Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • 18 Nov 2016
  • Conference Presentation

Rawlsian Fairness for Machine Learning

By: Matthew Joseph, Michael J. Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
  • Format:Video
  • | Language:English
ShareBar

Abstract

Motivated by concerns that automated decision-making procedures can unintentionally lead to discriminatory behavior, we study a technical definition of fairness modeled after John Rawls' notion of "fair equality of opportunity". In the context of a simple model of online decision making, we give an algorithm that satisfies this fairness constraint, while still being able to learn at a rate that is comparable to (but necessarily worse than) that of the best algorithms absent a fairness constraint. We prove a regret bound for fair algorithms in the linear contextual bandit framework that is a significant improvement over our technical companion paper [16], which gives black-box reductions in a more general setting. We analyze our algorithms both theoretically and experimentally. Finally, we introduce the notion of a "discrimination index", and show that standard algorithms for our problem exhibit structured discriminatory behavior, whereas the "fair" algorithms we develop do not.

Keywords

Machine Learning; Algorithms; Fairness; Decision Making; Mathematical Methods

Citation

Joseph, Matthew, Michael J. Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Rawlsian Fairness for Machine Learning." Paper presented at the 3rd Workshop on Fairness, Accountability, and Transparency in Machine Learning, Special Interest Group on Knowledge Discovery and Data Mining (SIGKDD), November 18, 2016.
  • View Now

About The Author

Seth Neel

Technology and Operations Management
→More Publications

More from the Authors

    • 2023
    • Proceedings of the Conference on Empirical Methods in Natural Language Processing

    MoPe: Model Perturbation-based Privacy Attacks on Language Models

    By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
    • 2023
    • Faculty Research

    Black-box Training Data Identification in GANs via Detector Networks

    By: Lukman Olagoke, Salil Vadhan and Seth Neel
    • 2023
    • Faculty Research

    In-Context Unlearning: Language Models as Few Shot Unlearners

    By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
More from the Authors
  • MoPe: Model Perturbation-based Privacy Attacks on Language Models By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
  • Black-box Training Data Identification in GANs via Detector Networks By: Lukman Olagoke, Salil Vadhan and Seth Neel
  • In-Context Unlearning: Language Models as Few Shot Unlearners By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.