Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • 2022
  • Article
  • Advances in Neural Information Processing Systems (NeurIPS)

Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations

By: Tessa Han, Suraj Srinivas and Himabindu Lakkaraju
  • Format:Print
  • | Pages:30
ShareBar

Abstract

A critical problem in the field of post hoc explainability is the lack of a common foundational goal among methods. For example, some methods are motivated by function approximation, some by game theoretic notions, and some by obtaining clean visualizations. This fragmentation of goals causes not only an inconsistent conceptual understanding of explanations but also the practical challenge of not knowing which method to use when.
In this work, we begin to address these challenges by unifying eight popular post hoc explanation methods (LIME, C-LIME, KernelSHAP, Occlusion, Vanilla Gradients, Gradients × Input, SmoothGrad, and Integrated Gradients). We show that these methods all perform local function approximation of the black-box model, differing only in the neighbourhood and loss function used to perform the approximation. This unification enables us to (1) state a no free lunch theorem for explanation methods, demonstrating that no method can perform optimally across all neighbourhoods, and (2) provide a guiding principle to choose among methods based on faithfulness to the black-box model. We empirically validate these theoretical results using various real-world datasets, model classes, and prediction tasks.
By bringing diverse explanation methods into a common framework, this work (1) advances the conceptual understanding of these methods, revealing their shared local function approximation objective, properties, and relation to one another, and (2) guides the use of these methods in practice, providing a principled approach to choose among methods and paving the way for the creation of new ones.

Keywords

Mathematical Methods; Decision Choices and Conditions; Analytics and Data Science

Citation

Han, Tessa, Suraj Srinivas, and Himabindu Lakkaraju. "Which Explanation Should I Choose? A Function Approximation Perspective to Characterizing Post hoc Explanations." Advances in Neural Information Processing Systems (NeurIPS) (2022). (Best Paper Award, International Conference on Machine Learning (ICML) Workshop on Interpretable ML in Healthcare.)
  • Read Now

About The Author

Himabindu Lakkaraju

Technology and Operations Management
→More Publications

More from the Authors

    • June 2023
    • Transactions on Machine Learning Research (TMLR)

    When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making

    By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
    • 2023
    • Proceedings of the International Conference on Learning Representations (ICLR)

    Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse

    By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
    • April 2023
    • Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS)

    On the Privacy Risks of Algorithmic Recourse

    By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
More from the Authors
  • When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
  • Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
  • On the Privacy Risks of Algorithmic Recourse By: Martin Pawelczyk, Himabindu Lakkaraju and Seth Neel
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College