Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • 2021
  • Article
  • Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society

Fair Algorithms for Infinite and Contextual Bandits

By: Matthew Joseph, Michael J Kearns, Jamie Morgenstern, Seth Neel and Aaron Leon Roth
  • Format:Print
ShareBar

Abstract

We study fairness in linear bandit problems. Starting from the notion of meritocratic fairness introduced in Joseph et al. [2016], we carry out a more refined analysis of a more general problem, achieving better performance guarantees with fewer modelling assumptions on the number and structure of available choices as well as the number selected. We also analyze the previously-unstudied question of fairness in infinite linear bandit problems, obtaining instance-dependent regret upper bounds as well as lower bounds demonstrating that this instance-dependence is necessary. The result is a framework for meritocratic fairness in an online linear setting that is substantially more powerful, general, and realistic than the current state of the art.

Keywords

Algorithms; Bandit Problems; Fairness; Mathematical Methods

Citation

Joseph, Matthew, Michael J Kearns, Jamie Morgenstern, Seth Neel, and Aaron Leon Roth. "Fair Algorithms for Infinite and Contextual Bandits." Proceedings of the AAAI/ACM Conference on Artificial Intelligence, Ethics, and Society 4th (2021).
  • Read Now

About The Author

Seth Neel

Technology and Operations Management
→More Publications

More from the Authors

    • September 2022 (Revised October 2022)
    • Faculty Research

    Data Privacy in Practice at LinkedIn

    By: Iavor Bojinov, Marco Iansiti and Seth Neel
    • Advances in Neural Information Processing Systems (NeurIPS)

    Adaptive Machine Unlearning

    By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
    • Mar 2021
    • Faculty Research

    Descent-to-Delete: Gradient-Based Methods for Machine Unlearning

    By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
More from the Authors
  • Data Privacy in Practice at LinkedIn By: Iavor Bojinov, Marco Iansiti and Seth Neel
  • Adaptive Machine Unlearning By: Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-Malvajerdi and Chris Waites
  • Descent-to-Delete: Gradient-Based Methods for Machine Unlearning By: Seth Neel, Aaron Leon Roth and Saeed Sharifi-Malvajerdi
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College