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Cadet-Branch Matching in a Kelso-Crawford Economy†

By Ravi Jagadeesan*

Sönmez (2013) and Sönmez and Switzer (2013) used matching 
theory with unilaterally substitutable priorities to propose mech-
anisms to match cadets to military branches. This paper shows 
that, alternatively, the Sönmez and Sönmez–Switzer mechanisms 
can be constructed as descending salary adjustment processes in  
Kelso-Crawford (1982) economies in which cadets are (grossly) 
substitutable. The lengths of service contracts serve as (inverse) 
salaries. The underlying substitutability explains the unilateral sub-
stitutability of the priorities utilized by Sönmez and Sönmez-Switzer. 
(JEL C78, D82, D86, J31, J45)

In a pair of recent papers, Sönmez (2013) and Sönmez and Switzer (2013) brought 
the problem of cadet-branch matching to market design. Cadets graduating from 

the US Military Academy (USMA) and Reserve Officers’ Training Corps (ROTC) 
are required to serve as officers in the US Army for three years (for ROTC non-schol-
arship graduates), four years (for ROTC scholarship graduates), or five years (for 
USMA graduates). Until a few years ago, cadets were ranked in an Order of Merit 
List (OML) based on performance evaluations and chose branches via serial dic-
tatorship. In response to low retention of officers after the end of their obligatory 
service, the army instituted a branch-of-choice program whereby cadets are allowed 
to commit to three additional years of service in exchange for increased priority. 
The army attempted to assign cadets to branches using deferred acceptance, but the 
army’s implementation caused multiple problems with cadets’ incentives.1

Sönmez (2013) and Sönmez and Switzer (2013) proposed mechanisms based on 
deferred acceptance to match cadets to branches. The bid for your career (Bf YC) 

1 Sönmez (2013) and Sönmez and Switzer (2013) showed that the current ROTC and USMA mechanisms are 
not strategy-proof. Furthermore, these mechanisms can assign more desirable branches to weaker cadets, so that 
the current mechanisms do not respect unambiguous improvements in priority. As a result, the ROTC and USMA 
mechanisms incentivize cadets to fail their exams intentionally, which happens in practice.
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priorities (Sönmez 2013), which are the branches’ priorities in the proposed mech-
anisms,2 sometimes favor long contracts but sometimes favor short contracts. This 
inconsistency prevents contracts from being interpreted as salaries and causes 
complementarities, in that gaining access to one contract can make a branch desire 
another contract more.3 Complementarities usually preclude the existence of sta-
ble outcomes (Kelso and Crawford 1982, Hatfield and Kojima 2008, Hatfield and 
Kominers 2017), but the BfYC priorities satisfy Hatfield and Kojima’s (2010) uni-
lateral substitutability condition, which guarantees that deferred acceptance pro-
duces a stable outcome.

This paper shows that cadet-branch matching does not formally require match-
ing theory with weakened substitutability conditions or many-to-many matching. I 
restore substitutability (in the sense of Kelso and Crawford 1982 and Hatfield and 
Milgrom 2005) by changing priorities to systematically favor long contracts. This 
change of priorities does not affect the deferred acceptance mechanism. Defining 
the “salary” corresponding to a contract to be any decreasing function of the service 
time, the substitutable priorities are generated by maximizing a quasi-linear utility 
function.4 If cadets prefer short contracts, then the cadet-branch economy can be 
regarded as a job market in the Kelso-Crawford (1982) model, and the Sönmez 
(2013) and Sönmez-Switzer (2013) mechanisms correspond to the descending sal-
ary adjustment process. Thus, the Sönmez and Sönmez-Switzer mechanisms feature 
cadets bidding against each other in an ascending auction in service length.

The results of this paper complement the original constructions of the proposed 
cadet-branch matching mechanisms. The branches’ priorities in the Sönmez (2013) 
and Sönmez-Switzer (2013) models are as faithful as possible to the exact priorities 
that are currently used in practice,5 while this paper’s approach to the construction 
of the proposed mechanisms using substitutable priorities relies on deviation of the 
branch priorities from the currently implemented priorities. Hence, the priorities 
considered by Sönmez (2013) and Sönmez and Switzer (2013) may be easier to 
implement in practice. However, the priorities considered in this paper make the 
deferred acceptance mechanism the interpretable as an ascending auction in service 
length. Because the discrepancy between the Sönmez and Sönmez-Switzer prior-
ities and the ones considered in this paper does not affect the proposed matching 
mechanisms, the auction interpretation applies to the Sönmez and Sönmez-Switzer 
mechanisms as well.

Furthermore, this paper provides a conceptual explanation of why the priorities 
involved in cadet-branch matching are unilaterally substitutable. This phenomenon 

2 The USMA priorities (Sönmez and Switzer 2013) are special cases of the BfYC priorities.
3 Substitutability plays a key role in interpreting contracts as salaries (Echenique 2012, Kominers 2012). 

Schlegel (2015) interpreted contracts as salaries under weakened substitutability conditions, but without maintain-
ing the natural monotonicity properties of preferences with respect to salaries.

4 Switzer (2011) pursued a similar approach, but using responsive priorities. Recovering the Sönmez and 
Sönmez-Switzer (2013) mechanisms requires the use of non-responsive priorities.

5 Sönmez and Switzer (2013) showed that the currently implemented USMA priority structure is compatible 
with fairness, strategy-proofness, and respect for improvements, while Sönmez (2013) explained how to modify the 
currently implemented ROTC priority structure minimally in order to obtain such compatibility.
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was called “remarkabl[e]” by Sönmez (2013) and Sönmez and Switzer (2013),6 who 
used it to derive their stability and strategy-proofness results. Theorem 4 proves the 
unilateral substitutability of any priority whose corresponding deferred acceptance 
mechanism is a descending salary adjustment process in a Kelso-Crawford econo-
my.7 Combined with the fact that the Sönmez and Sönmez-Switzer mechanisms are 
descending salary adjustment processes, it follows that the branches’ priorities in 
the Sönmez (2013) and Sönmez-Switzer (2013) models are unilaterally substitut-
able. Thus, the framework proposed in this paper provides a conceptual explanation 
of why the priorities proposed by Sönmez and Sönmez-Switzer satisfy this crucial 
unilateral substitutability condition, whereas only a technical justification was pre-
viously known (Sönmez 2013, Sönmez and Switzer 2013).

The isomorphism result proved in this paper sharpens general results that relate 
contracts and salaries. Echenique (2012) showed that any many-to-one matching 
market (in the sense of Kelso and Crawford 1982 and Hatfield and Milgrom 2005) 
can be embedded into a potentially non-quasi-linear matching market with sala-
ries in which workers are grossly substitutable, and Schlegel (2015) extended the 
embedding result to the case when branches’ priorities are unilaterally substitut-
able (in the sense of Hatfield and Kojima 2010) by allowing branches’ priorities to 
be only weakly monotone in salary. This paper proves an isomorphism instead of 
merely an embedding and requires branches’ priorities to be quasi-linear and strictly 
monotone in salary, so that the branches’ priorities can be taken to be the choices 
of profit-maximizing firms that regard workers as (gross) substitutes. As discussed 
in detail in Section VC, quasi-linearity and strict monotonicity are not only concep-
tually appealing but also technically useful in proving that the deferred acceptance 
mechanism is stable and group strategy-proof.

The example of cadet-branch matching illustrates a general phenomenon in 
many-to-one matching with contracts: some priorities that are not substitutable are 
effectively substitutable from the perspective of matching mechanisms. More for-
mally, I call a priority DA-substitutable if it induces the same deferred acceptance 
mechanism as a substitutable priority. Passing to simpler priorities without changing 
the deferred acceptance mechanism may offer insight on general mechanism design 
problems in many-to-one matching with contracts.

As Echenique (2012) suggested, it is natural to ask whether the full generality of 
matching with contracts is needed in any given application. In cadet-branch match-
ing, cadets are employed by the military and compensated in terms of education. 
This paper shows that regarding the cadet-branch matching market as a job mar-
ket and education as a salary offers simpler constructions of the Sönmez (2013) 
and Sönmez-Switzer (2013) mechanisms and explains the unilateral substitutability 
of branch priorities in the original models. In general, changing priority structures 
may yield more intuitive descriptions of mechanisms while capturing features of the 

6 On page 192, Sönmez (2013) wrote “Remarkably, although the substitutes condition fails in my framework, 
the unilateral substitutes condition is satisfied.” On page 454, Sönmez and Switzer (2013) wrote, “Remarkably, 
although the substitutability condition fails in the context of cadet-branch matching, the unilateral substitutability 
condition is satisfied.”

7 Theorem 1 also shows that such priorities satisfy Hatfield and Milgrom’s (2005) law of aggregate demand.
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underlying design problems.8 Moreover, such simplifications might clarify the role 
and interpretation of contracts and substitutability conditions.

The remainder of this paper is organized as follows. Section I explains some of 
the results of this paper through an example. Section II reviews the basic model. 
Section  III presents necessary and sufficient conditions for two deferred accep-
tance mechanisms to coincide. Section IV presents Sönmez’s (2013) model of 
cadet-branch matching and the substitutable branch choice functions. Section V 
proves that the cadet-branch economy with substitutable choice functions is iso-
morphic to a Kelso-Crawford economy. Section VI defines DA-substitutability and 
gives a conceptual proof that the branches’ priorities in the Sönmez (2013) and  
Sönmez-Switzer (2013) models are unilaterally substitutable. Section VII presents an 
extension, and Section VIII is a conclusion. The Appendices contain the proofs that 
are omitted from the text, and the online Appendices presents additional examples.

I.  An Illustrative Example

Suppose that the United States Military Academy (USMA) is seeking to assign 
three cadets ​​i​1​​, ​i​2​​, ​i​3​​​ to the aviation branch ​a​ and the medical specialist branch ​m​. 
Contracts can last for five or eight years. Cadets ​​i​1​​​ and ​​i​2​​​ would like to serve as little 
as possible and prefer to serve in the aviation branch: therefore, their preferences are

	​​ i​1​​ : ​ (​i​1​​, a, 5)​ ​ ≻​​i​1​​​​ ​ (​i​1​​, m, 5)​ ​ ≻​​i​1​​​​ ​ (​i​1​​, a, 8)​ ​ ≻​​i​1​​​​ ​ (​i​1​​, m, 8)​​,

	​​ i​2​​ : ​ (​i​2​​, a, 5)​ ​ ≻​​i​2​​​​ ​ (​i​2​​, m, 5)​ ​ ≻​​i​2​​​​ ​ (​i​2​​, a, 8)​ ​ ≻​​i​2​​​​ ​ (​i​2​​, m, 8)​.​

However, cadet ​​i​3​​​ would like to serve in the aviation branch regardless of the length 
of his contract—therefore, his preference is

	​​ i​3​​ : ​ (​i​3​​, a, 5)​ ​ ≻​​i​3​​​​ ​ (​i​3​​, a, 8)​ ​ ≻​​i​3​​​​ ​ (​i​3​​, m, 5)​ ​ ≻​​i​3​​​​ ​ (​i​3​​, m, 8)​.​

Suppose that the order of merit list (OML), which ranks cadets by academic, 
military, and physical performance, is

	​​ i​1​​ ​ ≻​OML​​ ​ i​2​​ ​ ≻​OML​​ ​ i​3​​.​

The medical specialist branch would like to hire one cadet for a term of five years 
and prefers cadets that are high in the order of merit. Following Sönmez and Switzer 
(2013), the medical specialist branch prioritizes the short contract over the long con-
tract with each cadet. Therefore, the medical specialist branch’s priority is

	​ m : ​ (​i​1​​, m, 5)​ ​≻​m​​ ​(​i​1​​, m, 8)​ ​≻​m​​ ​(​i​2​​, m, 5)​ ​≻​m​​ ​(​i​2​​, m, 8)​ ​≻​m​​ ​(​i​3​​, m, 5)​ ​≻​m​​ ​(​i​3​​, m, 8)​.​

8 The application of substitutable completability to the design of the Israel Psychology Masters’ Match by 
Hassidim, Romm, and Shorrer (2017) cannot be formulated in a substitutable Kelso-Crawford economy. Indeed, 
note that unilateral substitutability is not satisfied in this setting, and thus the contrapositive of Theorem 4 in 
Section VIA rules out embedding the market into a quasi-linear Kelso-Crawford economy in which students are 
substitutable.
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The aviation branch would like to hire two cadets, one of whom is high in the order 
of merit and the other of whom is ideally willing to serve a long term. Following 
Sönmez and Switzer (2013), shorter contracts are given priority in the high-OML 
slot and all cadets are first considered for the high-OML slot. Therefore, the aviation 
branch is comprised of two slots with priorities

	​​ a​​ 1​ : ​ (​i​1​​, a, 5)​ ​≻​ 1​ 
a​ ​(​i​1​​, a, 8)​ ​≻​ 1​ 

a​ ​(​i​2​​, a, 5)​ ​≻​ 1​ 
a​ ​(​i​2​​, a, 8)​ ​≻​ 1​ 

a​ ​(​i​3​​, a, 5)​ ​≻​ 1​ 
a​ ​(​i​3​​, a, 8)​​,

	​​ a​​ 2​ : ​ (​i​1​​, a, 8)​ ​≻​ 2​ 
a​ ​(​i​2​​, a, 8)​ ​≻​ 2​ 

a​ ​(​i​3​​, a, 8)​ ​≻​ 2​ 
a​ ​(​i​1​​, a, 5)​ ​≻​ 2​ 

a​ ​(​i​2​​, a, 5)​ ​≻​ 2​ 
a​ ​(​i​3​​, a, 5)​.​

The aviation branch’s priority ​​≻​a​​​ is defined by filling the first slot with a contract 
with a cadet and then filling the second slot with a contract with a different cadet 
(see Kominers and Sönmez 2016).

