel A is a measure of H-

1B dependency developed in 2001 through the firm's filings of Labor Condition Applications, a first step in the H-1B application process. The fixed dependency in Panel B 

is the firm’s initial share of skilled immigrant employment that is of Chinese and Indian ethnicity. The fixed dependency in Panel C is the firm's share of workers in STEM 

occupations in the initial years for which this variable can measured using the CPS-LEHD match. Instruments use Lowell's H-1B population estimate for the second part of 

the interaction. Regressions include the full set of controls similar to Panel C of Table 2. The null hypothesis in Wu-Hausman exogeneity tests is that the instrumented 

regressors are exogenous.  

Panel A: IV using log LCA dependency in 2001 interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 3.93, F-statistic 10.36

Panel B: IV using initial Chinese/Indian skilled shares interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 6.77, F-statistic 32.38

Table 4: IV estimations without medium-skilled workforce control

Δ Log employment of skilled worker group:

Δ Immigrant 

share of 

skilled 

workers

Δ Older 

worker share 

of skilled 

workers

Δ Older worker 

share of native 

skilled workers

Δ Log overall 

firm size

Δ Skilled 

worker share 

of total firm



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7)

-0.051 0.410 0.223 0.224 0.093 -0.159 -0.131

(0.161) (0.111) (0.180) (0.123) (0.017) (0.034) (0.033)

Exogeneity test p-value 0.000 0.328 0.004 0.001 0.000 0.000 0.000

0.442 0.736 0.591 0.627 0.052 -0.112 -0.092

(0.098) (0.077) (0.098) (0.071) (0.013) (0.018) (0.020)

Exogeneity test p-value 0.514 0.003 0.909 0.035 0.025 0.000 0.001

0.414 0.676 0.446 0.632 0.052 -0.122 -0.090

(0.173) (0.125) (0.197) (0.118) (0.021) (0.036) (0.034)

Exogeneity test p-value 0.838 0.211 0.481 0.225 0.773 0.008 0.039

Panel C: IV using initial STEM occupation shares interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 3.49, F-statistic 12.14

Notes: See Table 4. Estimations include a control for contemporaneous change in medium-skilled workers in firm.

Panel A: IV using log LCA dependency in 2001 interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.84, F-statistic 23.36

Panel B: IV using initial Chinese/Indian skilled shares interacted with log annual H-1B populations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 7.02, F-statistic 49.10

Table 5: IV estimations with medium-skilled workforce control

Δ Log employment of skilled worker group: Δ Immigrant 

share of skilled 

workers

Δ Older worker 

share of skilled 

workers

Δ Older worker 

share of native 

skilled workers



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7)

0.121 0.537 0.349 0.400 0.075 -0.149 -0.129

(0.114) (0.092) (0.148) (0.085) (0.015) (0.030) (0.032)

Exogeneity test p-value 0.018 0.635 0.109 0.457 0.031 0.000 0.000

0.423 0.785 0.619 0.654 0.051 -0.130 -0.116

(0.109) (0.091) (0.135) (0.078) (0.016) (0.024) (0.026)

Exogeneity test p-value 0.678 0.001 0.761 0.023 0.716 0.000 0.000

0.391 0.741 0.583 0.649 0.052 -0.131 -0.124

(0.168) (0.134) (0.172) (0.116) (0.024) (0.035) (0.040)

Exogeneity test p-value 0.941 0.083 0.976 0.149 0.781 0.002 0.002

Panel C: IV using initial STEM occupation shares interacted with log annual H-1B cap summations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 3.26, F-statistic 10.59

Notes: See Table 5. Instruments use the summation of the previous six years' H-1B caps as a second version of the program's national size.

Panel A: IV using log LCA/employee dependency in 2001 interacted with log annual H-1B cap 

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.77, F-statistic 22.71

Panel B: IV using initial Chinese/Indian skilled shares interacted with log annual H-1B cap summations

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 5.37, F-statistic 28.78

Table 6: Table 5's IV analysis using H-1B cap summations

Δ Log employment of skilled worker group: Δ Immigrant 

share of skilled 

workers

Δ Older worker 

share of skilled 

workers

Δ Older worker 

share of native 

skilled workers



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7)

0.092 0.234 0.698 0.205 0.134 -0.064 -0.016

(0.264) (0.215) (0.245) (0.213) (0.032) (0.039) (0.043)

Exogeneity test p-value 0.121 0.063 0.854 0.039 0.006 0.515 0.903

-0.036 0.399 0.209 0.236 0.092 -0.152 -0.126

(0.164) (0.117) (0.199) (0.125) (0.018) (0.036) (0.035)

Exogeneity test p-value 0.004 0.695 0.112 0.087 0.001 0.000 0.000

-0.248 0.507 0.031 0.331 0.077 -0.270 -0.265

(0.384) (0.216) (0.444) (0.215) (0.034) (0.115) (0.119)

Exogeneity test p-value 0.012 0.961 0.100 0.488 0.325 0.000 0.000

-0.184 0.323 0.053 0.108 0.105 -0.181 -0.140

(0.213) (0.134) (0.234) (0.162) (0.021) (0.044) (0.040)

Exogeneity test p-value 0.000 0.172 0.007 0.004 0.000 0.000 0.000

0.074 0.463 0.230 0.330 0.075 -0.138 -0.112

(0.149) (0.123) (0.241) (0.120) (0.017) (0.034) (0.034)

Exogeneity test p-value 0.021 0.892 0.094 0.265 0.058 0.000 0.002

Δ Log employment of 

young skilled immigrants

Table 7a: Further robustness checks on Table 5's IV analysis with population trends

Δ Log employment of skilled worker group: Δ Immigrant 

share of skilled 

workers

Δ Older worker 

share of skilled 

workers

Δ Older worker 

share of native 

skilled workers

First stage: t-statistic 4.10, F-statistic 16.72

First stage: t-statistic 2.26, F-statistic 5.08

Notes: See Table 5.

