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Abstract: Do laboratory subjects correctly
perceive the dynamics of a mean-reverting
time series? In our experiment, subjects re-
ceive historical data and make forecasts at dif-
ferent horizons. The time series process that
we use features short-run momentum and
long-run partial mean reversion. Half of the
subjects see a version of this process in which
the momentum and partial mean reversion un-
fold over 10 periods (‘fast’), while the other
subjects see a version with dynamics that un-
fold over 50 periods (‘slow’). Typical subjects
recognize most of the mean reversion of the
fast process and none of the mean reversion of
the slow process.

* Beshears: Stanford Graduate School of Business, 655 Knight
Way, Stanford, CA 94305 (e-mail: beshears@stanford.edu); Choi:
Yale School of Management, 135 Prospect St., New Haven, CT
06520 (e-mail: james.choi@yale.edu); Fuster: Federal Reserve Bank
of New York, 33 Liberty St., New York, NY 10045 (e-mail: andre-
as.fuster@ny.frb.org); Laibson: Dept. of Economics, Harvard Univer-
sity, Cambridge, MA 02138 (e-mail: dlaibson@harvard.edu); Madri-
an: Harvard Kennedy School, 79 JFK St., Cambridge, MA 02138 (e-
mail: brigitte madrian@harvard.edu). We thank Chris Clayton for
excellent research assistance. We acknowledge individual and collec-
tive financial support from the National Institute on Aging (grants
PO1AG005842, ROIAG021650 and P30AG034532). The views ex-
pressed in this paper are those of the authors and do not necessarily
reflect the position of the Federal Reserve Bank of New York or the

Federal Reserve System.

Beliefs about the future are central elements
of dynamic economic models. While most
economic analysis assumes rational expecta-

tions, a growing theoretical literature relaxes

this restriction, and a growing empirical litera-

ture investigates how economic actors actually
form their beliefs.'

The current paper contributes to this litera-
ture by experimentally measuring the degree
to which people intuitively recognize mean
reversion. Study participants view data gener-
ated by an integrated time series process that
is characterized by short-run momentum and
long-run partial mean reversion. For half of
our participants, these dynamics play out
completely in 10 periods; we call this the
“fast” process. For the other half, the process
has the same momentum and mean reversion,
but the dynamics play out over 50 rather than
10 periods; we call this the “slow” process.

We give subjects a large sample of past ob-
servations of the process and ask them to
make a series of forecasts at different hori-
zons. Fitting these forecasts to a set of pre-
specified candidate models, we infer subjects’
beliefs about the underlying data generating
process and the extent of mean reversion. Sub-
jects are better at recognizing mean reversion
when it unfolds quickly. For the fast process,
the median participant makes forecasts that

capture 60 percent of the actual mean rever-
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See Michael Woodford (2012) for a review.



sion. For the slow process, the median partici-
pant makes forecasts that capture none of the
actual mean reversion. If economic agents in
the field also fail to recognize the full extent
of mean reversion in economic fundamentals
(e.g., corporate earnings), this would explain a
wide range of empirical regularities, including
cycles in consumption and investment, as well
as excess volatility and predictable variation
in asset returns (see, e.g., Robert Barsky and
Bradford DeLong 1993; Fuster, Laibson, and
Brock Mendel 2010; Fuster, Benjamin Hebert,
and Laibson 2012).

This paper extends research that has studied
expectation formation in the laboratory (e.g.,
Richard Schmalensee 1976; Gerald Dwyer et
al. 1993; John Hey 1994; Cars Hommes 2011;
Tobias Rétheli 2011).% In the laboratory, re-
searchers can control the data generating pro-
cess that produces “historical” data. Research-
ers can also control the information given to
subjects and assess subject performance
against a known benchmark. Of course, the
laboratory setting raises questions of external
validity because the forecasting exercise lacks
context, subjects face weak financial incen-
tives, and individuals’ expectations in the field
co-workers,

are influenced by neighbors,

family, the media, and professional forecasters

2 . A .
There is also a substantial literature, mostly outside of econom-
ics, on “judgmental forecasting” (see, e.g., Michael Lawrence et al.
2006).

(Christopher Carroll 2003). Nonetheless, la-
boratory experiments shed light on individu-
als’ intuitive forecasts. Intuitive forecasts may
serve as a starting point, or “anchor,” that bi-
ases people’s beliefs (Amos Tversky and Dan-
iel Kahneman 1974).