A priority is substitutable (in the sense of Hatfield and Milgrom 2005) if having 
access to one contract does not make a branch want another contract more.9 Note 
that the aviation branch’s priority is not substitutable because there is complemen-
tarity between ​​(​i​1​​, a, 5)​​ and ​​(​i​3​​, a, 8)​​. Indeed, the aviation branch chooses ​​(​i​3​​, a, 5)​​ 
over ​​(​i​3​​, a, 8)​​ if no other contracts are available but sometimes chooses ​​(​i​3​​, a, 8)​​ 
over ​​(​i​3​​, a, 5)​​ when the contract ​​(​i​1​​, a, 5)​​ is also available. If the aviation branch 
instead ranked long contracts above short contracts even in the first slot, its priority 
would be substitutable. Indeed, the priority ​​​≻ ˆ ​​a​​​ induced by slot priorities

	​​ a​​ 1​ :  ​ (​i​1​​, a, 8)​ ​​≻ ˆ ​​ 1​ a​ ​(​i​1​​, a, 5)​ ​​≻ ˆ ​​ 1​ a​ ​(​i​2​​, a, 8)​ ​​≻ ˆ ​​ 1​ a​ ​(​i​2​​, a, 5)​ ​​≻ ˆ ​​ 1​ a​ ​(​i​3​​, a, 8)​ ​​≻ ˆ ​​ 1​ a​ ​(​i​3​​, a, 5)​​,

	​​ a​​ 2​ :  ​ (​i​1​​, a, 8)​ ​​≻ ˆ ​​ 2​ a​ ​(​i​2​​, a, 8)​ ​​≻ ˆ ​​ 2​ a​ ​(​i​3​​, a, 8)​ ​​≻ ˆ ​​ 2​ a​ ​(​i​1​​, a, 5)​ ​​≻ ˆ ​​ 2​ a​ ​(​i​2​​, a, 5)​ ​​≻ ˆ ​​ 2​ a​ ​(​i​3​​, a, 5)​​,

is substitutable because the aviation branch always favors long contracts with every 
cadet (Proposition 1). For example, the aviation branch always chooses ​​(​i​3​​, a, 8)​​ 
over ​​(​i​3​​, a, 5)​​ under ​​​≻ ˆ ​​a​​,​ regardless of whether ​​(​i​1​​, a, 5)​​ is available. The medical 
specialist branch’s priority is already substitutable but can be modified to encapsu-
late the intuition that the branch should give priority to long contracts:

	​ m : ​ (​i​1​​, m, 8)​ ​​≻ ˆ ​​m​​ ​(​i​1​​, m, 5)​ ​​≻ ˆ ​​m​​ ​(​i​2​​, m, 8)​ ​​≻ ˆ ​​m​​ ​(​i​2​​, m, 5)​ ​​≻ ˆ ​​m​​ ​(​i​3​​, m, 8)​ ​​≻ ˆ ​​m​​ ​(​i​3​​, m, 5)​.​

The change of priorities from ​​(​≻​a​​, ​≻​m​​)​​ to ​​(​​≻ ˆ ​​a​​, ​​≻ ˆ ​​m​​)​​ does not affect the deferred 
acceptance mechanism (Theorem  2).10 Indeed, the deferred acceptance algorithm 
proceeds as follows regardless of whether the aviation branch’s priority is taken to be ​​
≻​a​​​ or ​​​≻ ˆ ​​a​​​ and whether the medical specialist branch’s priority is taken to be ​​≻​m​​​ or ​​​≻ ˆ ​​m​​​.

Step 1: Cadet ​​i​j​​​ proposes contract ​​(​i​j​​, a, 5)​​ to the aviation branch for all ​i​. From 
the proposal set ​​{​(​i​1​​, a, 5)​, ​(​i​2​​, a, 5)​, ​(​i​3​​, a, 5)​}​,​ the aviation branch rejects contracts  ​​

(​i​3​​, a, 5)​​ and holds contracts ​​(​i​1​​, a, 5)​ and ​(​i​2​​, a, 5)​.​

9 See Section IIA for a formal definition of substitutability.
10 See Section IIC for a formal description of deferred acceptance.
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Step 2: Cadet ​​i​3​​​ proposes contract ​​(​i​3​​, a, 8)​​ to the aviation branch. From the 
proposal set ​​{​(​i​1​​, a, 5)​, ​(​i​2​​, a, 5)​, ​(​i​3​​, a, 8)​}​​, the aviation branch rejects contract 
​​(​i​2​​, a, 5)​​ and holds contracts ​​(​i​1​​, a, 5)​ and ​(​i​3​​, a, 8)​​.

Step 3: Cadet ​​i​2​​​ proposes contract ​​(​i​2​​, m, 5)​​ to the medical specialist branch. The 
medical specialist branch holds this contract, and no further rejections occur.

The deferred acceptance mechanism cannot distinguish between the priorities ​​≻​m​​​ 
and ​​​≻ ˆ ​​m​​​ because the medical specialist branch is only asked to compare contracts 
between distinct cadets during deferred acceptance. Indeed, note that a cadet only 
proposes a contract after its most recent proposal is rejected, so each cadet has at most 
one active proposal at each step of deferred acceptance. As the branches together have 
at most one active proposal from each cadet at a time, the set of contracts considered 
by any branch at any stage of deferred acceptance must contain at most one con-
tract with each cadet. In the language of Section III, the priorities ​​≻​m​​​ and ​​​≻ ˆ ​​m​​​ induce 
DA-equivalent choice functions. Similarly, deferred acceptance cannot distinguish 
between priorities ​​≻​a​​​ and ​​​≻ ˆ ​​a​​​ because they make the same choices from feasible sets 
of contracts, which are sets of contracts that contain at most one contract with each 
cadet (Theorem 1). Indeed, the slot priorities that define ​​≻​a​​​ and ​​​≻ ˆ ​​a​​​ only differ in the 
relative order of contracts with individual cadets, and the aviation branch only consid-
ers one contract with a given cadet at a time (Theorem 2).

Another appeal of the substitutable priorities ​​​≻ ˆ ​​a​​​ and ​​​≻ ˆ ​​m​​​ is that they have represen-
tations that are quasi-linear in the inverses of contract lengths (Proposition 2). Indeed, 
let the medical specialist branch value a set ​A​ of cadets by the valuation function

	​​ γ​m​​​(A)​  = ​ {​
0
​ 

if A  =  ∅
​  5 − ​min​​i​j​​∈A​​  j​  if A  ≠  ∅.​​​

That is, the medical specialist branch only values the smartest cadet assigned to it. 
The priority ​​​≻ ˆ ​​m​​​ is represented by the quasi-linear utility function induced by ​​γ​m​​​. 
More formally, let

ι​​(Y)​ = ​{​i​j​​ ∣ there exists b  ∈ ​ {a, m}​ and t  ∈ ​ {5, 8}​ such that ​(​i​j​​, b, t)​  ∈  Y}​​

be the set of cadets associated with contracts in ​Y​. The choice function correspond-
ing to ​​​≻ ˆ ​​m​​​ maximizes the utility function ​​u​m​​​ that is defined by

	​​ u​m​​​(Y)​  = ​ γ​m​​​(ι​(Y)​)​ − ​  ∑ 
​(​i​j​​,m,t)​∈Y

​​​ ​ 1 _ t ​​,

for all sets ​Y​ of contracts that involve the medical specialist branch. Similarly, let the 
aviation branch value a set ​A​ of cadets by the valuation function

	​​ γ​a​​​(A)​  = ​

⎧

 
⎪

 ⎨ 
⎪

 

⎩

​

0

​ 

if A  =  ∅

​  
5 − j

​ 
if A  = ​ {​i​j​​}​

​   6 − j + ​  1 _ 100k
 ​​  if A  = ​ {​i​j​​, ​i​k​​}​ with j  <  k​    

5 + ​  1 _ 200 ​

​ 

if | A |  =  3.

 ​​​
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That is, the aviation branch only values the smartest two cadets assigned to it and 
only particularly cares about the OML rank of the highest-merit cadet assigned to it. 
The valuation ​​γ​a​​​ induces a quasi-linear utility function that represents the substitut-
able aviation branch priority ​​​≻ ˆ ​​a​​.​

Thus, the cadet-branch economy with branch priority profile ​​(​​≻ ˆ ​​a​​, ​​≻ ˆ ​​m​​)​​ can be 
regarded as a Kelso-Crawford labor market (Theorem 3). The cadet-proposing 
deferred acceptance algorithm corresponds to the descending salary adjustment 
process under this isomorphism. The “salary” corresponding to a contract ​​(​c​i​​, h, t)​​ 
can be taken ​1/t​ and the branches’ utility functions can be taken to be quasi-linear 
(Proposition 2). A different choice of ​​γ​a​​​ and ​​γ​n​​​ would allow the salary to be taken to 
be ​g​(t)​​ for any decreasing function ​g : ​ℝ​​ +​  → ​ ℝ​​ +​​.

II.  Model: Matching with Contracts

I work with a model of many-to-one matching with contracts (Crawford and 
Knoer 1981, Kelso and Crawford 1982, Roth 1984a, Hatfield and Milgrom 2005, 
Hatfield and Kominers 2017). Let ​I​ be a set of cadets ​i​ and let ​B​ be a set of branches ​
b,​11 so that ​F  =  B  ∪  I​ is the set of agents ​f​.12 There is a fixed set of contracts ​X​, 
and each contract ​x  ∈  X​ is between a cadet ​ι​(x)​​ and a branch ​β​(x)​​. For all agents ​
f  ∈  F​ and all sets of contracts ​Y  ⊆  X​, let

	​​ Y​f​​  = ​ {x  ∈  Y ∣ ι​(x)​  =  f or β​(x)​  =  f}​​

denote the set of contracts in ​Y​ that involve ​f​. For ease of notation, I will not distin-
guish between singleton sets and their unique elements. A set of contracts ​A  ⊆  X​ is 
unfeasible if there exists a cadet ​i​ such that ​| ​A​i​​ |  >  1​, and feasible otherwise.

Each cadet ​i​ has a strict preference order ​​≻​i​​​ over ​​X​i​​  ∪ ​ {∅}​​. Let ​≻  = ​​(​≻​i​​)​​i∈I​​​ 
denote the cadets’ preference profile. Given a set ​Y  ⊆  X​, let

	​​ C​​ i​​(Y)​  = ​ max​ 
​≻​i​​

​ ​​ {Y  ∪ ​ {∅}​}​.​

Note that cadets can only choose at most one contract.
Each branch ​b​ has a choice function ​​C​​ b​ : ​(​X​b​​)​  →  ​(​X​b​​)​​ satisfying ​​C​​ b​​(Y)​  ⊆  Y​ 

for all ​Y  ⊆  X​. Abusing notation, I extend ​​C​​ b​​ to ​​(X)​​ by letting ​​C​​ b​​(Y)​  = ​ C​​ b​​(​Y​b​​)​​.  
Let ​C  = ​​ (​C​​ b​)​​b∈B​​​ denote the branches’ priority profile. I allow branches to accept 
more than one contract with each cadet: if a branches’ choice function only returns 
feasible sets, then I say that the branch’s choice function is feasible.13 In the applica-
tions to cadet-branch matching, the branches always have feasible choice functions.

11 There are alternative terminologies “workers” and “firms” (Kelso and Crawford 1982, Roth 1984a) or “doc-
tors” and “hospitals” (Roth 1984b, Hatfield and Milgrom 2005).

12 The sets ​B​ and ​I​ are assumed to be disjoint.
13 In contrast, Hatfield and Milgrom (2005) required that all branches have feasible choice functions. Hatfield 

and Kominers (2019) allowed branches to choose unfeasible sets in completed choice functions, and Hatfield and 
Kominers (2017) always allowed unfeasible choice functions.



198	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� AUGUST 2019

A. Conditions on Choice Functions

A choice function ​​C​​ b​​ is substitutable (Kelso and Crawford 1982, Hatfield and 
Milgrom 2005) if ​x  ∉ ​ C​​ b​​(Y ∪ ​{x, y}​)​​ whenever ​x  ∉ ​ C​​ b​​(Y ∪ ​{x}​)​​. Substitutability 
requires that access to an additional contract ​y​ does not make ​b​ want a contract ​x​ 
more. A choice function ​​C​​ b​​ is unilaterally substitutable (Hatfield and Kojima 2010) 
if ​x  ∉ ​ C​​ b​​(Y ∪ ​{x, y}​)​​ whenever ​x  ∉ ​ C​​ b​​(Y ∪ ​{x}​)​​ and ​ι​(x)​  ∉  ι​(Y)​​.

A choice function ​​C​​ b​​ satisfies the law of aggregate demand (Hatfield and 
Milgrom 2005) if ​| ​C​​ b​​(Y)​ |  ≤  | ​C​​ b​​(Y′)​ |​ whenever ​Y  ⊆  Y′  ⊆  X​. The law of aggre-
gate demand requires that ​b​ chooses weakly more contracts as the set of available 
contracts expands. A choice function ​​C​​ b​​ satisfies the irrelevance of rejected con-
tracts condition (Aygün and Sönmez 2012, 2013) if ​​C​​ b​​(A)​  = ​ C​​ b​​(A′)​​ whenever ​​
C​​ b​​(A′)​  ⊆  A  ⊆  A′​. The irrelevance of rejected contracts condition requires that 
rejected contracts not affect ​b​’s choice set.

