Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • 2022
  • Working Paper

TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations

By: Dylan Slack, Satyapriya Krishna, Himabindu Lakkaraju and Sameer Singh
  • Format:Print
  • | Language:English
ShareBar

Abstract

Practitioners increasingly use machine learning (ML) models, yet they have become more complex and harder to understand. To address this issue, researchers have proposed techniques to explain model predictions. However, practitioners struggle to use explainability methods because they do not know which to choose and how to interpret the results. We address these challenges by introducing TalkToModel: an interactive dialogue system that enables users to explain ML models through natural language conversations. TalkToModel comprises three components: 1) an adaptive dialogue engine that interprets natural language and generates meaningful responses, 2) an execution component, which constructs the explanations used in the conversation, 3) aconversational interface. In real-world evaluations, 73% of healthcare workers agreed they would use TalkToModel over existing systems for understanding a disease prediction model, and 85% of ML professionals agreed TalkToModel was easier to use, demonstrating that TalkToModel is highly effective for model explainability.

Keywords

Natural Language Conversations; Predictive Models; AI and Machine Learning

Citation

Slack, Dylan, Satyapriya Krishna, Himabindu Lakkaraju, and Sameer Singh. "TalkToModel: Explaining Machine Learning Models with Interactive Natural Language Conversations." Working Paper, 2022.
  • Read Now

About The Author

Himabindu Lakkaraju

Technology and Operations Management
→More Publications

More from the Authors

    • 2024
    • Faculty Research

    Fair Machine Unlearning: Data Removal while Mitigating Disparities

    By: Himabindu Lakkaraju, Flavio Calmon, Jiaqi Ma and Alex Oesterling
    • 2024
    • Faculty Research

    Quantifying Uncertainty in Natural Language Explanations of Large Language Models

    By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
    • 2023
    • Advances in Neural Information Processing Systems (NeurIPS)

    Post Hoc Explanations of Language Models Can Improve Language Models

    By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
More from the Authors
  • Fair Machine Unlearning: Data Removal while Mitigating Disparities By: Himabindu Lakkaraju, Flavio Calmon, Jiaqi Ma and Alex Oesterling
  • Quantifying Uncertainty in Natural Language Explanations of Large Language Models By: Himabindu Lakkaraju, Sree Harsha Tanneru and Chirag Agarwal
  • Post Hoc Explanations of Language Models Can Improve Language Models By: Satyapriya Krishna, Jiaqi Ma, Dylan Slack, Asma Ghandeharioun, Sameer Singh and Himabindu Lakkaraju
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.