Our paper also relates to research that stud-
ies survey forecasts of future economic out-
comes such as stock returns or house price
appreciation. This literature finds that people
often place too much weight on recent experi-
ence and over-extrapolate (see Ulrike Mal-
mendier and Stefan Nagel 2011; Karl Case,
Robert Shiller, and Anne Thompson 2012; and
Robin Greenwood and Andrei Shleifer 2012
for recent examples). Such over-extrapolation
reduces agents’ ability to anticipate mean re-

version.
I. Experimental Setup

Subjects were recruited for a forecasting ex-
periment in which they were randomly as-
signed data generated by one of six integrated
moving average processes, two of which we
analyze in this paper.’ Figure 1 shows the two
processes’ impulse response functions. The
“fast” process has dynamics that are fully real-
ARIMA(0,1,10). The

ized in 10 periods:

3 The other processes are described in the Online Appendix and
will be analyzed in future work. The Appendix also includes plots of
simulated paths of the two processes we analyze, the exact MA coef-
ficients of these processes, the experimental instructions and protocol,
and additional details on the analyses in this paper.



“slow” process has dynamics that are fully
realized in 50 periods: ARIMA(0,1,50). The
slow process is a stretched version of the fast
process, with dynamics that take five times as
long to play out.* Otherwise, the processes are
identical.

These ARIMA processes feature short-run
momentum and long-run mean reversion. Af-
ter an impulse is realized, the processes trend
in the same direction, peaking at a level 50
percent above the level of the initial impulse
before subsequently mean-reverting to a level
50 percent below the level of the initial im-

pulse.
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FIGURE 1. IMPULSE RESPONSE FUNCTIONS FOR THE FAST AND SLOW
PROCESSES
Short-run momentum and long-run mean
reversion characterize the dynamics of macro-
economic variables like GDP, unemployment,

and corporate earnings (Fuster, Laibson, and

If 0y is the /™ moving average term of the fast process and 6, is
the s™ moving average term of the slow process, then 0y =
I

s=5f-4Us"

Mendel 2010). Furthermore, many of these
time series have relatively slow dynamics,
treating their reporting frequency as the time
unit.

We conducted the experiment on individual
computer stations in the Harvard Decision
Science Lab. Participants had access to
100,000 periods of simulated historical data
(different for each participant) and a simple
interface that displayed past observations in
graphical form and in a scrollable list. Partici-
pants could change the number of past obser-
vations displayed as desired. No other tools
(such as calculators) were available. Partici-
pants were not shown an impulse response
function or given a quantitative description of
or any context for the data generating process.
They were simply told that the data were gen-
erated by statistical rules that would remain
unchanged over the course of the experiment
and were unaffected by the participants’ fore-
casts.

Experimental sessions comprised 60 peri-
ods. In each period, participants made a fore-
cast of the process’s n-period-ahead realiza-
tion, where n was randomly drawn (for that
period) from the set {1, 5, 10, 20, 35, 50}.°
After a forecast was submitted, the next peri-

od’s value of the series was revealed, and the

However, the randomization was set so that the subject would
never make the same horizon forecast on consecutive forecasts.



participant was informed of the success or
failure of any past forecasts she had made of
that next period’s value. Successful forecasts,
defined as being within 10 units of the real-
ized value, earned a $0.50 accuracy payment.
Our sample contains 98 subjects, of whom
50 received the fast process and 48 received
the slow process. Experimental sessions lasted
30-45 minutes, and subjects earned $16.68 on
average (a $10 show-up fee plus the accuracy
payments, which were earned on slightly less

than one quarter of the forecasts).
I1. Results

In theory, subject forecasts are a function of
all the historical data of the relevant time se-
ries (100,000+ observations). It is challenging
to infer this mapping, since each subject only
made 60 forecasts during the experiment. To
surmount this identification problem, we take
a structural approach by identifying a set of
pre-specified models (with fixed coefficients)
and searching for the model that best fits each
subject’s forecasts.

We assume that subjects make forecasts us-
ing an ARIMA(0,1,9) model, the same class
of models used to generate the data, but do not
know the true order of the ARIMA process,
q*. We calculate the value of ¢ that best fits

the forecasts subject i generated in periods 11

to 60.° Define §; as:’

60
2 : o ARIMA(0,1,q)
|xl"t - xi,t .

t=11

g; = arg min
q€{0,1,..,q%}

We find the model order g; that generates
forecasts that minimize the average absolute
deviation between the actual forecasts that
subject i made at date ¢ for a future period,
X; ¢, and the forecast (for the same future peri-
od) implied by the ARIMA(0,1,9) model,

x;l tR IMAQLG) T4 calculate xf tR IMAQLD for o
given ¢, we project the ARIMA(0,1,q) model
on a 100,000 period sample generated by the
true data generating process (see Appendix).
We then apply the coefficients from this esti-
mation (which are the same for each subject)
to the historical data available to the subject at
period ¢ to calculate the forecast made in peri-
od ¢ by the ARIMA(0,1,q) model.

Figures 2 and 3 plot the histograms of
q; values for the fast and slow data generating
processes.® For the fast process, subjects’
forecasts are largely explained by models
whose specification is close to the true data

generating process. Thirty-four percent of the

We discard the first ten periods in our analysis because respons-
es to a debriefing question, reported in the Appendix, suggest that it
took the median subject about ten periods to gain familiarity with the
task. We also discard the 1% of predictions that were furthest away
from the realization in absolute value, as these were often caused by
obvious typos.