B. Stability

An allocation is a set of contracts ​A  ⊆  X​. An allocation ​A  ⊆  X​ is individually 
rational if ​​C​​ f​​(A)​  = ​ A​f​​​ for all agents ​f  ∈  F​. A nonempty set ​Z  ⊆  X​ blocks an 
individually rational allocation ​A  ⊆  X​ if ​Z ∩ A  =  ∅​ and ​​Z​f​​  ⊆ ​ C​​ f​​(​A​f​​ ∪ ​Z​f​​)​​ for all 
agents ​f  ∈  F​. An allocation is stable if it is individually rational and unblocked.

C. Mechanisms

A mechanism is a function from the set of cadets’ preference profiles to the set of 
feasible allocations, for fixed branches’ choice functions. A mechanism ​​ is stable 
if it returns stable outcomes. A mechanism  is group strategy-proof (  for cadets) if 
for all ​I′  ⊆  I​ and all preference profiles ​​≻ ˆ ​  = ​​ (​​≻ ˆ ​​i​​)​​i∈I′​​​, there exists ​i  ∈  I′​ such that

	​ ​​(≻)​​i​​ ​ ⪰​i​​  ​​(​≻ ˆ ​, ​≻​I\I′​​)​​
i
​​.​

The mechanism that I consider is the deferred acceptance mechanism, which 
returns the outcome of the deferred acceptance algorithm. I use a simultaneous-pro-
posal deferred acceptance algorithm, following Gale and Shapley (1962), Crawford 
and Knoer (1981), Kelso and Crawford (1982), and Roth (1984a); and I always 
assume that cadets propose.14 The algorithm proceeds iteratively as follows.15

Step 1: Each cadet proposes his most preferred contract to the corresponding 
branch. If no contracts are proposed, then terminate the algorithm.

Otherwise, each branch holds the set of contracts that it chooses from the pro-
posed contracts. Each branch then rejects any proposed contract that is not held.

14 Note that Crawford and Knoer (1981) and Kelso and Crawford (1982) considered branch-proposing deferred 
acceptance algorithms.

15 For a formal definition of deferred acceptance, see Appendix A.
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Step ​t  >  1​: Each cadet with whom no branch is holding a contract proposes his 
most preferred unrejected contract to the corresponding branch. If no contracts are 
proposed, then branches accept the contracts that they are holding and the algorithm 
is terminated.

Otherwise, each branch holds the set of contracts that it chooses from the pro-
posed contracts and the previously held contracts. Each branch then rejects any pro-
posed or previously held contracts that is not held.

Denote the deferred acceptance mechanism with respect to branch priority profile ​
C​ by ​​​C​​​.

III.  Choice Functions That Induce the Equivalent Deferred Acceptance Mechanisms

This section derives a necessary and sufficient condition for two branch prior-
ity profiles to induce the same deferred acceptance mechanisms. In Section  IV, I 
use this condition to compare deferred acceptance mechanisms for two families of 
branch priority profiles in cadet-branch matching.

Call a contract available at a step of deferred acceptance if it has been proposed 
but not rejected. Note that the set of available contracts is feasible at every step of 
deferred acceptance, because only cadets that are rejected are allowed to propose 
new contracts. Indeed, cadets only propose contracts after their previous proposals 
are rejected, so that each cadet has at most one active proposal at a time. Thus, the 
deferred acceptance algorithm only ever queries ​​C​​ b​​ on feasible sets of contracts. I 
say that two choice functions (or priority profiles) are DA-equivalent if they agree 
on all feasible sets of contracts, formally defined below.

DEFINITION 1: Let ​b​ be a branch. A choice function ​​​C ˆ ​​​ b​​ is DA-equivalent to ​​C​​ b​​ 
if ​​​C ˆ ​​​ b​​(Y)​  = ​ C​​ b​​(Y)​​ for all feasible sets ​Y  ⊆  X​. A branch priority profile ​​C ˆ ​​ is 
DA-equivalent to ​C​ if ​​​C ˆ ​​​ b​​ is DA-equivalent to ​​C​​ b​​ for all branches ​b​.

Deferred acceptance cannot distinguish between priority profiles that agree on 
all feasible sets of contracts, because the set of available contracts is feasible at 
every step of the deferred acceptance algorithm. As any feasible set of contracts 
can be the set of available contracts at Step 1 of the deferred acceptance algorithm, 
deferred acceptance can distinguish between any pair of priority profiles that are not 
DA-equivalent.

THEOREM 1: A priority  profile ​​C ˆ ​​ is DA-equivalent to ​C​ if and only if ​​​C​​  
=  ​​​C ˆ ​​​​.

IV.  Choice Functions for Cadet-Branch Matching

As an application of Theorem 1, this section explicitly realizes the main mech-
anisms proposed by Sönmez (2013) and Sönmez and Switzer (2013) as deferred 
acceptance mechanisms in matching markets with feasible, substitutable branch 
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choice functions that satisfy the law of aggregate demand. Section IVA reviews 
Sönmez’s (2013) priorities, and Section IVB presents the substitutable branch pri-
orities. Section IVC discusses the practical advantages and disadvantages of the two 
approaches.

A. Sönmez’s (2013) Model of Cadet-Branch Matching

In applications of matching with contracts to cadet-branch matching, additional 
structure is present in the branches’ priorities and in the set of contracts. I consider 
a model of cadet-branch matching based on that of Sönmez (2013).

Each branch ​b​ has a strict priority order ​​≻​ OML​ b  ​​ over ​D ∪ ​{∅}​​, called the order of 
merit. A cadet is acceptable for ​b​ if it is preferred to ​∅​ under ​​≻​ OML​ b  ​​.16 Each branch 
allows ​  ≥  1​ different contract lengths ​0 < ​​1​​ <  ⋯ <  ​​​​​,17 and the set of con-
tracts is

	​ X  =  I × B × ​{​​1​​, …, ​​​​}​.​

An element of ​X​ is a contract ​​(i, b, t)​​ for cadet ​i​ to serve in branch ​b​ for ​t​ years. 
The functions ​ι​ and ​β​ are given by the projections onto the first and second factors, 
respectively.

Motivated by the Reserve Officers’ Training Corps’ (ROTC) existing matching 
mechanism, Sönmez (2013) defined bid for your career (Bf YC) choice functions 
for cadet-branch matching. The USMA choice functions described by Sönmez and 
Switzer (2013) are the special cases of BfYC choice functions when ​  =  2​.

Each branch ​b​ has a capacity vector ​​(​q​ b​ 
1​, ​q​ b​ 

2​)​  ∈ ​ 핑​ ≥0​ 
2 ​​ , where ​​q​ b​ 

1​​ is the number of 
contracts with high order-of-merit that ​b​ wants to hire and ​​q​ b​ 

2​​ represents the number 
of long contracts that ​b​ wants.18 Fix a branch ​b​ and a set of contracts ​Y  ⊆  X​. The 
BfYC choice set is defined by selecting the shortest available contracts with the ​​q​ b​ 

1​​ 
cadets with contracts in ​Y​ that are most preferred under ​​≻​ OML​ b  ​​; and the longest ​​q​ b​ 

2​​ 
contracts in ​Y​ with other cadets, where ties are broken (in the second step) by order-
ing the cadets according to ​​≻​ OML​ b  ​​.

More precisely, the BfYC choice set is defined as follows. A contract ​x​ is avail-
able at some stage of the choice procedure if ​x​ has neither been chosen nor removed 
from consideration yet. Run the following iterative procedure to compute ​​C​ BfYC​ b  ​​(Y)​​.

Step 1: For ​j  =  1, 2, … , ​q​ b​ 
1​​:

•	 Step 1. ​j​: If there are no available contracts in ​Y​ with acceptable cadets, then ter-
minate the process. Otherwise, let ​i​ be the cadet with the highest priority under ​​
≻​ OML​ b  ​​ who has an available contract in ​Y​. Choose the shortest available contract 
in ​Y​ with ​i​ and remove from consideration all other contracts with ​i​.

16 Sönmez (2013) and Sönmez and Switzer (2013) assumed that every cadet is acceptable to every branch.
17 In Section I, I take ​  =  2,​ ​​​1​​  =  5,​ and ​​​2​​  =  8​.
18 In Section I, I take ​​q​ a​ 

1​  = ​ q​ a​ 
2​  = ​ q​ m​ 1 ​  =  1​ and ​​q​ m​ 2 ​  =  0​.
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Step 2: For ​j  =  1, 2, … , ​q​ b​ 
2​​:

•	 Step 2. ​j​: If there are no available contracts in ​Y​ with acceptable cadets, then 
terminate the process. Otherwise, let ​t​ be the length of the longest available 
contract in ​Y​. Let ​i​ be the cadet with the highest priority under ​​≻​ OML​ b  ​​ who has 
an available contract in ​Y​ of length ​t​. Choose contract ​​(i, b, t)​​ and remove from 
consideration all other contracts with ​i​.

Note that the choice function ​​C​ BfYC​ b  ​​ is feasible by construction and let  
​​​BfYC​​  =  ​​​C​BfYC​​​​​ denote the corresponding deferred acceptance mechanism.

Unfortunately, the choice functions ​​C​ BfYC​ b  ​​ are not substitutable, as Sönmez 
(2013) and Sönmez and Switzer (2013) showed (see also Section I). However, the 
choice functions ​​C​ BfYC​ b  ​​ are unilaterally substitutable and satisfy the law of aggregate 
demand and the irrelevance of rejected contracts condition, as shown by Lemma 1 
in Sönmez (2013). By Theorem 7 in Hatfield and Kojima (2010), it follows that the 
mechanism ​​​BfYC​​​ is group strategy-proof (Sönmez 2013, Sönmez and Switzer 
2013).

B. Substitutable BfYC Choice Functions

This section defines new branch choice functions that are designed to select the 
longest available contract with a cadet at each step but be otherwise identical to the 
BfYC choice functions. More formally, I define substitutable BfYC choice functions 
for cadet-branch matching as follows. Fix a branch ​b​ and a set of contracts ​Y  ⊆ ​ X​b​​​ 
and run the following iterative procedure to compute ​​C​ sBfYC​ b  ​​(Y)​​.

Step 1: For ​j  =  1, 2, … , ​q​ b​ 
1​​:

•	 Step 1. ​j​: If there are no available contracts in ​Y​ with acceptable cadets, then ter-
minate the process. Otherwise, let ​i​ be the cadet with the highest priority under ​​
≻​ OML​ b  ​​ who has an available contract in ​Y​. Choose the longest available contract 
in ​Y​ with ​i​ and remove from consideration all other contracts with ​i​.

Step 2: Run Step 2 of the process defining ​​C​BfYC​​​.

Note that the choice function ​​C​ sBfYC​ b  ​​ is feasible by construction and let  
​​​sBfYC​​  =  ​​​C​sBfYC​​​​​ denote the corresponding deferred acceptance mechanism.

Intuitively, the choice functions ​​C​ BfYC​ b  ​​ and ​​C​ sBfYC​ b  ​​ only differ in the relative pri-
orities of contracts with individual cadets in the first step, and are identical in the 
second step. Thus, ​​C​ BfYC​ b  ​​ and ​​C​ sBfYC​ b  ​​ make the same trade-offs in sets of contracts 
between different cadets. More formally, ​​C​ BfYC​ b  ​​ and ​​C​ sBfYC​ b  ​​ are DA-equivalent, and 
therefore Theorem  1 guarantees that they induce the same deferred acceptance 
mechanism.

THEOREM 2: The priority profiles ​​C​BfYC​​​ and ​​C​sBfYC​​​ are DA-equivalent, and thus 
we have that ​​​BfYC​​  =  ​​sBfYC​​​.
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The choice functions ​​C​ sBfYC​ b  ​​ give relatively more priority to long contracts than 
the choice functions ​​C​ BfYC​ b  ​​ do. Theorem 2 shows that the use of the cadet-proposing 
deferred acceptance mechanism prevents the branches from forcing longer contracts 
on cadets by giving higher priority to longer contracts.

One advantage of the choice functions ​​C​ sBfYC​ b  ​​ is that they are substitutable.

PROPOSITION 1: The choice functions ​​C​ sBfYC​ b ​​  are substitutable and satisfy the law 
of aggregate demand. In particular, ​​​sBfYC​​​ is group strategy-proof.

Intuitively, the substitutable BfYC choice functions consistently choose among 
the longest available contracts with each cadet. This consistency condition is pre-
cisely Pareto separability (in the sense of Hatfield and Kojima 2010), which implies 
substitutability when taken in conjunction with unilateral substitutability (Hatfield 
and Kojima 2010). To prove Proposition 1, I follow a more classical approach using 
a quasi-linear utility representation (Proposition  2) and properties of the choice 
function of a profit-maximizing firm that regards workers as substitutes (Hatfield 
and Milgrom 2005)—see Section V.19

Theorem  2 and Proposition 1 show that the main mechanisms proposed by 
Sönmez (2013) and Sönmez and Switzer (2013) are deferred acceptance mech-
anisms with respect to a profile of branch choice functions that are feasible, sub-
stitutable, and satisfy the law of aggregate demand. That is, matching theory with 
unilaterally substitutable choice functions (Hatfield and Kojima 2010) or unfeasible 
choice functions (Hatfield and Kominers 2017, 2019) is not needed for cadet-branch 
matching.20 It also follows that the Sönmez mechanism ​​​BfYC​​​ is group strate-
gy-proof.21Indeed, Theorem  2 shows that the Sönmez mechanism ​​​BfYC​​​ coin-
cides with ​​​sBfYC​​,​ which is in turn group strategy-proof by Proposition 1.

