Publications
Publications
- 2023
- Journal of the American Statistical Association
Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations.
By: Edward McFowland III and Cosma Rohilla Shalizi
Abstract
Social influence cannot be identified from purely observational data on social networks, because such influence is generically confounded with latent homophily, that is, with a node’s network partners being informative about the node’s attributes and therefore its behavior. If the network grows according to either a latent community (stochastic block) model, or a continuous latent space model, then latent homophilous attributes can be consistently estimated from the global pattern of social ties. We show that, for common versions of those two network models, these estimates are so informative that controlling for estimated attributes allows for asymptotically unbiased and consistent estimation of social-influence effects in linear models. In particular, the bias shrinks at a rate that directly reflects how much information the network provides about the latent attributes. These are the first results on the consistent nonexperimental estimation of social-influence effects in the presence of latent homophily, and we discuss the prospects for generalizing them.
Keywords
Causal Inference; Homophily; Social Networks; Peer Influence; Social and Collaborative Networks; Power and Influence; Mathematical Methods
Citation
McFowland III, Edward, and Cosma Rohilla Shalizi. "Estimating Causal Peer Influence in Homophilous Social Networks by Inferring Latent Locations." Journal of the American Statistical Association 118, no. 541 (2023): 707–718.