Publications
Publications
- Strategic Management Journal
Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles
By: Prithwiraj Choudhury, Dan Wang, Natalie A. Carlson and Tarun Khanna
Abstract
We demonstrate how a novel synthesis of three methods—(1) unsupervised topic modeling of text data to generate new measures of textual variance, (2) sentiment analysis of text data, and (3) supervised ML coding of facial images with a cutting-edge convolutional neural network algorithm—can shed light on questions related to CEO oral communication. With videos and corresponding transcripts of interviews with emerging market CEOs, we employ this synthesis of methods to discover five distinct communication styles that incorporate both verbal and nonverbal aspects of communication. Our data are comprised of interviews that represent unedited expressions and content, making them especially suitable as data sources for the measurement of an individual’s communication style. We then perform a proof-of-concept analysis, correlating CEO communication styles to M&A outcomes, highlighting the value of combining text and videographic data to define styles. We also discuss the benefits of using our methods versus current research methods.
Keywords
CEOs; Communication Style; Machine Learning; Spoken Communication; Nonverbal Communication; Personal Characteristics; Analysis; Performance
Citation
Choudhury, Prithwiraj, Dan Wang, Natalie A. Carlson, and Tarun Khanna. "Machine Learning Approaches to Facial and Text Analysis: Discovering CEO Oral Communication Styles." Strategic Management Journal 40, no. 11 (November 2019): 1705–1732.