COROLLARY 1 (Sönmez 2013, Sönmez and Switzer 2013): ​​​BfYC​​​ is group 
strategy-proof.

C. Practical Issues

The BfYC priorities have the practical advantage of being as faithful to the cur-
rently implemented priorities as possible.22 Specifically, the substitutable BfYC 
priorities differ from the BfYC priorities and the currently implemented priorities 
in how a branch treats the contract lengths for the first ​​q​ b​ 

1​​ cadets that it selects. 

19 It is possible to prove Proposition 1 directly using the properties of choice functions induced by lexicographic 
priorities. I prove Proposition  1 using a quasi-linear utility representation to illustrate the connection of cadet-
branch matching with the job matching model of Kelso and Crawford (1982).

20 Results on matching with weakened substitutability conditions (Hatfield and Kojima 2010, Hatfield and 
Kominers 2019) or unfeasible choice functions (Hatfield and Kominers 2012, 2017) are not even needed to show 
that ​​​sBfYC​​​ is group strategy-proof—group strategy-proofness in Proposition 1 follows directly from the main 
result of Hatfield and Kojima (2009).

21 Theorem 5 in Hatfield and Kojima (2010) and the unilateral substitutability of ​​C​ BfYC​ b  ​​ for all ​b​ (Sönmez 2013, 
Sönmez and Switzer 2013) ensure that the ​​​BfYC​​​ coincides with the cumulative offer mechanism with respect to ​​
C​BfYC​​​, which was the exact mechanism proposed by Sönmez (2013).

22 In the case of the USMA, the currently implemented priorities are actually the special case of the BfYC pri-
orities with two different contract lengths (Sönmez and Switzer 2013).
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The substitutable BfYC priorities select the longest available contracts with the 
selected cadets, while the BfYC priorities and the currently implemented prior-
ities select the shortest available contracts with the selected cadets. Theorem 2 
implies that this difference in priorities does not affect the deferred acceptance 
mechanism. However, it might be difficult to persuade policymakers to change 
the treatment of contract length for the first few cadets to be selected at each 
branch, despite the fact that the choice does not affect the outcome of deferred 
acceptance.23

However, the substitutable BfYC priorities have the advantage of making deferred 
acceptance become interpretable as a descending salary adjustment process, as I 
show formally in Section V. This property may make deferred acceptance easier to 
explain to cadets if a mechanism based on deferred acceptance is adopted for cadet-
branch matching. In light of Theorem 2, the salary adjustment process interpretation 
applies to deferred acceptance with BfYC priorities as well, although the use of the 
substitutable BfYC priorities makes the connection more transparent.

V.  Contracts versus Salaries in Cadet-Branch Matching

In this section, I first show that the substitutable BfYC choice functions can be 
taken to be the choices of profit-maximizing firms. I then show that the cadet-branch 
economy with substitutable branch priorities is isomorphic to a Kelso-Crawford 
economy and that deferred acceptance corresponds to a descending salary adjust-
ment process.

A. Quasi-linearity of the Substitutable Branch Choice Functions

This section shows that the substitutable BfYC choice functions are quasi-lin-
ear in “salary,” where branches value cadets according to assignment valuations 
(Shapley 1962). I use assignment valuations to capture the fact that the branches 
have several different slots for cadets and the slots place different values on ranking 
in the order of merit.

Let branch ​b​ have ​​q​ b​ 
1​ + ​q​ b​ 

2​​ slots and let ​​α​​ b​  ∈ ​ ℝ​​ I×​{1,…,​q​ b​ 
1​+​q​ b​ 

2​}​​​ be a matrix of assign-
ment values, so that ​​α​ i, j​ 

b ​​ is the value that branch ​b​ receives if cadet ​i​ is assigned to 
slot ​j​ in ​b​. Following Shapley (1962), define valuation ​​γ​b​​ : ​(I)​  →  ℝ​ to value (sets 
of) cadets by assigning cadets to slots in ​b​ in a way that maximizes total value. More 
formally, let

	​​ γ​b​​​(E)​  =​  max​ 
​ ​ {​d​​i​1​​​​,…,​d​​i​k​​​​}​⊆E​  

1≤ ​j​1​​<⋯<​j​k​​≤​q​ b​ 
1​+​q​ b​ 

2​

​​
​​ ​ ∑ 
ℓ=1

​ 
k

  ​​ ​α​ ​d​​i​ℓ​​​​, ​j​ℓ​​
​ b  ​.​

23 In other applications, it has proven difficult to get policymakers to change the priorities that are used in 
deferred acceptance. For example, it required substantial effort to eliminate “walk zones” in Boston despite their 
counterintuitive (and sometimes counterproductive) behavior (Dur et al. 2018).
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Let ​g  :  ​ℝ​​ +​  → ​ ℝ​​ +​​ be a strictly decreasing function, which converts contract 
lengths to salaries. The requirement that ​g​ be decreasing ensures that short contracts 
correspond to high salaries.24 Define utility function ​​u​b​​  :  ​(X)​  →  ℝ​ by

	​​ u​b​​​(Y)​  = ​ γ​b​​​(ι​(​Y​b​​)​)​ − ​  ∑ 
​(i,b,t)​∈Y

​​​ g​(t)​.​

Thus, ​​u​b​​​ values cadets according to ​​γ​b​​​ and is quasi-linear in ​g​(contract length)​​.
Consider an assignment value matrix for ​b​ described as follows. Let any differ-

ence in values of doctors to the first ​​q​ b​ 
1​​ slots dominate any difference in salaries. 

For the last ​​q​ b​ 
2​​ slots, let any difference in salaries dominate any difference between 

values of cadets.25 Intuitively, maximizing utility among subsets of a given set of 
contracts then selects up to ​​q​ b​ 

1​​ contracts with preferred cadets and then up to ​​q​ b​ 
2​​ more 

contracts that are as long as possible. Thus, maximizing ​​u​b​​​ coincides with ​​C​ BfYC​ b  ​​ for 
suitably chosen assigment values.

PROPOSITION 2: For all branches ​b​ and all strictly decreasing ​g  :  ​ℝ​​ +​  → ​ ℝ​​ +​,​ 
there exists a matrix ​​α​​ b​  ∈ ​ 핉​​ I×​{1, …,​q​ b​ 

1​+​q​ b​ 
2​}​​​ such that

	​​ {​C​ sBfYC​ b  ​​(Y)​}​  = ​ arg max​ 
Z⊆Y

​ ​ ​ u​b​​​(Z)​​

for all sets of contracts ​Y  ⊆  X​.

Proposition  2 implies that the substitutable BfYC choice functions can be 
interpreted as the choice functions of profit-maximizing firms. In contrast, the 
original branch choice functions ​​C​ BfYC​ b  ​​ are not the choice functions of profit-max-
imizing firms. Intuitively, choosing a long contract with a given cadet sometimes 
and a short contract at other times when both are available is inconsistent with 
profit-maximization.

As I show in Appendix C, Proposition 1 follows immediately from the utility rep-
resentation of Proposition 2 due to general results on quasi-linear utility functions 
induced by assignment valuations (Shapley 1962, Hatfield and Milgrom 2005).

B. Isomorphism to a Kelso-Crawford Economy

This section shows that, under mild conditions, the cadet-branch economy with 
substitutable BfYC priorities is isomorphic to a Kelso-Crawford economy.26 More 
precisely, I take the salary corresponding to a contract ​​(i, b, t)​​ to be ​g​(t)​​.

Proposition 2 shows that the branches’ choice functions can be represented by 
quasi-linear utility functions. The cadets’ preferences can be represented by utility 

24 Intuitively, short contracts correspond to high salaries because short contracts entail less service received by 
the military without change to the cost of educating a cadet.

25 It is possible to choose such assignment values because the set of salaries—i.e., ​​{g​(​​1​​)​, … , g​(​​​​)​}​​—is 
finite. See Appendix C for the details.

26 I formalize the notion of isomorphism in Appendix C.
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functions. In order to ensure that cadets prefer high salaries, I need to assume that 
all cadets prefer short contracts.27

DEFINITION 2: The preference of a cadet ​i​ is salary-monotonic if

	​​ (i, b, t′)​  ∉ ​ C​​ i​​(​{​(i, b, t)​, ​(i, b, t′)​}​)​​

whenever ​t  <  t​′ and ​​(i, b, t)​, ​(i, b, t′)​  ∈  X​.

In practice, cadets’ preferences are likely to be salary-monotonic because cadets 
can choose to remain in the military after the expiry of their initial contracts. Under 
the assumption that cadets’ preferences are salary-monotonic, their preferences can 
be represented by utility functions that are strictly increasing in salaries. It follows 
that the cadet-branch economy is isomorphic to a Kelso-Crawford economy.

THEOREM 3 (Informal statement): If all cadets have salary-monotonic prefer-
ences, then

	 (i)	 The cadet-branch economy with substitutable BfYC choice functions is iso-
morphic to a Kelso-Crawford economy.

	 (ii)	 The Kelso-Crawford economy can be chosen so that so that ​g​(t)​​ is the salary 
corresponding to contract ​​(i, b, t)​​ for all ​​(i, b, t)​  ∈  X​.

	 (iii)	 The cadet-proposing deferred acceptance algorithm corresponds to the 
descending salary adjustment process under any isomorphism.

See Appendix C for a formal statement and proof of Theorem 3.
In light of Theorems 2 and 3, the main mechanisms proposed by Sönmez (2013) 

and Sönmez and Switzer (2013) are descending salary adjustment processes in 
Kelso-Crawford economies. Therefore, cadet-branch matching does not require 
even the full generality of many-to-one matching with contracts and substitutable 
choice functions—only the Kelso-Crawford(1982) theory of many-to-one matching 
with salaries is needed to match cadets to branches.

C. Related Literature on Contracts and Salaries

Echenique (2012) showed that if all branches’ choice functions are substitut-
atable, then a matching market with contracts can be embedded into a matching 
market with salaries. The Echenique (2012) embedding does not guarantee that 
branches’ utility functions are quasi-linear. Moreover, the firms’ utility functions 
cannot be quasi-linear in general. Indeed, Theorem 7 in Hatfield and Milgrom 
(2005) shows that the law of aggregate demand follows from substitutability and 

27 When cadets’ preferences are salary-monotonic and the branches’ priority profile is ​​C​sBfYC​​​, every contract is 
Pareto optimal in the sense of Roth (1984a) and the generalized salary condition of Roth (1985) is satisfied.
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quasi-linearity. As the Echenique (2012) embedding preserves the law of aggre-
gate demand (see Section IIE in Echenique 2012), the law of aggregate demand 
is necessary (but not in general sufficient) for the existence of a quasi-linear 
utility representation in matching with salaries. Schlegel (2015) showed that a 
matching market where branches’ choice functions are unilaterally substitutable 
can be embedded (in a weaker sense than Echenique 2012) into a (potentially 
non-quasi-linear) matching market with salaries in which firms may be indifferent 
to paying a worker more.28 This result applies in particular to the Sönmez (2013) 
cadet-branch market.

Proposition 2 and Theorem 3 offer salaries a more realistic interpretation than 
Echenique (2012) and Schlegel (2015) because the branches’ utility functions 
are taken to be quasi-linear. Thus, the substitutable BfYC choice functions are the 
choices of profit-maximizing firms. Moreover, quasi-linearity is crucial to the proof 
that the substitutable BfYC choice functions satisfy the law of aggregate demand 
(Proposition 1). The law of aggregate demand is in turn critical to prove that the 
deferred acceptance mechanism is group strategy-proof (Hatfield and Kojima 2009, 
Hatfield and Kominers 2012) and to give a conceptual proof that the BfYC choice 
functions are unilaterally substitutable using Theorem 4. Thus, the interpretation of 
contract lengths as salaries offered by Theorem 3 is both conceptually appealing and 
technically useful.

VI.  DA-Equivalence and Weakened Substitutability Conditions

This section studies the general implications of DA-equivalence to a substitut-
able choice function. Section VIA provides a conceptual explanation for the uni-
lateral substitutability of the BfYC choice functions. Section VIB formalizes what 
it means for a choice function to be effectively substitutable from the perspective 
of deferred acceptance (DA-substitutable) and discusses the relationship between 
DA-substitutability and strategy-proofness results in the literature.

A. DA-Equivalence and Unilateral Substitutability

This section provides a conceptual proof of Sönmez’s (2013) result that the 
BfYC choice functions are unilaterally substitutable and satisfy the law of aggre-
gate demand (Lemmata 1 and 2 in Sönmez 2013). The proof relies on the following 
theorem, which asserts that feasibility and DA-equivalence to the choice function 
of a profit-maximizing firm together imply unilateral substitutability and the law of 
aggregate demand.