Our decision to minimize absolute deviations rather than squared
deviations is intended to limit the influence of outliers.

How well the models fit subjects’ forecasts is discussed in the
Appendix.



participants are best fit by an ARIMA(0,1,10)
forecasting model, which corresponds exactly
to the true data generating process. Only 12
percent of subjects are best fit by the simplest
model

forecasting considered, an

ARIMA(0,1,0), which is a random walk.’

30 40
I I

Percentage Best Fit By Model

10
L

FIGURE 2. MODEL ASSIGNMENTS FOR FAST PROCESS

Note: The fast process is an ARIMA(0,1,10). We study projections of
this process onto ARIMA(0,1,q) models, for 0 < ¢ < 10. Participants
are assigned the ARIMA(0,1,g) model that best fits their forecasts.

For each subject, we also calculate the per-
ceived extent of mean reversion, as implied by
the chosen model, relative to the true extent of
mean reversion:

1 — IRF(o,d;)
1 — IRF (o0, q*)

where IRF (0, q) is the asymptotic value of
the impulse response function implied by the
model of order g. Ranking our subjects by

perceived mean reversion, the model assigned

? The link between model order and expected performance in our
forecasting task is not monotonic. ARIMA(0,1,q) models with “mod-
erate” values of ¢ tend not to predict any mean reversion at all, which
leads to forecasts at long horizons that are far from the true data gen-
erating process’s expectation.

to the median subject in the fast condition rec-
ognizes 59.5% of the true mean reversion.

In contrast, for the slow process, subjects’
forecasts match ARIMA(0,1,q4) models that
are far from the true data generating process.
Only 6 percent of the participants are best fit
by the forecasting model that uses the true
ARIMA(0,1,50) specification. By contrast, 29
percent of participants are best fit by the sim-
plest forecasting model, the ARIMA(0,1,0).
Ranking our subjects by perceived mean re-
version, the model assigned to the median
subject in the slow condition recognizes 0% of

the true mean reversion. '’
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Figure 3. Model Assignments for Slow Process

Note: The slow process is an ARIMA(0,1,50). We study projections
of this process onto ARIMA(0,1,q) models, for 0 < ¢ < 50. Partici-
pants are assigned the ARIMA(0,1,q) model that best fits their fore-
casts.

We complement our structural analysis with
a reduced-form analysis. For each process, we
pool data from all subjects and run the median

regression

This is an exact zero, since the subjects who are assigned the
random walk model as the best-fit approximation for their forecasts
have the median level of perceived mean reversion.



Xie—Ce=a+t ﬁ(lef - Ci,t) + Nt

where x{f is the forecast that would be issued
at period ¢ by an agent with rational expecta-
tions, X; , is the forecast that was actually is-
sued at period ¢, and c; . is the current value of
the process at period .'' The null hypothesis
of rational expectations implies @ = 0 and
fp = 1. The parameter S provides an index of
congruence with rational expectations. When
p = 1, actual forecasts move one for one with
rational expectations. When f = 0, actual
forecasts are orthogonal to rational expecta-

tions forecasts. For the fast process, the esti-

mated B equals 0.60 (s.e.=0.03). For the slow

process, the estimated B is 0.09 (s.e.=0.04),

which implies that subjects’ forecasts are
nearly orthogonal to rational forecasts. The
fast process is far more transparent to the sub-

jects than the slow process.
I11. Conclusion

Most participants failed to correctly per-
ceive the degree of mean reversion in the pro-
cesses that they analyzed. This bias was par-
ticularly acute for the statistical process with
relatively slow dynamics. Worse performance
on the slow process might be expected, since

the individual moving average coefficients for

1 . . . .
Running separate median regressions for each subject produces
qualitatively similar findings.

the slow process are smaller in absolute value
than the individual moving average coeffi-
cients for the fast process. However, even
when we use our experimental methodology
to study special cases in which the coefficient
magnitudes are the same across two processes,
we still find that slower processes tend to be
far harder for subjects to parse correctly.'?
Picking an as-if model of each subject’s be-
liefs from a small pre-specified set of ARIMA
models, as we have done here, provides only a
first pass for studying forecasting behavior.
Economics would greatly benefit from a gen-
eral theory that explains how people recognize
patterns in data and use those patterns to make

forecasts.
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Appendix to “What Goes Up Must Come Down? Experimental Evidence on Intuitive
Forecasting” (Beshears, Choi, Fuster, Laibson, and Madrian), 2013.

