Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • 2023
  • Article
  • Journal of Machine Learning Research

Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators

By: Benjamin Jakubowski, Siram Somanchi, Edward McFowland III and Daniel B. Neill
  • Format:Electronic
  • | Pages:57
ShareBar

Abstract

Regression discontinuity (RD) designs are widely used to estimate causal effects in the absence of a randomized experiment. However, standard approaches to RD analysis face two significant limitations. First, they require a priori knowledge of discontinuities in treatment. Second, they yield doubly-local treatment effect estimates, and fail to provide more general causal effect estimates away from the discontinuity. To address these limitations, we introduce a novel method for automatically detecting RDs at scale, integrating information from multiple discovered discontinuities with an observational estimator, and extrapolating away from discovered, local RDs. We demonstrate the performance of our method on two synthetic datasets, showing improved performance compared to direct use of an observational estimator, direct extrapolation of RD estimates, and existing methods for combining multiple causal effect estimates. Finally, we apply our novel method to estimate spatially heterogeneous treatment effects in the context of a recent economic development problem.

Keywords

Regression Discontinuity Design; Analytics and Data Science; AI and Machine Learning

Citation

Jakubowski, Benjamin, Siram Somanchi, Edward McFowland III, and Daniel B. Neill. "Exploiting Discovered Regression Discontinuities to Debias Conditioned-on-observable Estimators." Journal of Machine Learning Research 24, no. 133 (2023): 1–57.
  • Read Now

About The Author

Edward McFowland III

Technology and Operations Management
→More Publications

More from the Authors

    • March 2025
    • Information and Organization

    Novice Risk Work: How Juniors Coaching Seniors on Emerging Technologies Such as Generative AI Can Lead to Learning Failures

    By: Katherine C. Kellogg, Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon and Karim R. Lakhani
    • May 2024
    • Faculty Research

    Pernod Ricard: Uncorking Digital Transformation

    By: Iavor Bojinov, Edward McFowland III, François Candelon, Nikolina Jonsson and Emer Moloney
    • January 2024
    • Bioinformatics

    Subset Scanning for Multi-Trait Analysis Using GWAS Summary Statistics

    By: Rui Cao, Evan Olawsky, Edward McFowland III, Erin Marcotte, Logan Spector and Tianzhong Yang
More from the Authors
  • Novice Risk Work: How Juniors Coaching Seniors on Emerging Technologies Such as Generative AI Can Lead to Learning Failures By: Katherine C. Kellogg, Hila Lifshitz-Assaf, Steven Randazzo, Ethan Mollick, Fabrizio Dell'Acqua, Edward McFowland III, François Candelon and Karim R. Lakhani
  • Pernod Ricard: Uncorking Digital Transformation By: Iavor Bojinov, Edward McFowland III, François Candelon, Nikolina Jonsson and Emer Moloney
  • Subset Scanning for Multi-Trait Analysis Using GWAS Summary Statistics By: Rui Cao, Evan Olawsky, Edward McFowland III, Erin Marcotte, Logan Spector and Tianzhong Yang
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.