THEOREM 4: Let ​b  ∈  B​ and let ​​​C ˆ ​​​ b​​ be a choice function that is DA-equivalent to ​​
C​​ b​​. If ​​C​​ b​​ is feasible and satisfies the irrelevance of rejected contracts condition and  
​​​C ˆ ​​​ b​​ is feasible, substitutable, and satisfies the law of aggregate demand, then ​​C​​ b​​ is

28 That is, Schlegel (2015) did not require firms’ utility functions to be strictly decreasing in salaries. This 
relaxed interpretation of salaries allows Schlegel (2015) to embed unilaterally substitutable priorities.
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	 (i)	 unilaterally substitutable and

	 (ii)	 satisfies the law of aggregate demand.

In Section 1 of the online Appendix, I present examples to show that the hypothe-
ses that ​​​C ˆ ​​​ b​​ be feasible and satisfy the law of aggregate demand are necessary to both 
conclusions of Theorem 4. Intuitively, feasibility and the law of aggregate demand 
interact in Theorem 4 to constrain the number of different cadets that are chosen 
under ​​​C ˆ ​​​ b​,​ and hence under ​​C​​ b​​ as well.

Theorem 4 gives a conceptual explanation of why the BfYC choice functions are 
unilaterally substitutable: they induce the same deferred acceptance mechanisms as 
the substitutable BfYC choice functions (Theorem 2), which are the choice func-
tions of profit-maximizing firms (Proposition 1). This unilateral substitutability con-
dition is critical to Sönmez’s (2013) and Sönmez and Switzer’s (2013) approach to 
deriving stability and strategy-proofness. Previously, only a technical justification 
of this crucial condition was known (Sönmez 2013, Sönmez and Switzer 2013). 
Thus, the approach of constructing the Sönmez and Sönmez-Switzer mechanisms in 
Kelso-Crawford economies also helps shed light on the substitutability conditions 
involved in the Sönmez and Sönmez-Switzer models.

COROLLARY 2 (Sönmez 2013, Sönmez and Switzer 2013): In cadet-branch 
matching, the choice function ​​C​ BfYC​ b ​​  is unilaterally substitutable for all ​b  ∈  B​.

REMARK 1: Example 4 in the online Appendix shows that unilateral substitutability 
and the law of aggregate demand do not together imply DA-equivalence to a feasible, 
substitutable choice function. Thus, the existence of feasible, substitutable priorities 
that are DA-equivalent to the BfYC choice functions relies on additional structure 
present in cadet-branch matching beyond unilateral substitutability.

B. Substitutability from the Perspective of Deferred Acceptance

As the example of cadet-branch matching shows, choice functions that exhibit 
complementarities may still be DA-equivalent to substitutable choice functions. I 
call such choice functions DA-substitutable.

DEFINITION 3: A choice function ​​C​​ b​​ is DA-substitutable if there exists a choice 
function ​​​C ˆ ​​​ b​​ that is DA-equivalent to ​​C​​ b​​ and substitutable.

Substitutability alone is not sufficient to guarantee that the deferred acceptance 
mechanism is strategy-proof (Hatfield and Milgrom 2005)—the law of aggregate 
demand also plays a key role in deriving strategy-proofness (Hatfield and Milgrom 
2005; Hatfield, Kominers, and Westkamp 2019). Theorem 4 also illustrates an 
important interaction between DA-equivalence and the law of aggregate demand. 
This motivates the consideration of DA-strategy-proof choice functions, which are 
defined to be the choice functions that are DA-equivalent to choice functions that are 
substitutable and satisfies the law of aggregate demand.
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DEFINITION 4: A choice function ​​C​​ b​​ is DA-strategy-proof if there exists a choice 
function ​​​C ˆ ​​​ b​​ that is DA-equivalent to ​​C​​ b​,​ substitutable, and satisfies the law of aggre-
gate demand.

Recall that substitutable choice functions that satisfy the law of aggregate 
demand induce group strategy-proof deferred acceptance mechanisms (Hatfield 
and Kominers 2012). As DA-strategy-proof choice functions induce the same 
deferred acceptance mechanisms as certain substitutable choice functions that sat-
isfy the law of aggregate demand, DA-strategy-proof choice functions induce group 
strategy-proof deferred acceptance mechanisms as well.

THEOREM 5: If ​​C​​ b​​ is DA-strategy-proof for all ​b  ∈  B​, then ​​​C​​​ is group 
strategy-proof.29

PROOF:
For each ​b,​ let ​​​C ˆ ​​​ b​​ be a choice function that is DA-equivalent to ​​C​​ b​​, substitutable, 

and satisfies the law of aggregate demand. Theorem 1 implies that ​​​C​​  =  ​​​C ˆ ​​​​, 
while Theorem 10 in Hatfield and Kominers (2012) guarantees that ​​​​C ˆ ​​​​ is group 
strategy-proof. ∎

As was shown in Section  IV, the branches’ choice functions in cadet-branch 
matching satisfy a stronger condition than DA-strategy-proofness: the BfYC choice 
functions are DA-equivalent to feasible, substitutable choice functions that satisfy 
the law of aggregate demand (see Theorem 2 and Proposition 1). Feasibility plays a 
crucial role in deriving unilateral substitutability—as was seen in Section VIA—and 
is necessary to embed a matching market into a Kelso-Crawford economy—as will 
be done in Section V. Furthermore, the strategy-proofness results in cadet-branch 
matching rely only on strategy-proofness results in many-to-one matching with fea-
sible, substitutable choice functions (Hatfield and Kojima 2009), while the proof of 
Theorem 5 uses results from many-to-many matching with contracts (Hatfield and 
Kominers 2012).

Unlike other weakened substitutability conditions in the literature (see, e.g., 
Hatfield and Kojima 2010; Hatfield and Kominers 2016; and Hatfield, Kominers, 
and Westkamp 2019), DA-substitutability and DA-strategy-proofness have interpre-
tations in terms of being effectively substitutable from the perspective of deferred 
acceptance. As Theorem 4 shows, ideas similar to DA-substitutability also help pro-
vide intuition for unilateral substitutability.

DA-substitutability and DA-strategy-proofness relate to some of the weak-
ened substitutability conditions in the matching literature. Theorem  4 shows 
that a strengthening of DA-strategy-proofness implies unilateral substitutability. 
However, Section 2 in the online Appendix explains that unilateral substitutability 

29 DA-strategy-proofness is not in general sufficient to ensure that ​​​C​​​ is stable even if all branches’ choice 
functions satisfy the irrelevance of rejected contracts condition, as Example 2 in the online Appendix shows. 
However, observable substitutability (in the sense of Hatfield, Kominers, and Westkamp 2019) and the irrelevance 
of rejected contracts condition together imply that the deferred acceptance mechanism is stable.
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and substitutable completability (in the sense of Hatfield and Kominers 2015) imply 
DA-substitutability, but not vice versa. Similarly, the existence of a substitutable com-
pletion that satisfies the law of aggregate demand implies DA-strategy-proofness, 
but not vice versa.

VII. Extension to Slot-Specific Priorities

The DA-equivalence of Theorem 2 extends to the setting of slot-specific priori-
ties (Kominers and Sönmez 2016), a class of choice functions that generalizes the 
branches’ choice functions in cadet-branch matching. The choice functions asso-
ciated to slot-specific priorities are defined by iterative processes that generalize 
the definitions of ​​C​ BfYC​ b  ​​ and ​​C​ sBfYC​ b  ​​. For these choice functions, changing the rel-
ative priorities of contracts with individual cadets at each slot (sub-step) yields a 
DA-equivalent choice function. However, unlike in the case of Theorem 2, the mod-
ified choice function may be neither feasible nor substitutable. See Proposition B.1 
in Appendix B for the details.30,31

VIII.  Conclusion

Because military positions are jobs, it is natural to regard the cadet-branch match-
ing market as a job market. This approach requires changes to the branches’ choice 
functions, but Theorem 2 shows that the proposed modification does not affect the 
deferred acceptance mechanisms. Theorem 3 shows that the proposed matching 
mechanisms are simpler from the job-market viewpoint and clarifies the role of 
contracts as salaries. Along the way, Theorem 4 shows that the BfYC choice func-
tions are unilaterally substitutable precisely because the substitutable BfYC choice 
functions are substitutable and consistent with profit-maximization.

Substitutability is crucial to matching with contracts (Hatfield and Kojima 
2008; Hatfield and Kominers 2012, 2017; Hatfield et al. 2013; and Schlegel 
2019). This paper shows that even choice functions that exhibit complementarities 
might be effectively substitutable from the perspective of matching mechanisms 
(DA-substitutable). Thus, reformulating a matching problem by modifying the pri-
orities can simplify the analysis and clarify the roles of contracts, priority structures, 
and substitutability conditions.

Appendix A: Proofs of General Results on DA-Equivalence

A. Proof of Theorem 1

Formal Definition of the Deferred Acceptance Algorithm.—I use a simultane-
ous-proposal cadet-proposing deferred acceptance algorithm, following Gale and 

30 I use Proposition B.1 in Appendix B to prove Theorem 2 formally (see Appendix C).
31 The same intuition extends to choice functions described by capacity transfers (Aygün and Turhan 2019), a 

class of priorities that generalizes distributional priorities (Kamada and Kojima 2015) and slot-specific priorities 
(Kominers and Sönmez 2016).
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Shapley (1962). Initialize the set of “held” contracts to ​​G​​ ​(0)​​  =  ∅​ and the set of 
“unproposed” contracts to ​​J​​ ​(0)​​  =  X​. For ​t  =  1, 2, … ,​ run the following iterative 
step.

Step ​t​: Define the set of participating cadets to be

	​​ W​​ ​(t)​​  = ​ {i  ∈  I ​|​​ ​J​ i​ 
​(t−1)​​ contains a contract that is acceptable to d}​\ι​(​G​​ ​(t−1)​​)​.​

If ​​W​​ ​(t)​​  =  ∅,​ then terminate the process, set ​T  =  t − 1​, and return ​​G​​ ​(t−1)​​​.
Otherwise, for all ​d  ∈ ​ W​​ ​(t)​​​, let ​​x​ i​ 

​(t)​​​ be the contract in ​​J​ i​ 
​(t−1)​​​ that is most preferred 

by ​i​. Each cadet ​d  ∈ ​ W​​ ​(t)​​​ proposes ​​x​ i​ 
​(t)​​​, so that the set of proposed contracts is

	​​ P​​ ​(t)​​  = ​ {​x​ i​ 
​(t)​​ | d  ∈ ​ W​​ ​(t)​​}​.​

The new set of held contracts is

	​​ G​​ ​(t)​​  = ​  ⋃ 
b∈B

​​​ ​C​​ b​​(​G​​ ​(t−1)​​  ∪ ​ P​​ ​(t)​​)​​,

and the new set of unproposed contracts is

	​​ J​​ ​(t)​​  = ​ J​​ ​(t−1)​​\​P​​ ​(t)​​.​

It is straightforward to the verify that the algorithm terminates in ​T  ≤  | X |​ steps, 
because at least one contract is proposed at each step and no contract is proposed 
more than once.

Preliminaries.—The following claim formalizes the intuition that the set of avail-
able contracts is feasible at every step of deferred acceptance.

CLAIM A.1: For all ​1  ≤  t  ≤  T​, the sets ​​G​​ ​(t)​​​ and ​​G​​ ​(t−1)​​ ∪ ​P​​ ​(t)​​​ are feasible. Here, 
we set ​​G​​ ​(−1)​​  = ​ P​​ ​(0)​​  =  ∅​.

PROOF: 
We prove the claim by induction on ​t​. The base case of ​t  =  0​ is obvious.
Assume that the claim is true for ​t  =  k​. If ​T  =  k​, then there is nothing left to 

prove. Therefore, we can assume that ​T  >  k​. By construction, the set ​​P​​ ​(k+1)​​​ is fea-
sible and ​​P​ i​ 

​(k+1)​​  =  ∅​ for all ​i  ∈  ι​(​G​​ ​(k)​​)​​. It therefore follows from the inductive 
hypothesis that ​​G​​ ​(k)​​ ∪ ​P​​ ​(k+1)​​​ is feasible. Because

	​​ G​​ ​(k+1)​​  = ​  ⋃ 
b∈B

​​​ ​C​​ b​​(​G​​ ​(k)​​  ∪ ​ P​​ ​(k+1)​​)​  ⊆ ​ G​​ ​(k)​​  ∪ ​ P​​ ​(k+1)​​,​
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the set ​​G​​ ​(k+1)​​​ is also feasible, completing the proof of the inductive step. ∎
The following claim summarizes the key inductive argument in the proof of the 

“only if” direction of Theorem 1.

CLAIM A.2: Let ​​C ˆ ​​ be a branch priority profile that is DA-equivalent to ​C​. Denote 
the analogues of the sets ​​G​​ ​(t)​​, ​J​​ ​(t)​​, ​W​​ ​(t)​​​, and ​​P​​ ​(t)​​​, and the integer ​T​ in the deferred 
acceptance algorithm with branch priority profile ​​C ˆ ​​ by ​​​G ˆ ​​​ ​(t)​​, ​​J ˆ ​​​ ​(t)​​, ​​W ˆ ​​​ ​(t)​​, ​​P ˆ ​​​ ​(t)​​,​ and ​​T ˆ ​​, 
respectively. For all ​0  ≤  t  ≤  T​, we have ​t  ≤ ​ T ˆ ​​ and ​​(​​G ˆ ​​​ ​(t)​​, ​​J ˆ ​​​ ​(t)​​)​  = ​ (​G​​ ​(t)​​, ​J​​ ​(t)​​)​.​ 
Here, we set ​​W​​ ​(0)​​  = ​​ W ˆ ​​​ ​(0)​​  = ​ P​​ ​(0)​​  = ​​ P ˆ ​​​ ​(0)​​  =  ∅​.