Appendix A: Data Generating Processes

Appendix Table Al lists the moving average coefficients’ for each data generating process. Shock terms
were drawn independently from a N(0,100) distribution. All process realizations were modified by an
additive constant that set the “Day 0” value to 742.8. Appendix Figures A2-A4 show plots of 100, 500,
and 10,000 periods of the realization of the fast (ARIMA(0,1,10)) process drawn for a randomly chosen
subject. Figures A5-A7 show plots of 100, 500, and 10,000 periods of the realization of the slow
(ARIMA(0,1,50)) process drawn for a randomly chosen subject.

Appendix Table A1: MA Coefficients

MA Term  Slow Process  Fast Process MA Term  Slow Process  Fast Process
1 0.050 0.224 26 -0.021
2 0.048 0.158 27 -0.025
3 0.045 0.092 28 -0.028
4 0.042 0.027 29 -0.031
5 0.040 -0.053 30 -0.035
6 0.037 -0.141 31 -0.039
7 0.034 -0.228 32 -0.042
8 0.032 -0.315 33 -0.045
9 0.029 -0.219 34 -0.049
10 0.027 -0.044 35 -0.053
11 0.024 36 -0.056
12 0.021 37 -0.059
13 0.019 38 -0.063
14 0.016 39 -0.067
15 0.013 40 -0.070
16 0.011 41 -0.061
17 0.008 42 -0.053
18 0.006 43 -0.044
19 0.003 44 -0.035
20 0.000 45 -0.026
21 -0.003 46 -0.017
22 -0.007 47 -0.011
23 -0.011 48 -0.008
24 -0.014 49 -0.005
25 -0.017 50 -0.002

! Note: Rounded to 3 digits.



Appendix Figure A2: Sample Plot of Simulated Process

Fast Process, ARIMA(0,1,10) at 100 lags (Subject 9011)
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Appendix Figure A3: Sample Plot of Simulated Process

Fast Process, ARIMA(0,1,10) at 500 lags (Subject 9011)
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Appendix Figure A4: Sample Plot of Simulated Process

Fast Process, ARIMA(0,1,10) at 10000 lags (Subject 9011)
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Appendix Figure A5: Sample Plot of Simulated Process

Slow Process, ARIMA(0,1,50) at 100 lags (Subject 11026)
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Appendix Figure A6: Sample Plot of Simulated Process

Slow Process, ARIMA(0,1,50) at 500 lags (Subject 11026)
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Appendix Figure A7: Sample Plot of Simulated Process

Slow Process, ARIMA(0,1,50) at 10000 lags (Subject 11026)
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Appendix B: Experimental Instructions

The instructions given to subjects on paper and read aloud at the beginning of each session are shown

below.

Instructions

In this study, you will examine a series of numbers, and then forecast what numbers will come later in the series.

You will make a forecast on each “day” from Day 0 through Day 59. For each “day” that passes, a new number is

appended to the end of the series.

The series of numbers that you will see is determined according to some statistical rules. These rules do not change

during the study and are unaffected by the forecasts that you make.

Here is a screenshot of the computer program you will use in this study:

1225
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Value
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1200

1195

1190

Day 0

Forecasting Study

1225

1220

1215

1210

1205

1200

1195

1180

PR

Day

Value
1196.1
1191.5
11801
1198.7
1199.7
1194.1
1209.7
1207.7
1205.8
12228

Control Panel @

Plot previous days

10 Plot

You may continue to change the number of days of data
displayed in the plot. When you are ready to submit a Clear Plot
forecast, enter it below and click Submit.

Your Forecast

1

In 10 Days
(That is, forecast the value @
for Day 10)

—Result:

"Successful Forecast!" indicates that your forecast was within 10 units of the actual
value. "Unsuccessful Forecast" indicates that it was not.

To see previous values in the series, use the Control Panel on the right (labeled @ ). If you would like to see a

graph of previous days’ values, enter the number of previous days you would like to see in the Plot box (@) and

then click the Plot button. The values will also appear in a scrollable list (@) next to the graph. You may display



anywhere from 1 to 100,000 previous days of data. You may use the Clear Plot button to clear any current plot,
although it is not necessary to clear the plot before displaying a new one.

You are welcome to change the number of days of past values you are viewing at any point during the study.

You will be asked to make a forecast for the value of the series on a future day — either 1, 5, 10, 20, 35, or 50 days
away (it will be different for each forecast you are asked to make). The text under the box (labeled @) tells you
how many days into the future you are being asked to forecast (as well as what day that is).

You will receive $0.50 for your forecast when that day comes if your forecast is within 10.0 of the true value for
that day. You will be asked to make forecasts on Days 0 through 59, but the computer program will also determine
the values in the series for days beyond Day 59. If the future day you’re forecasting will occur after Day 59, and
your forecast is within 10.0 of the true value, you will still receive $0.50 for the forecast.

