Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • Oct 2020
  • Conference Presentation

Optimal, Truthful, and Private Securities Lending

By: Emily Diana, Michael J. Kearns, Seth Neel and Aaron Leon Roth
  • Format:Print
  • | Language:English
ShareBar

Abstract

We consider a fundamental dynamic allocation problem motivated by the problem of securities lending in financial markets, the mechanism underlying the short selling of stocks. A lender would like to distribute a finite number of identical copies of some scarce resource to n clients, each of whom has a private demand that is unknown to the lender. The lender would like to maximize the usage of the resource—avoiding allocating more to a client than her true demand—but is constrained to sell the resource at a pre-specified price per unit, and thus cannot use prices to incentivize truthful reporting. We first show that the Bayesian optimal algorithm for the one-shot problem—which maximizes the resource's expected usage according to the posterior expectation of demand, given reports—actually incentivizes truthful reporting as a dominant strategy. Because true demands in the securities lending problem are often sensitive information that the client would like to hide from competitors, we then consider the problem under the additional desideratum of (joint) differential privacy. We give an algorithm, based on simple dynamics for computing market equilibria, that is simultaneously private, approximately optimal, and approximately dominant-strategy truthful. Finally, we leverage this private algorithm to construct an approximately truthful, optimal mechanism for the extensive form multi-round auction where the lender does not have access to the true joint distributions between clients' requests and demands.

Keywords

Differential Privacy; Mechanism Design; Finance; Mathematical Methods

Citation

Diana, Emily, Michael J. Kearns, Seth Neel, and Aaron Leon Roth. "Optimal, Truthful, and Private Securities Lending." Paper presented at the 1st Association for Computing Machinery (ACM) International Conference on AI in Finance (ICAIF), October 2020.
  • Read Now

About The Author

Seth Neel

Technology and Operations Management
→More Publications

More from the Authors

    • 2023
    • Proceedings of the Conference on Empirical Methods in Natural Language Processing

    MoPe: Model Perturbation-based Privacy Attacks on Language Models

    By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
    • 2023
    • Faculty Research

    Black-box Training Data Identification in GANs via Detector Networks

    By: Lukman Olagoke, Salil Vadhan and Seth Neel
    • 2023
    • Faculty Research

    In-Context Unlearning: Language Models as Few Shot Unlearners

    By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
More from the Authors
  • MoPe: Model Perturbation-based Privacy Attacks on Language Models By: Marvin Li, Jason Wang, Jeffrey Wang and Seth Neel
  • Black-box Training Data Identification in GANs via Detector Networks By: Lukman Olagoke, Salil Vadhan and Seth Neel
  • In-Context Unlearning: Language Models as Few Shot Unlearners By: Martin Pawelczyk, Seth Neel and Himabindu Lakkaraju
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College.