PROOF: 
We proceed by induction on ​t​. The base case of ​t  =  0​ is obvious.
Assume that the claim is true for ​t  =  k​. If ​T  =  k​, then there is nothing left to 

prove. Therefore, we can assume that ​T  >  k​. The inductive hypothesis ensures that ​​

(​​G ˆ ​​​ ​(k)​​, ​​J ˆ ​​​ ​(k)​​)​  = ​ (​G​​ ​(k)​​, ​J​​ ​(k)​​)​.​ The formula for ​​W​​ ​(k+1)​​​ implies that ​​W​​ ​(k+1)​​  = ​​ W ˆ ​​​ ​(k+1)​​​.  
Because ​T  ≥  k + 1,​ we have ​​W​​ ​(k+1)​​  ≠  ∅​ and therefore ​​​W ˆ ​​​ ​(k+1)​​  ≠  ∅​. As a result, 
the definition of ​​T ˆ ​​ ensures that ​​T ˆ ​  ≥  k + 1​.

Because ​​W​​ ​(k+1)​​  = ​​ W ˆ ​​​ ​(k+1)​​​ and ​​J​​ ​(k)​​  = ​​ J ˆ ​​​ ​(k)​​​, we have that ​​P​​ ​(k+1)​​  = ​​ P ˆ ​​​ ​(k+1)​​​. It 
follows that

	​​​ J ˆ ​​​ ​(k+1)​​  = ​​ J ˆ ​​​ ​(k)​​\​​P ˆ ​​​ ​(k+1)​​  = ​ J​​ ​(k)​​\​P​​ ​(k+1)​​  = ​ J​​ ​(k+1)​​.​

Because ​​​G ˆ ​​​ ​(k)​​  = ​ G​​ ​(k)​​​ (by the inductive hypothesis), we have that ​​​G ˆ ​​​ ​(k)​​ ∪ ​​P ˆ ​​​ ​(k+1)​​  
= ​ G​​ ​(k)​​ ∪ ​P​​ ​(k+1)​​​. Claim A.1 guarantees that ​​G​​ ​(k)​​ ∪ ​P​​ ​(k+1)​​​ is feasible. Because ​​C ˆ ​​ is 
DA-equivalent to ​C​, it follows that

	​​ G​​ ​(k+1)​​  = ​  ⋃ 
b∈B

​​​​​C ˆ ​​​ b​​(​​G ˆ ​​​ ​(k)​​ ∪ ​​P ˆ ​​​ ​(k+1)​​)​  = ​  ⋃ 
b∈B

​​​​​C ˆ ​​​ b​​(​G​​ ​(k)​​ ∪ ​P​​ ​(k+1)​​)​​

	​ = ​  ⋃ 
b∈B

​​​​C​​ b​​(​G​​ ​(k)​​ ∪ ​P​​ ​(k+1)​​)​  = ​ G​​ ​(k+1)​​,​

completing the proof of the inductive step. ∎

Completion of the Proof of Theorem 1.—We first prove the “only if” direction. 
Assume that ​​C ˆ ​​ is DA-equivalent to ​C​, fix a preference profile for cadets, and work 
in the notation of Claim A.2. Claim A.2 guarantees that ​T  ≤ ​ T ˆ ​​ and, by symmetry, 
that ​​T ˆ ​  ≤  T​. Thus, we have that ​T  = ​ T ˆ ​​. Claim A.2 also guarantees that

	​​​ G ˆ ​​​ ​(​T ˆ ​)​​  = ​​ G ˆ ​​​ ​(T)​​  = ​ G​​ ​(T)​​,​

and therefore that the deferred acceptance algorithm with respect to ​​C ˆ ​​ returns 
the same allocation as the deferred acceptance with respect to ​C​. It follows that  
​​​C​​  =  ​​​C ˆ ​​​​.
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It remains to prove the “if” direction. Suppose that ​​C ˆ ​​ is not DA-equivalent to ​C​. 
Then, there exists a branch ​b​ and a feasible set ​Y  ⊆ ​ X​b​​​ such that ​​C​​ b​​(Y)​  ≠ ​​ C ˆ ​​​ b​​(Y)​​.  
Consider the cadet preference profile defined by ​i  : ​Y​i​​  ⪰  ∅.​ The deferred accep-
tance algorithm returns ​​​C ˆ ​​​ b​​(Y)​​ when the branch priority  profile is ​​C ˆ ​​ and returns ​​
C​​ b​​(Y)​​ when the branch priority  profile is ​C​. As a result, we can conclude that  
​​​C​​  ≠  ​​​C ˆ ​​​​.

The contrapositive of the previous paragraph proves the “if” direction of 
Theorem 1. ∎

B. Proof of Theorem 4

Let ​​Y​1​​  ⊆ ​ Y​2​​  ⊆ ​ X​b​​​ be sets of contracts. Let ​​W​j​​  = ​ C​​ b​​(​Y​j​​)​​ and let ​​I​j​​  =  ι​(​W​j​​)​​  
for ​j  =  1, 2.​ Because ​​C​​ b​​ is feasible, the set ​​W​j​​​ is feasible for ​j  =  1, 2.​ Thus, we 
have that ​​​C ˆ ​​​ b​​(​W​j​​)​  = ​ W​j​​​ for ​j  =  1, 2.​

We claim that

(A1)	​​​ C ˆ ​​​ b​​(​W​j​​ ∪ ​{z}​)​  = ​ W​j​​  for all z  ∈ ​ Y​j​​\​​(​Y​j​​)​​
​I​j​​
​​ and j  =  1, 2.​

Note that ​​W​j​​  ⊆ ​ W​j​​ ∪ ​{z}​  ⊆ ​ Y​j​​​ for all ​z  ∈  ​Y​j​​\​​(​Y​j​​)​​
​I​j​​
​​​. Because ​​C​​ b​​ satisfies the 

irrelevance of rejected contracts condition, it follows that ​​C​​ b​​(​W​j​​ ∪ ​{z}​)​  = ​ W​j​​​. 
Because ​​W​j​​​ is feasible and ​ι​(z)​  ∉ ​ I​j​​,​ the set ​​W​j​​ ∪ ​{z}​​ is feasible. Hence, we have  
that ​​​C ˆ ​​​ b​​(​W​j​​ ∪ ​{z}​)​  = ​ W​j​​​ since ​​C​​ b​​ and ​​​C ˆ ​​​ b​​ are DA-equivalent.

Because ​​​C ˆ ​​​ b​​ is substitutable, (A1) implies that ​​​C ˆ ​​​ b​​​(​Y​2​​)​​I\​I​j​​​​  =  ∅.​ Since ​​​C ˆ ​​​ b​​ was 
assumed to be feasible, we have that ​|​​C ˆ ​​​ b​​(​Y​j​​)​|  ≤  | ​I​j​​ |  =  | ​W​j​​ |,​ with equality if 
and only if ​ι​(​​C ˆ ​​​ b​​(​Y​j​​)​)​  = ​ I​j​​​. As ​​​C ˆ ​​​ b​​(​W​j​​)​  = ​ W​j​​​ and ​​W​j​​  ⊆ ​ Y​j​​,​ the law of aggregate 

demand for ​​​C ˆ ​​​ b​​ yields that

	​ | ​W​j​​ |  = ​ | ​​C ˆ ​​​ b​​(​W​j​​)​ |​  ≤  | ​​C ˆ ​​​ b​​(​Y​j​​)​ |  ≤  | ​W​j​​ |,​

so the two inequalities must be equalities. Thus, we have that ​ι​(​​C ˆ ​​​ b​​(​Y​2​​)​)​  
= ​ I​2​​​ and thus ​|​​C ˆ ​​​ b​​(​Y​2​​)​|  =  | ​W​2​​ |​.

Proof of Theorem 4(i).—Specialize to the case of ​​Y​2​​  = ​ Y​1​​ ∪ ​{y}​​ and let ​x  ∈ ​ Y​1​​​ 
satisfy ​​|​​(​Y​1​​)​​ι​(x)​​​|​  =  1​. Suppose that ​x  ∈ ​ W​2​​​. We divide into cases based on whether ​
ι​(x)​  =  ι​(y)​​ to prove that ​x  ∈ ​ W​1​​​.

Case 1: ​ι​(x)​  =  ι​(y)​.​ Because ​​C​​ b​​ is feasible, we have ​y  ∉ ​ C​​ b​​(​Y​2​​)​.​ By the irrel-
evance of rejected contracts, it follows that ​x  ∈ ​ C​​ b​​(​Y​2​​)​  = ​ C​​ b​​(​Y​1​​)​.​

Case 2: ​ι​(x)​  ≠  ι​(y)​​. In this case, note that ​​​(​Y​2​​)​​ι​(x)​​​  = ​ {x}​​. Because ​ι​(​​C ˆ ​​​ b​​(​Y​2​​)​)​  
= ​ I​2​​​ and ​x  ∈ ​ W​2​​,​ it follows that ​x  ∈ ​​ C ˆ ​​​ b​​(​Y​2​​)​.​ As ​​​C ˆ ​​​ b​​ is substitutable, we have ​
x  ∈ ​​ C ˆ ​​​ b​​(​W​1​​ ∪ ​{x}​)​.​ The contrapositive of (A1) applied to ​j  =  1​ and ​z  =  x​ guar-
antees that ​ι​(x)​  ∈ ​ I​1​​.​ Because ​​​(​Y​2​​)​​ι​(x)​​​  = ​ {x}​,​ it follows that ​x  ∈ ​ W​1​​.​
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The casework clearly exhausts all possibilities and thus proves that ​x  ∈ ​ W​1​​​. Taking ​​
Y​1​​  =  Y ∪ ​{x}​​ with ​ι​(x)​  ∉  ι​(Y)​​ arbitrary yields that ​​C​​ b​​ is unilaterally substitutable.

Proof of Theorem 4(ii).—As ​​​C ˆ ​​​ b​​(​W​1​​)​  = ​ W​1​​​ and ​​W​1​​  ⊆ ​ Y​2​​,​ the law of aggregate 
demand for ​​​C ˆ ​​​ b​​ yields that

	​ | ​W​1​​ |  = ​ | ​​C ˆ ​​​ b​​(​W​1​​)​ |​  ≤  | ​​C ˆ ​​​ b​​(​Y​2​​)​ |  ≤  | ​W​2​​ |.​

Since ​​Y​1​​ ⊆ ​Y​2​​ ⊆ ​X​b​​​ were arbitrary, ​​C​​ b​​ must satisfy the law of aggregate demand. ∎

Appendix B: DA-Equivalence and Slot-Specific Priorities

This section describes a sufficient condition for two slot-specific priorities (in 
the sense of Kominers and Sönmez 2016) to be DA-equivalent. I begin by giv-
ing necessary and sufficient conditions for two unit-demand choice functions to be 
DA-equivalent and then generalize to slot-specific priorities, which are obtained by 
combining unit-demand “slot” priorities. In Appendix C, I use the sufficient condi-
tion to derive Theorem 2.

A. Case of Unit-Demand Choice Functions

Two unit demand choice functions are DA-equivalent if they make the same com-
parisons between contracts with different cadets. Intuitively, this occurs if and only 
if the preferences differ only by permuting consecutive contracts with a single cadet, 
as swapping the order of acceptable contracts with different cadets alters a trade-off 
between contracts with different cadets.

I formalize this intuition in the following lemma. Let ​​C​​≻​ j​ 
b​​​​ denote the unit-demand 

choice function associated to a total order ​​≻​ j​ 
b​​ on ​​X​b​​ ∪ ​{∅}​​.

LEMMA B.1: Let ​​≻​ j​ 
b​​ and ​​​≻​​ ^ ​​ j​ b​​ be priority orders on ​​X​b​​ ∪ ​{∅}​​. The following are 

equivalent:

	 (i)	 The choice functions ​​C​​≻​ j​ 
b​​​​ and ​​C​​​≻ ˆ ​​ j​ b​​​​ are DA-equivalent.