When you are ready to make your forecast, enter it in the box next to Your Forecast and click the Submit button (or
hit Enter on your keyboard). Each time you click Submit, the next value in the series will be revealed in the Results
box, along with any previous forecasts relevant to that day and whether or not your forecasts were successful
(“Successful Forecast!” means your forecast was within 10.0 of the true value, while “Unsuccessful Forecast”
indicates that it was not). If you were at no time asked to provide a forecast for that day, then you will still see the
value for that day in addition to text saying you were not asked to provide a forecast for that day’s value. If you
have chosen to display a graph of previous values, the graph will automatically update to include the new value at
the end of each day, although you can change the number of previous days plotted at any time during the study.

Here is an example: If you are currently at Day 14 and the text under the box says “In 10 Days (That is, forecast the
value for Day 24)”, then you need to submit your forecast for the value of the series on Day 24. Imagine that the
series is currently at 2182.2 and you believe that on Day 24 it will be at 2189.5. Then you would enter 2189.5 in the
box and click Submit. Once you reach Day 24, you will see the true value of the series on that day. If the true value
is between 2179.5 and 2199.5, then your forecast on Day 14 was successful (and you just earned an additional
$0.50); if not, your forecast on Day 14 was unsuccessful (and you did not earn an additional $0.50).

At the end of the study, your total payment will be shown on the bottom-right of the screen. Your total payment
includes your $10 show-up fee in addition to the amount you made from correct forecasts. When you finish, please
come to the examiner station in the front of the room to receive your payment.

If you have any questions about these instructions, please feel free to ask.
Now, please hit the “Begin” button. It may take a few seconds to finish, so please do not hit it more than once.

To get started, type a number of days into the Plot box and click the Plot button, and you will see the previous
values graphed and listed. To help familiarize yourself with the series of values, we ask that you plot three different
numbers of days of past values before starting to submit forecasts. After doing this, the fields for entering and
submitting forecasts will become available.



Appendix C: Complete Protocol

This section of the appendix describes the complete protocol for the experiment.

Subjects were recruited from the subject pool of the Harvard Decision Science Lab, restricting
only to current undergraduate and graduate students (from any university).

Before the start of the experiment, the interface was initialized on each computer, and a station
number from 1-12 was entered into each computer.” The password was also entered and hidden, but
the station was not unlocked.? After signing informed consent forms, subjects were brought to the
computer lab and told to sit down at any computer (and that the choice of computer did not matter).
Subjects had a printed set of instructions at their stations, but they were not provided with any other
materials and did not have access to any software besides the interface. Instructions were read aloud to
the subjects, who were encouraged to ask questions if anything was unclear. While the instructions
were being read, a randomly chosen natural number n was entered into the interface by another
examiner. The number n identified the data generating process. The Matlab randomization seed was
also set to n, so it also determined the realization of the process the subject received. Thus, no two
distinct numbers yielded the same process realization. To minimize human error, the number was
entered on behalf of the subjects, who were not informed of its purpose.*

After going through the instructions, subjects began the forecasting task (outlined in the paper
text and in the instructions (Appendix B)). Aside from responding to questions the subjects had, the
examiners had no interaction with the subjects during the forecasting, and subjects had no interaction
with other subjects. Examiners provided help with task comprehension and the use of the interface as
needed, but no advice was given on the actual forecasting, the amount of data to view, etc.

Upon completing the forecasting task, subjects were asked (but not required) to respond to a
set of questions within the interface (see Appendix D for the list of questions). After finishing, subjects
were paid in cash and signed a receipt verifying receipt of payment. This ended the experiment. Subjects
were allowed as much time as desired to finish the task.

2 Corresponding to the 12 computer stations in a room in the Harvard Decision Science Lab. The station number
(combined with the subject number at that station) is used to identify subjects.

*The password prompt reappears after subjects have finished the experiment and prevents them from
accidentally continuing to another session of the experiment. Between sessions, examiners reenter the password
into computers that have been used.

4 Unfortunately, human error was not completely eliminated, as two numbers were repeated while 12 were
skipped. The repeated numbers were dropped from the sample. The 12 skipped numbers were not reinserted into
the list. Due to an initial programming error in the seed setting, about 60 subjects originally received one of only a
few different shock series realizations. These subjects were all discarded from the sample. The error was fixed, and
the subjects in the final sample are not affected by it.



Appendix D: Post-Experiment Questions and Summary Statistics

After completing the forecasting component of the experiment, subjects were asked (but not required)
to respond to the following questions:

1)

2)
3)

4)
5)

6)

Please provide the following demographic information (enter D or Decline in the corresponding
box for any information you decline to provide).

a. Gender

b. Age

c. University

d. Major/Concentration
How much statistical training do you have, on a scale of 1 (no training) to 7 (advanced training)?
Were the instructions clear? Did you ever feel uncertain about what you were expected to do?
How do you think the instructions could be improved to make the task clearer?
Did you have any problems using the interface? If so, what were they? Did it seem to function
correctly?
Some subjects tell us it took them some time to familiarize themselves with the task and the
number series. Around what Day did you feel you were familiar with the task (and series)?
How enjoyable did you find this experiment, on a scale from 1 (not enjoyable at all) to 7 (very
enjoyable)?

