Skip to Main Content
HBS Home
  • About
  • Academic Programs
  • Alumni
  • Faculty & Research
  • Baker Library
  • Giving
  • Harvard Business Review
  • Initiatives
  • News
  • Recruit
  • Map / Directions
Faculty & Research
  • Faculty
  • Research
  • Featured Topics
  • Academic Units
  • …→
  • Harvard Business School→
  • Faculty & Research→
Publications
Publications
  • Article
  • Proceedings of the International Conference on Machine Learning (ICML)

Robust and Stable Black Box Explanations

By: Himabindu Lakkaraju, Nino Arsov and Osbert Bastani
  • Format:Electronic
ShareBar

Abstract

As machine learning black boxes are increasingly being deployed in real-world applications, there has been a growing interest in developing post hoc explanations that summarize the behaviors of these black boxes. However, existing algorithms for generating such explanations have been shown to lack stability and robustness to distribution shifts. We propose a novel framework for generating robust and stable explanations of black box models based on adversarial training. Our framework optimizes a minimax objective that aims to construct the highest fidelity explanation with respect to the worst-case over a set of adversarial perturbations. We instantiate this algorithm for explanations in the form of linear models and decision sets by devising the required optimization procedures. To the best of our knowledge, this work makes the first attempt at generating post hoc explanations that are robust to a general class of adversarial perturbations that are of practical interest. Experimental evaluation with real-world and synthetic datasets demonstrates that our approach substantially improves robustness of explanations without sacrificing their fidelity on the original data distribution.

Keywords

Machine Learning; Black Box Models; Framework

Citation

Lakkaraju, Himabindu, Nino Arsov, and Osbert Bastani. "Robust and Stable Black Box Explanations." Proceedings of the International Conference on Machine Learning (ICML) 37th (2020): 5628–5638. (Published in PMLR, Vol. 119.)
  • Read Now

About The Author

Himabindu Lakkaraju

Technology and Operations Management
→More Publications

More from the Authors

    • 2023
    • Proceedings of the International Conference on Machine Learning (ICML)

    Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten

    By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
    • June 2023
    • Transactions on Machine Learning Research (TMLR)

    When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making

    By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
    • 2023
    • Proceedings of the International Conference on Learning Representations (ICLR)

    Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse

    By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
More from the Authors
  • Towards Bridging the Gaps between the Right to Explanation and the Right to Be Forgotten By: Himabindu Lakkaraju, Satyapriya Krishna and Jiaqi Ma
  • When Does Uncertainty Matter? Understanding the Impact of Predictive Uncertainty in ML Assisted Decision Making By: Sean McGrath, Parth Mehta, Alexandra Zytek, Isaac Lage and Himabindu Lakkaraju
  • Probabilistically Robust Recourse: Navigating the Trade-offs between Costs and Robustness in Algorithmic Recourse By: Martin Pawelczyk, Teresa Datta, Johannes van-den-Heuvel, Gjergji Kasneci and Himabindu Lakkaraju
ǁ
Campus Map
Harvard Business School
Soldiers Field
Boston, MA 02163
→Map & Directions
→More Contact Information
  • Make a Gift
  • Site Map
  • Jobs
  • Harvard University
  • Trademarks
  • Policies
  • Accessibility
  • Digital Accessibility
Copyright © President & Fellows of Harvard College