	 (ii)	 We have that

	​ x ​ ≻​ j​ 
b​  ∅  ⇔  x ​​ ≻ ˆ ​​ j​ b​  ∅​

		  for all ​x  ∈ ​ X​b​​​ and that

​	 x ​ ≻​ j​ 
b​   x′    and    x′ ​​ ≻ ˆ ​​ j​ b​  x  ⇒  ι​(x)​  =  ι​(x′)​​

		  for all ​x, x′  ∈ ​ X​b​​​ such that ​x′  ​≻​ j​ 
b​  ∅​.
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PROOF: 
First, assume that Condition (i) is satisfied—that is, suppose that ​​C​​≻​ j​ 

b​​​​ is 
DA-equivalent to ​​C​​​≻ ˆ ​​ j​ b​​​​. For all ​x  ∈ ​ X​b​​​, we have that

	​ x ​ ≻​ j​ 
b​  ∅  ⇔ ​ C​​≻​ j​ 

b​​​​(​{x}​)​  = ​ {x}​  ⇔ ​ C​​​≻ ˆ ​​ j​ b​​​​(​{x}​)​  = ​ {x}​  ⇔  x ​​ ≻ ˆ ​​ j​ b​  ∅​

because ​​{x}​​ is feasible. For all ​x, x′  ∈ ​ X​b​​​ with ​ι​(x)​  ≠  ι​(​x ′ ​)​​ and ​x′ ​ ≻​ j​ 
b​  ∅,​ we have 

that

	​ x  ​≻​ j​ 
b​  ∅  ⇔ ​ C​​≻​ j​ 

b​​​​(​{x, x′}​)​  = ​ {x}​  ⇔ ​ C​​​≻ ˆ ​​ j​ b​​​​(​{x, x′}​)​  = ​ {x}​  ⇔  x  ​​≻ ˆ ​​ j​ b​  x′​

because ​​{x, x′}​​ is feasible. Therefore, Condition (ii) is satisfied.
Next, suppose that Condition (ii) is satisfied. Let ​Y  ⊆  X​ be a feasible set of con-

tracts. Define a set

	​ W  = ​ {x  ∈  Y | x  ​≻​ j​ 
b​  ∅}​  = ​ {x  ∈  Y | x  ​​≻ ˆ ​​ j​ b​  ∅}​.​

Note that ​W​ is feasible. Condition (ii) and the assumption that ​W​ is feasible ensure 
that the restriction of ​​≻​ j​ 

b​​ to ​W​ is the same as the restriction of ​​​≻ ˆ ​​ j​ b​​ to ​W​. Therefore, 
we have that

	​​ C​​≻​ j​ 
b​​​​(Y)​  = ​ C​​≻​ j​ 

b​​​​(W)​  = ​ C​​​≻ ˆ ​​ j​ b​​​​(W)​  = ​ C​​​≻ ˆ ​​ j​ b​​​​(Y)​.​

Because ​Y​ was an arbitrary feasible set of contracts, it follows that ​​C​​≻​ j​ 
b​​​​ is 

DA-equivalent to ​​C​​​≻ ˆ ​​ j​ b​​​​, which is Condition (i). ∎

B. Extension to Slot-Specific Priorities

Kominers and Sönmez (2016) defined a special class of choice functions for 
branches called the choice functions associated to slot-specific priorities. Let ​b​ be a 
branch and let ​​≻​​ b​  = ​​ (​≻​ i​ 

b​)​​i≤k​​​ be a profile of ​k​ total orders on ​​X​b​​ ∪ ​{∅}​​. The choice 
function associated to slot-specific priority with slot priorities ​​≻​​ b​​ is the choice func-
tion ​​C​​≻​​ b​​​​ defined as follows. Fix a set ​Y  ⊆ ​ X​b​​​, and run the following procedure for ​
1  ≤  t  ≤  k​ to compute ​​C​​≻​​ b​​​​(Y)​​.

Step ​t​: If no available contract in ​Y​ is preferred under ​​≻​ t​ 
b​​ to ​∅​, then proceed to 

the next step. Otherwise, accept the available contract ​x  ∈  Y​ that is most preferred 
under ​​≻​ t​ 

b​​ and remove from consideration all other contracts with ​ι​(x)​​.

I now prove a sufficient condition for the DA-equivalence of the choice functions 
associated to two sequences of slot priorities.

PROPOSITION B.1: Let ​b​ be a branch and let ​​≻​​ b​​ and ​​​≻ ˆ ​​​ b​​ be profiles of ​k​ total 
orders on ​​X​b​​ ∪ ​{∅}​​. If ​​C​​≻​ j​ 

b​​​​ and ​​C​​​≻ ˆ ​​ j​ b​​​​ are DA-equivalent for all ​1  ≤  j  ≤  k​, then ​​C​​≻​​ b​​​​ 
and ​​C​​​≻ ˆ ​​​ b​​​​ are DA-equivalent.
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Intuitively, the slot priorities ​​≻​​ b​​ and ​​​≻ ˆ ​​​ b​​ only differ in their trade-offs between 
contracts with individual cadets. As a result, only comparisons between contracts 
with individual cadets differ at each step of the computation of the corresponding 
slot-specific priorities. Since only comparisons between contracts with individual 
cadets differ at each step of the computation, only trade-offs between contracts with 
individual cadets differ between ​​C​​≻​​ b​​​​ and ​​C​​​≻ ˆ ​​​ b​​​​. Thus, the choice functions ​​C​​≻​​ b​​​​ and ​​
C​​​≻ ˆ ​​​ b​​​​ are DA-equivalent.

PROOF: 
Let ​Y  ⊆  X​ be a feasible set of contracts. We prove by induction on ​t​ that the first ​

t​ steps of the computation of ​​C​​≻​​ b​​​​(Y)​​ and ​​C​​​≻ ˆ ​​​ b​​​​(Y)​​ agree. The base case of ​t  ≤  0​ is 
obvious. Assume that the first ​m​ steps of the computations of ​​C​​≻​​ b​​​​(Y)​​ and ​​C​​​≻ ˆ ​​​ b​​​​(Y)​​ 
agree, with ​m  <  k​. Let ​A  ⊆  Y​ be the set of contracts that are available at Step ​
m + 1​ in the computation of ​​C​​≻​​ b​​​​(Y)​​. The inductive hypothesis guarantees that ​A​ 
is also the set of contracts that are available at Step ​m + 1​ in the computation of  
​​C​​​≻ ˆ ​​​ b​​​​(Y)​​. Because ​​≻​ m+1​ 

b  ​​ is DA-equivalent to ​​​≻ ˆ ​​ m+1​ 
b ​ ​, we have that

	​​ C​​≻​ m+1​ 
b  ​​​​(A)​  = ​ C​​​≻ ˆ ​​ m+1​ 

b ​ ​​​(A)​,​

Hence, the computations of ​​C​​≻​​ b​​​​(Y)​​ and ​​C​​​≻ ˆ ​​​ b​​​​(Y)​​ agree at Step ​m + 1​ as well, com-
pleting the proof of the inductive step.

Taking ​t  =  k​ yields that ​​C​​≻​​ b​​​​(Y)​  = ​ C​​​≻ ˆ ​​​ b​​​​(Y)​​. Because ​Y​ was an arbitrary feasible 
set of contracts, it follows that ​​C​​≻​​ b​​​​ is DA-equivalent to ​​C​​​≻ ˆ ​​​ b​​​​. ∎

Theorem  1 and Proposition  B.1 show that permuting consecutive sequences of 
contracts with a single cadet in slot priorities does not affect the deferred acceptance 
mechanism.

Appendix C: Proofs of Results on Cadet-Branch Matching

A. Proof of Theorem 2

Notice that the choice functions ​​C​ BfYC​ b  ​​ are slot-specific with ​​q​ b​ 
1​ + ​q​ b​ 

2​​ slots, where 
each sub-step corresponds to a slot (Sönmez and Switzer 2013, Kominers and 
Sönmez 2016). Similarly, the substitutable choice functions ​​C​ sBfYC​ b  ​​ are associated to 
slot-specific priorities with ​​q​ b​ 

1​ + ​q​ b​ 
2​​ slots, where each sub-step corresponds to a slot.

Note that the slot priorities in the first steps of the processes defining ​​C​ sBfYC​ b  ​​ and ​​
C​ BfYC​ b  ​​ differ only in the relative orders of contracts with a given cadet. It follows from 
Lemma B.1 and Proposition B.1 that ​​C​sBfYC​​​ is DA-equivalent to ​​C​BfYC​​​. Theorem 1 
implies that ​​​BfYC​​  =  ​​sBfYC​​.​ ∎

B. Proof of Proposition 1

Fix a branch ​b​. Theorem 1 in Shapley (1962) guarantees that ​​u​b​​​ is a grossly 
substitutable valuation (see also Theorem 13 in Hatfield and Milgrom 2005). 
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Theorem 2 in Hatfield and Milgrom (2005) and Proposition 2 show that ​​C​ sBfYC​ b  ​​ is 
substitutable. Because ​​u​b​​​ is quasi-linear and induces a substitutable choice function ​​
C​sBfYC​​​, Theorem 7 in Hatfield and Milgrom (2005) guarantees that ​​C​ sBfYC​ b  ​​ satisfies 
the law of aggregate demand.

The second part of the proposition follows from the first part due to Theorem 1 in 
Hatfield and Kojima (2009), which asserts that the deferred acceptance mechanism 
is group strategy-proof if all branches’ choice functions are feasible, substitutable, 
and satisfy the law of aggregate demand.32 ∎

C. Proof of Proposition 2

Fix a branch ​b​. To prove Proposition  2, we begin by defining a matrix ​​α​​ b​​ of 
assignment values. We then prove several properties of value-maximizing assign-
ments. We use these properties to show that the BfYC choice is the only possible 
value-maximizing assignment, and it is straightforward to conclude the proof from 
this observation.

Definition of the Assignment Value Matrix.—In order to define the assignment 
value matrix, we need to define a “small” quantity ​δ​ and a “large” quantity ​Δ​. Let ​
δ  ∈ ​ ℝ​​ +​​ be such that

	​ δ  < ​   inf​ 
1≤ℓ<ℓ′≤

​​ ​ 1 _ 
​​ℓ​​

 ​ − ​ 1 ___ 
​​ℓ′​​

 ​,​

and let ​Δ  ∈  ​ℝ​​ +​​ be such that

	​ Δ  > ​  1 _ 
​​1​​

 ​.​

Any difference in contract inverse-lengths dominates a value difference of ​δ​, while a 
value difference of ​Δ​ dominates any difference in contract inverse-lengths.33

The assignment values are formally defined as follows. Each branch ​b​ has ​​q​ b​ 
1​ + ​

q​ b​ 
2​​ slots. Let

	​​ c​1​​ ​ ≻​ OML​ b  ​ ​ c​2​​ ​ ≻​ OML​ b  ​ ⋯ ​≻​ OML​ b  ​  d​c​M​​​

be the set of cadets that are acceptable to a branch ​b​ in order of merit. For ​i  ∈  I​ and ​
1  ≤  j  ≤ ​ q​ b​ 

1​ + ​q​ b​ 
2​​, define the value of ​i​ to ​b​ in slot ​j​ as

     ​​     α​ i, j​ 
b ​  = ​

⎧
 

⎪

 ⎨ 
⎪

 

⎩
​
​(M + 2 − k)​Δ

​ 
if i  = ​ c​k​​ and j  ≤ ​ q​ b​ 

1​
​   Δ + ​ δ _ 

k
 ​​  if i  = ​ c​k​​ and ​q​ b​ 

1​  <  j  ≤ ​ q​ b​ 
1​ + ​q​ b​ 

2​.​    

0

​ 

if  ∅ ​ ≻​ OML​ b  ​  d

 ​​​

32 Aygün and Sönmez (2012, 2013) showed that the irrelevance of rejected condition is crucial to the stability 
and strategy-proofness of deferred acceptance. However, as Aygün and Sönmez (2012, 2013) showed, substitut-
ability and the law of aggregate demand together imply the strong axiom of revealed preferences, which in turn 
implies the irrelevance of rejected contracts condition. The fact that the substitutable BfYC choice functions satisfy 
the strong axiom of revealed preferences can easily be seen directly from Proposition 2.

33 In Section 1, I take ​δ  =  1/100​ and ​Δ  =  1​.
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The first ​​q​ b​ 
1​​ slots give strong priority to cadets that are high on the order of merit, 

while the next ​​q​ b​ 
2​​ slots give a slight priority to cadets that are high on the order of 

merit. All slots strongly dis-prefer unacceptable cadets. The remainder of this sec-
tion is devoted to proving that

	​​ arg max​ 
Z⊆Y

​ ​ ​ u​b​​​(Z)​  = ​ {​C​​ b​​(Y)​}​​

for all ​Y  ⊆ ​ X​b​​​.

Basic Properties of Optimal Assignments.—Note that ​​α​ i, j​ 
b ​  ≥ ​ α​ i,k​ 

b  ​​ for all ​
1  ≤  j  ≤  k  ≤ ​ q​ b​ 

1​ + ​q​ b​ 
2​​ and all cadets ​i​. Therefore, we can assume that only the 

first ​min​{| E |, ​q​ b​ 
1​ + ​q​ b​ 

2​}​​ slots are used in an optimal assignment of a set of cadets in ​
E​ to slots—we have that

	​​ γ​b​​​(E)​  = ​   max​ 
​{​i​1​​,​i​2​​,… ,​i​m​(E)​​​}​⊆A

​​ ​ ∑ 
j=1

​ 

m​(E)​

​​​α​ ​i​j​​, j​ 
b  ​,​

where ​m​(E)​  =  min​{| E |, ​q​ b​ 
1​ + ​q​ b​ 

2​}​.​ Note that whenever ​i ​ ≻​ OML​ b  ​  i​′, we have that  
​​α​ i, j​ 

b ​  > ​ α​ i′, j​ 
b ​ ​ for all ​1  ≤  j  ≤ ​ q​ b​ 

1​ + ​q​ b​ 
2​​ and ​​α​ i, j​ 

b ​ + ​α​ i′, j′​ 
b ​   ≥ ​ α​ i, j​ 

b ​ + ​α​ i′,i​ 
b ​ ​ for all ​

1  ≤  j  <  j′  ≤ ​ q​ b​ 
1​ + ​q​ b​ 

2​​. As a result, we have that

	​​ γ​b​​​(E)​  = ​  ∑ 
j=1

​ 

m​(E)​

​​ ​α​ ​i​j​​, j​ 
b  ​,​

where

	​ E  = ​ {​i​1​​  ​≻​ OML​ b  ​  ​i​2​​  ​≻​ OML​ b  ​ ⋯ ​≻​ OML​ b  ​  ​i​|E|​​}​.​

Let ​​I​b​​  = ​ {i  ∈  I | d  ​≻​ OML​ b  ​  ∅}​​ and define ​f  : ​I​b​​  → ​ {1, … , M}​​ by ​f​(​d​k​​)​  =  k​. 
The discussion of the previous paragraph and the explicit definition of the assign-
ment values ensure that

   ​​   γ​b​​​(E)​  =  min​{m′​(E)​, ​q​ b​ 
1​ + ​q​ b​ 

2​}​Δ 

	 + ​  ∑ 
t=1

​ 

min​{m′​(E)​,​q​ b​ 
1​}​

​​ ​(M + 1 − ​k​t​​​(E)​)​Δ + ​  ∑ 
t=​q​ b​ 

1​

​ 

min​{m′​(E)​,​q​ b​ 
1​+​q​ b​ 

2​}​

​​ ​  δ _ 
​k​t​​​(E)​

 ​,​

where ​m′(E)  =  | E ∩ ​I​b​​ |​ and

	​ f​(E ∩ ​I​b​​)​  = ​ {​k​1​​​(E)​  <  ⋯  < ​ k​m′​(E)​​​​(E)​}​.​

We use this formula for ​​γ​b​​​ implicitly during the remainder of the proof of the 
proposition.
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Proof That Any Maximizer of ​​u​b​​​ Must Be the BfYC Choice Set.—Let ​Y  ⊆  X​ and 
let ​​x​t​​  ∈  Y ∪ ​{∅}​​ be selected in the ​t​th sub-step of the process defining ​​C​ sBfYC​ b  ​​. 
Suppose that ​A  ⊆  Y​ and that ​A  ≠ ​ C​ sBfYC​ b  ​​(Y)​​. We claim that there exists ​A′  ⊆  Y​ 
such that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​​. First, we show that we can make three simplifying 
assumptions.