The sample consists of 98 subjects, with 50 receiving the ‘fast’ ARIMA(0,1,10) process and 48 receiving
the ‘slow’ ARIMA(0,1,50) process. The sample is 47% male and 53% female. The median age is 20, and
the average age is 21 (standard deviation 2.5). Harvard affiliates (mostly undergraduate students, who
report a variety of different concentrations) make up 87.8% of the sample. Median self-reported
statistical training is 2, with an average of 2.47 and a standard deviation of 1.38. Median reported time it
took to become familiar with task and series is 7 days, and the mean is 12.48 days. Appendix Figure D1
shows a histogram of when subjects reported becoming familiarized with the task and series. Subjects at
59 reported never being accustomed to the task and series (although it is ambiguous whether they were
reporting not being familiar with the task or not understanding the data series).
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Appendix E: Other Processes

Appendix Table E1 contains the coefficients of the other four processes used to generate the data
viewed by the other subjects (those not analyzed in this paper) participating in the experiment. Two of
these processes are ‘bookend’ ARIMA(0O,1,q) processes, with a constant impulse response function of 1
until period 5 (for the fast process) or 25 (for the slow process), at which point the impulse response
function drops to one-fourth of its original magnitude. The other two processes are ‘momentum’
ARIMA(0,1,q) processes, with impulse response functions that increase gradually to 1.5 times’ the
original shock magnitude over 5 periods (for the fast process) and 25 periods (for the slow process).
Shock terms were drawn independently from a N(0,100) distribution. All process realizations were
modified by an additive constant that set the “Day 0” value to 742.8.

A total of 198 subjects received one of the four processes below. Their forecasts will be analyzed in
detail in future work. As mentioned in the main text, the qualitative results from the bookend processes
are consistent with those in this paper, as subjects are more prone to detect mean reversion in the fast
version of the process than in the slow one.

Appendix Table E1: Coefficients of Other Processes

MA Term Bookend (Slow) Bookend (Fast) Momentum (Slow)  Momentum (Fast)
1 0 0 0.05 0.19
2 0 0 0.04 0.11
3 0 0 0.04 0.1
4 0 0 0.03 0.05
5 0 -0.75 0.03 0.06
6 0 0.03
7 0 0.02
8 0 0.02
9 0 0.02
10 0 0.02
11 0 0.02
12 0 0.02
13 0 0.02
14 0 0.02
15 0 0.02
16 0 0.01
17 0 0.01
18 0 0.01
19 0 0.01
20 0 0.01
21 0 0.01
22 0 0.01
23 0 0.01
24 0 0.01
25 -0.75 0.01

>Duetoa typo in the code, the fast momentum process actually increased to 1.51 times its original magnitude.



Appendix F: Lower Order Model Fits

Appendix Tables F1-F2 provide some characteristics of the models used to generate the model forecasts
for 0 < g < q". All coefficients for models 0 < g < q* were estimated from a series of 100,000 data
points, and the same coefficients were used for each subject. In each table, column 1 shows the degree
of the ARIMA(0,1,q) model (0 corresponds to random walk, while 10 (50) corresponds to the true
process for the fast (slow) process). Column 2 shows the maximum value attained in the impulse
response function for that model. Column 3 shows the long-run asymptote of the impulse response
function for that model. For example, the model of the true process has a maximum of 1.5 and an
asymptote of 0.5, while the random walk model has a maximum of 1.0 and an asymptote of 1.0. Full
coefficient lists can be found in Excel files available from the authors.

It is important to note that adding additional MA terms to the ARIMA(0,1,q) models has a non-
monotonic effect on the implied long-run persistence of an impulse. As a consequence, moving from q

to g+1 does not necessarily improve forecast performance for horizons more than one period out in our
setting.

Appendix Table F1: Fast Process Model Descriptions

Impulse Response Function

q max asymptote
0 1.000 1.000
1 1.281 1.281
2 1.475 1.475
3 1.627 1.627
4 1.721 1.721
5 1.859 1.859
6 1.929 1.929
7 1.629 1.494
8 1.356 0.702
9 1.468 0.532
10 1.500 0.500



Appendix Table F2: Slow Process Model Descriptions
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Impulse Response

Function
max asymptote
1.000 1.000
1.095 1.095
1.166 1.166
1.233 1.233
1.291 1.291
1.339 1.339
1.387 1.387
1.440 1.440
1.482 1.482
1.527 1.527
1.558 1.558
1.597 1.597
1.628 1.628
1.650 1.650
1.674 1.674
1.693 1.693
1.723 1.723
1.745 1.745
1.764 1.764
1.792 1.792
1.798 1.798
1.823 1.823
1.855 1.855
1.876 1.876
1.929 1.929
1.952 1.952