Panel B: Excluding sample weights

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.35, F-statistic 18.86

Panel E: Excluding firms that lobby on immigration issues

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.28, F-statistic 18.27

Panel A: Using top patenting firm sample

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 2.98, F-statistic 8.96

Panel C: Including control for LCA-based dependency (time trend)

Δ Log employment of 

young skilled immigrants

Panel D: Examining a balanced panel of firms



Older 

natives

Young 

natives

Older 

immigrants Total

(1) (2) (3) (4) (5) (6) (7)

0.088 0.298 0.552 0.227 0.126 -0.077 -0.024

(0.173) (0.160) (0.165) (0.127) (0.025) (0.034) (0.039)

Exogeneity test p-value 0.015 0.057 0.251 0.002 0.001 0.267 0.948

0.140 0.575 0.343 0.427 0.076 -0.147 -0.131

(0.117) (0.125) (0.171) (0.097) (0.017) (0.033) (0.035)

Exogeneity test p-value 0.076 0.286 0.293 0.974 0.023 0.000 0.000

0.150 0.638 0.354 0.531 0.060 -0.180 -0.172

(0.150) (0.146) (0.200) (0.116) (0.023) (0.050) (0.056)

Exogeneity test p-value 0.111 0.300 0.233 0.598 0.472 0.000 0.000

0.036 0.472 0.169 0.324 0.080 -0.165 -0.134

(0.135) (0.103) (0.174) (0.098) (0.017) (0.036) (0.036)

Exogeneity test p-value 0.006 0.852 0.008 0.170 0.014 0.000 0.000

0.188 0.495 0.410 0.444 0.071 -0.120 -0.100

(0.116) (0.103) (0.169) (0.092) (0.017) (0.029) (0.032)

Exogeneity test p-value 0.126 0.884 0.373 0.931 0.093 0.001 0.000

First stage: t-statistic 4.26, F-statistic 18.08

Table 7b: Further robustness checks on Table 6's IV analysis with cap summations

Δ Log employment of skilled worker group: Δ Immigrant 

share of skilled 

workers

Δ Older worker 

share of skilled 

workers

Δ Older worker 

share of native 

skilled workers

Panel A: Using top patenting firm sample

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.22, F-statistic 17.92

Panel B: Excluding sample weights

Δ Log employment of 

young skilled immigrants

Panel E: Excluding firms that lobby on immigration issues

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.05, F-statistic 16.34

Notes: See Table 6.

Panel C: Including control for LCA-based dependency (time trend)

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 3.24, F-statistic 10.47

Panel D: Examining a balanced panel of firms

Δ Log employment of 

young skilled immigrants

First stage: t-statistic 4.34, F-statistic 18.79



Estimation 

including age 

and year fixed 

effects

Estimation 

including age 

and firm-year 

fixed effects

Estimation 

including age 

and firm-year 

fixed effects

Estimation 

including age-

occupation and 

firm-year fixed 

effects

(1) (2) (3) (4) (5)

-0.072

(0.025)

0.073 0.056

(0.038) (0.032)

0.119 0.102 -0.005

(0.041) (0.039) (0.036)

-0.076 -0.089 -0.020

(0.074) (0.079) (0.059)

0.056 0.025

(0.045) (0.041)

0.015 0.013 -0.043

(0.044) (0.039) (0.057)

0.060 0.033 0.075

(0.092) (0.096) (0.088)

0.021 0.011

(0.020) (0.018)

0.086 0.086 -0.004

(0.026) (0.027) (0.033)

-0.024 -0.023 -0.061

(0.023) (0.023) (0.027)

       x higher wage

       x lower wage

Notes: OLS estimations consider departure rates and hiring rates by occupation for workers matched from the CPS to the LEHD 

firm sample. The CPS sample is a random sample taken during the 1986-1997 period; occupation is held fixed at that indicated 

to be the worker's primary occupation at the time of the CPS survey response. The sample considers native workers aged 20-65 

in the observation year of the LEHD, comprising 132,507 person-year observations from 25,765 workers. Included workers 

have median annualized earnings during the 1995-2008 period of at least $20,000. STEM occupations are designated as those 

related to computers, science and engineering, and mathematics. Salary splits are in real 2008 dollars on an annualized basis. 

Age fixed effects group workers into 20-29, 30-39, 40-49, 50-59, and 60+ years old. Regressions are unweighted and cluster 

standard errors by firm. In columns 1 and 2, differences across groups are not statistically significant. In columns 3 and 4, 

differences across salary levels for older workers are statistically significant at a 10% level for STEM and non-STEM 

occupations; differences between older STEM and non-STEM workers are not statistically significant.

       x higher wage

       x lower wage

x younger worker in STEM 

occupations

       x higher wage

       x lower wage

x older worker in non-STEM 

occupations

x older worker in STEM 

occupations

Table 8: Departure rates by occupation, age, and salary level

(0,1) Worker departs from the firm Column 4 with 

DV of (0,1) 

worker hired in 

year

Δ Log hiring of young skilled 

immigrants in the firm

(Reference category: young, non-STEM occupations)