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

Impulse Response

Function
max asymptote
1.956 1.956
1.952 1.951
1.957 1.957
1.935 1.928
1.918 1.905
1.877 1.844
1.832 1.774
1.759 1.655
1.687 1.530
1.594 1.344
1.513 1.162
1.460 1.021
1.417 0.883
1.396 0.781
1.392 0.687
1.403 0.625
1.422 0.584
1.448 0.549
1.473 0.526
1.492 0.512
1.501 0.506
1.506 0.503
1.514 0.498
1.513 0.499
1.500 0.500



Appendix G: Additional Analyses

I) Subject Performance

Appendix Table G1 shows the median absolute deviations of the subjects’ forecasts from the true model
(i.e., the ‘rational’ forecast), for each forecast horizon separately and also when pooling all horizons
(‘All"):

Appendix Table G1
All 1 5 10 20 35 50
Fast (ARIMA(0,1,10)) 13.173 4.170 13.878 14.446 15.717 18.138 21.673
Slow (ARIMA(0,1,50)) 18.930 2.646 10.880 20.933 27.706 36.845 36.220

To facilitate the interpretation of these numbers, Appendix Table G2 shows for each process and

horizon separately the expected absolute change in the series under the true model,

ARIMA(0,1,q*

it xt|), and also the expected absolute deviation of realized values from the true-

)

ARIMA(0,1,g*)
t+T

model forecast that arises due to unforecastable noise, E (|xt+r -

Appendix Table G2
1 5 10 20 35 50
Fast Expected absolute change 4.428 15.290 18.639 18.639 18.639 18.639
Expected absolute
deviation from E(X) 7.977 23.712 30.575 33.070 36.510 39.641
Slow Expected absolute change 2.008 9.536 17.665 29.595 39.131 41.367

Expected absolute
deviation from E(X) 7.977 19.571 30.255 47.592 63.798 67.746



II) Goodness of Fit of the Assigned Models

Appendix Figures G3-G8 expand upon Figures 2 and 3 from the paper by also showing the mean
absolute deviation of subject forecasts from the models that were the best individual fits. Furthermore,
we break up forecasts into short (1, 5, 10 periods) and long (20, 35, 50 periods) horizon forecasts, and
we fit models to subjects separately for short and long horizons.

Focus first on the ‘fast’ process and long horizon forecasts (Appendix Figure G5), which we are most
interested in. The left panel shows that a high number of subjects are assigned to models of relatively
high order when looking at only long horizon forecasts. Indeed, the distribution is very similar to the
distribution of model fits that use forecasts from all horizons (Figure 2 in the main text; left panel of
Appendix Figure G3). The right panel shows that for those subjects who are assigned models of order 8
or higher, the model fit is relatively good.

For the ‘slow’ process and long horizon forecasts (Appendix Figure G8), we see that the mean deviation
for subjects who get assigned the random walk (ARIMA(0,1,0)) model is relatively low, while for those
who get assigned high-order models, the deviations of their forecasts from the assigned modes are
more substantial. This evidence suggests that for at least some of the subjects who got assigned high-
order models, the assignment may have happened by chance, further strengthening the conclusions
from the main text.

Appendix Tables G9-G10 attempt to look at the goodness of fit of the models that subjects were
assigned to, relative to the benchmarks of the random walk and the true process. This analysis is
important for understanding how well the assigned models are identified. Subjects are grouped by best-
fitting model, and for each group the tables show the mean absolute deviation of the subjects’ forecasts
from those of the best-fitting model (column 2), from those of the random walk process (column 3), and
from those of the true model (column 4). Note that model 0 is the random walk. Model 10 (50) is the
true model for the fast (slow) process. Overall, these tables suggest that there are usually substantive
differences in how well different models fit a subject’s forecasts.



Appendix Figure G3

Fast Process, Fits for All Forecasts
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Appendix Figure G4

Fast Process, Fits for Short Horizon Forecasts
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Appendix Figure G5

Fast Process, Fits for Long Horizon Forecasts
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Appendix Figure G6

Slow Process, Fits for All Forecasts
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Appendix Figure G7

Slow Process, Fits for Short Horizon Forecasts
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Appendix Figure G8

Slow Process, Fits for Long Horizon Forecasts
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Appendix Table G9: Relative Goodness of Fit for Fast Process

Mean Absolute Mean Absolute Mean Absolute
# Subjects Fit to Deviation from Fitted Deviation from Deviation from True
Model Model Model Random Walk Model
0 6 14.092 14.092 21.465
1 1 7.738 8.547 12.215
2 3 19.164 19.833 24.619
4 1 11.100 15.176 19.611
5 1 25.004 27.152 33.782
6 2 29.331 31.498 36.275
7 3 15.499 16.765 17.471
8 11 15.387 18.174 16.417
9 5 19.690 24.136 19.887
10 17 17.123 22.874 17.123



Appendix Table G10: Relative Goodness of Fit for Slow Process

Mean Absolute Mean Absolute Mean Absolute
# Subjects Fit to Deviation from Fitted Deviation from Deviation from True
Model Model Model Random Walk Model
0 14 17.353 17.353 30.165
1 4 12.332 12.443 21.484
2 1 3.555 3.841 11.171
5 1 22.682 23.056 40.355
7 2 19.050 20.115 35.130
9 1 31.520 31.917 65.293
10 1 20.022 22.349 31.427
23 1 41.159 42.207 53.543
28 2 25.457 33.258 43.423
29 1 14.528 19.835 38.085
35 1 21.986 24.857 27.359
36 1 12.536 15.408 15.995
37 2 25.046 27.646 29.504
38 5 13.449 17.364 19.010
39 1 25.809 27.991 29.449
40 2 33.209 42.582 35.750
44 1 32.456 35.444 32.675
45 1 14.658 17.425 14.690
46 1 19.602 32.854 19.739
48 1 29.613 32.142 29.716
49 1 41.129 55.142 41.134
50 3 39.636 49.941 39.636



[11) Reduced Form Analysis

Appendix Table G11 shows the full results from the median regression of form %;; — ¢;; = a +

[)’(xff - ci,t) + 1; ¢, discussed in the text:

Appendix Table G11°

Fast Process Slow Process
Subject Forecast - Current Value  Subject Forecast - Current Value

True Model Forecast -

Current Value 0.600*** 0.0895*
(0.0313) (0.0386)

Constant 1.894*** 0.905**
(0.372) (0.296)

N 2475 2376

We extend this analysis by looking at different forecasting horizons. The following plots (Appendix
Figures G12-G15) present scatter plots by process and by grouped forecasting horizons. Each process
has two separate plots, one for short forecasting horizons (1, 5, 10) and one for long forecasting
horizons (20, 35, 50). The scatter plots put the difference between the true model forecast and the
current value on the horizontal axis and the difference between the subject’s forecast and the current
value on the vertical axis. In addition to the scatter plot, the figures show an ordinary least squares
regression line, a median regression line, and a 45-degree line.

These regression lines are much closer to the 45-degree line (the rational benchmark) for the fast
process than for the slow process, at both short and long horizons.

® Standard errors are obtained by bootstrapping with 1,000 repititions.



Appendix Figure G12

Fast Process, For Short Horizon Forecasts
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Appendix Figure G13

Fast Process, For Long Horizon Forecasts
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Appendix Figure G14

Subject Forecast - Current Value

Slow Process, For Short Horizon Forecasts
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Appendix Figure G15

Subject Forecast - Current Value

Slow Process, For Long Horizon Forecasts
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IV) Robustness Checks

In this section, we compare our main results, which are based on a sample that discards forecasts made
in the first 10 days and discards the 1% of forecasts that are furthest from the realized value, with the
results of: 1) the same analysis using the sample without any forecasts discarded; and 2) the same
analysis with 1% outliers discarded and with a subject-by-subject rule for discarding forecasts made in
the first days of the experiment (based on when a subject reported feeling accustomed to the task and
series — see Appendix Figure D1). Figures 2 and 3 from the main text are recreated in each case
(Appendix Figures G16-G19). The median regression results for each case are reported in Appendix Table
G20. Perceived mean reversion as a fraction of actual mean reversion is unchanged from the results in
the main text, except for the perceived mean reversion for the slow process when no forecasts are
discarded, which becomes -2.1%). The main results are robust to these different sample definitions.

Appendix Figure G16: Fast Process Model Assignments, No Forecasts Discarded
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Appendix Figure G17: Slow Process Model Assignments, No Forecasts Discarded
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Appendix Figure G18: Fast Process Model Assignments, 1% Furthest Absolute Deviations
Discarded, Subject-by-Subject Rule for Discarding First Forecasts Applied

30

Percentage Best Fit By Model




Appendix Figure G19: Fast Process Model Assignments, 1% Furthest Absolute Deviations
Discarded, Subject-by-Subject Rule for Discarding First Forecasts Applied
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Appendix Table G20’

1% Furthest Absolute Deviations Discarded,
Subject-by-Subject Rule for Discarding First

No Forecasts Discarded Forecasts Applied
Fast process  Slow process Fast process Slow process

True Model Forecast -
Current Value 0.529*** 0.0720* 0.664*** 0.103*

(0.0331) (0.0350) (0.0352) (0.0409)
Constant 1.616%** 0.912** 1.764%** 0.697*

(0.348) (0.301) (0.392) (0.297)
N 3000 2880 2292 2356

" The dependent variable for all regressions is: Subject Forecast — Current Value. Standard errors are obtained from
bootstrapping with 1,000 repititions.
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