	 (A)	​ A  ⊆ ​ Y​b​​​. Indeed, note that ​​u​b​​​(A)​  ≤ ​ u​b​​​(A ∩ ​Y​b​​)​​ with equality if and only if ​
A  ⊆ ​ Y​b​​​.

	 (B)	​ A​ is feasible. Let ​A′  ⊆  A​ be such that ​ι​(​A​ b​ ′ ​)​  =  ι​(​A​b​​)​​ and ​A​′ is feasible. 
Then, ​​γ​b​​​(ι​(​A​ b​ ′ ​)​)​  = ​ γ​b​​​(ι​(​A​b​​)​)​,​ so ​​u​b​​​(A′)​  ≥ ​ u​b​​​(A)​​ with equality if and only 
if ​A  =  A′​.

	 (C)	 There do not exist ​​(i, b, ​​ℓ​​)​  ∈  A​ and ​​(i, b, ​​​ℓ ′ ​​​)​  ∈  Y  \ A​ with ​ℓ  <  ℓ​′. If such ​

i, b, ℓ, ℓ′​ exist, let ​A′  =  A ∪ ​{​(i, b, ​​ℓ′​​)​}​\​{​(i, b, ​​ℓ​​)​}​.​ Then, we have that  

​​γ​b​​​(ι​(​A​ b​ ′ ​)​)​  = ​ γ​b​​​(ι​(​A​b​​)​)​​ and hence that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​​.

We can therefore assume that Conditions (A), (B), and (C) are all satisfied. To prove 
the claim in general, we divide into cases based on the first place in the process 
defining ​​C​sBfYC​​​ at which ​A​ differs from ​​C​ sBfYC​ b  ​​(Y)​​.

Case 1: There exists ​1  ≤  t  ≤ ​ q​ b​ 
1​​ such that ​​x​t​​  ∉  A ∪ ​{∅}​​. Suppose that ​​

x​t​​  ∈  A ∪ ​{∅}​​ for all ​t  ≤  T​ and ​​x​T+1​​  ∉  A ∪ ​{∅}​​. The definition of ​​C​ sBfYC​ b  ​​ ensures 
that ​ι​(​x​t​​)​  = ​ k​t​​​(ι​(​Y​b​​)​)​​ and that ​​x​t​​​ is the longest contract with ​​k​t​​​(ι​(​Y​b​​)​)​​ in ​Y​ for all ​
1  ≤  t  ≤  T + 1​. Condition (C) ensures that no contract with ​​k​T+1​​​(ι​(​Y​b​​)​)​​ is in ​A​.

Let ​A′  =  A ∪ ​{​x​T+1​​}​​. We claim that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​​. If ​| A |  =  T,​ then clearly 
we have that ​​γ​b​​​(ι​(A′)​)​  ≥  2Δ + ​u​b​​​(A)​​ and hence that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​ + Δ  >  
​u​b​​​(A)​​. Therefore, we can assume that ​| A |  >  T​.

The definition of ​​x​T+1​​​ ensures that ​​k​T+1​​​(ι​(​Y​b​​)​)​ ​ ≻​ OML​ b  ​ ​ k​t​​​(ι​(A)​)​​ for all ​t  >  T​. 
The definition of ​T​ ensures that ​​k​t​​​(ι​(A)​)​  ​≻​ OML​ b  ​  ​k​T+1​​​(ι​(​Y​b​​)​)​​ for all ​t  ≤  T​. It 
follows that ​​k​T+1​​​(ι​(A′)​)​  ​≻​ OML​ b  ​  ​k​T+1​​​(ι​(A)​)​​ and ​​k​t​​​(ι​(A′)​)​  ​≻​ OML​ b  ​  ​k​t​​​(ι​(A)​)​​ for all ​
t  ≤  | ι​(A)​ |​. Because ​T  < ​ q​ b​ 

1​​ and due to Condition (A), it follows that ​​γ​b​​​(ι​(A′)​)​ 
≥ ​ γ​b​​​(ι​(A)​)​ + Δ​. Since ​Δ  >  1/​​1​​​, it follows that ​​u​b​​​(ι​(A′)​)​  > ​ u​b​​​(ι​(A)​)​,​ as 
desired.

Case 2: ​​x​t​​  ∈  A ∪ ​{∅}​​ for all ​1  ≤  t  ≤ ​ q​ b​ 
1​​ and there exists ​​q​ b​ 

1​  <  t  ≤ ​ q​ b​ 
1​ + ​

q​ b​ 
2​​ such that ​​x​t​​  ∉  A ∪ ​{∅}​​. Suppose that ​​x​t​​  ∈  A ∪ ​{∅}​​ for all ​t  ≤  T + ​q​ b​ 

1​​ and ​​
x​T+​q​ b​ 

1​+1​​  ∉  A ∪ ​{∅}​​. The definition of ​​C​ sBfYC​ b  ​​ ensures that ​​x​T+​q​ b​ 
1​+1​​​ is the longest 

contract with ​ι​(​x​T+​q​ b​ 
1​+1​​)​​ in ​Y​ for all ​1  ≤  t  ≤  T + 1​. Condition (C) ensures that no 

contract with ​ι​(​x​T+​q​ b​ 
1​+1​​)​​ is in ​A​.

We now divide into cases based on the size of ​A​ to construct ​A′​.

Subcase 2.1: ​| A |  ≤  T + ​q​ b​ 
1​​. Let ​A′  =  A ∪ ​{​x​T+​q​ b​ 

1​+1​​}​​. It is straightforward to 
verify that ​​γ​b​​​(ι​(A′)​)​  >  Δ + ​u​b​​​(A)​​ and hence that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​.​
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Subcase 2.2: ​| A |  >  T + ​q​ b​ 
1​​. Let

	​ B  =  A\​{​x​t​​  | 1  ≤  t  ≤  T + ​q​ b​ 
1​}​.​

Because ​| A |  >  T + ​q​ b​ 
1​​, the set ​B​ is nonempty. Let ​x′  ∈  B​ be an arbitrary contract, 

and let ​A′  =  A ∪ ​{​x​T+​q​ b​ 
1​+1​​}​\​{​x ′ ​}​​.

By assumption, we have that

	​​ {​x​t​​ | 1  ≤  t  ≤  T + ​q​ b​ 
1​}​  ⊆  A.​

As a result, we have that ​​k​t​​​(ι​(A)​)​  ≠  ι​(​x​T+​q​ b​ 
1​+1​​)​​ for all ​t  ≤ ​ q​ b​ 

1​​. It follows that  
​​γ​b​​​(A′)​  ≥ ​ γ​b​​​(A)​ − δ​. If ​​x​T+​q​ b​ 

1​+1​​​ is longer than ​x′​, then we have that

	​​   ∑ 
​(i,b,t)​∈A

​​​ ​ 1 _ t ​  >  δ + ​  ∑ 
​(i,b,t)​∈A′

​​​ ​ 1 _ t ​.​

It follows that

	​​ u​b​​​(A′)​ − ​u​b​​​(A)​  > ​ γ​b​​​(A′)​ − ​γ​b​​​(A)​ + δ  >  0.​

Therefore, we can assume that ​x′​ is at least as long as ​​x​T+​q​ b​ 
1​+1​​​. Conditions (A) and 

(B) and the definition of ​​C​ sBfYC​ b  ​​ imply that then ​​x​T+​q​ b​ 
1​+1​​​ and ​x′​ have the same length 

and that ​​x​T+​q​ b​ 
1​+1​​ ​ ≻​ OML​ b  ​  x′​. It follows that ​​γ​b​​​(A′)​  ≥ ​ γ​b​​​(A)​ + δ​ and that

	​​   ∑ 
​(i,b,t)​∈A

​​​ ​ 1 _ t ​  = ​   ∑ 
​(i,b,t)​∈B

​​​ ​ 1 _ t ​.​

Therefore, we have that

	​​ u​b​​​(A′)​  ≥ ​ u​b​​​(A)​ + δ  > ​ u​b​​​(A)​,​

as desired.

In either sub-case, we have constructed a set ​A′  ⊆  Y​ such that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​​. 
The sub-cases clearly exhaust all possibilities in the case under consideration.

Case 3: ​​C​ sBfYC​ b  ​​(Y)​  ⊊  A​. The definition of ​​C​sBfYC​​​ guarantees that

	​​ | ​C​ sBfYC​ b  ​​(Y)​ |​  =  min​{| ι​(​Y​b​​)​ |, ​q​ b​ 
1​ + ​q​ b​ 

2​}​.​

Conditions  (A) and  (B) imply that ​| A |  > ​ q​ b​ 
1​ + ​q​ b​ 

2​​. Let ​E  = ​ {​k​1​​​(A)​, … , 
 ​k​​q​ b​ 

1​+​q​ b​ 
2​​​​(A)​}​​. There exists a unique set of contracts ​A′  ⊂  A​ with ​ι​(A′)​  =  E​. We have 

that ​γ​(ι​(​A​ b​ ′ ​)​)​  =  γ​(ι​(​A​b​​)​)​​ and hence that ​​u​b​​​(A′)​  > ​ u​b​​​(A)​​.

Because

	​​ C​ sBfYC​ b  ​  = ​ {​x​t​​ | 1  ≤  t  ≤ ​ q​ b​ 
1​ + ​q​ b​ 

2​}​\​{∅}​​.



220	 AMERICAN ECONOMIC JOURNAL: MICROECONOMICS� AUGUST 2019

Cases 1 and 2 imply the claim if ​​C​ sBfYC​ b  ​​(Y)​  ⊄  A.​ Case 3 implies the claim if ​​
C​ sBfYC​ b  ​​(Y)​  ⊊  A​. These cases exhaust all possibilities because ​A  ≠ ​ C​ sBfYC​ b  ​​(Y)​​ by 
assumption.

Completion of the Proof.—We have proven that if

	​ A  ∈ ​ arg max​ 
Z⊆Y

​ ​ ​ u​b​​​(Z)​,​

then ​A  = ​ C​ sBfYC​ b  ​​(Y)​​. Because ​​arg max​Z⊆Y​​ ​u​b​​​(Z)​​ is nonempty, Proposition 2 fol-
lows. ∎

D. Formal Statement and Proof of Theorem 3

In order to state Theorem 3 formally, I need to define what it means for a match-
ing market to be isomorphic to a Kelso-Crawford (1982) economy.

DEFINITION C.1: A Kelso-Crawford economy​​(, u)​​ consists of

•	 a finite set of salaries ​  ⊆ ​ ℝ​​ +​​ with maximum ​​s​∞​​​;
•	 for each cadet ​i  ∈  I​, a utility function ​​u​i​​  :  ​(H × )​ ∪ ​{∅}​  →  ℝ​ that is injec-

tive and increasing in salary;
•	 for each branch ​b  ∈  B​, a valuation function ​​γ​b​​  :  ​(X)​  →  ℝ,​ which defines a 

quasi-linear utility function ​​u​b​​  :  ​(I)​ × ​​​ I​  →  ℝ​ given by

	​​ u​b​​​(E, 𝐬)​  = ​ γ​b​​​(E)​ − ​ ∑ 
d∈E

​​​ ​s​i​​;​

such that the following conditions are satisfied:

•	 for all branches ​b​, the demand function ​​D​​ b​  :  ​​​ I​  →  ​(I)​​ defined by

	​​ D​​ b​​(𝐬)​  = ​ arg max​ 
E⊆D

​ ​ ​ u​b​​​(E, 𝐬)​​

	 is single-valued and grossly substitutable (in the sense of Kelso and Crawford 
1982)—if ​𝐬  ≤  𝐬​′ and ​​s​i​​  = ​ s​ i​ ′​​, then

	​ i  ∈ ​ D​​ b​​(𝐬)​  ⇒  i  ∈ ​ D​​ b​​(𝐬′)​;​

•	 for all cadets ​d,​ branches ​b​, and salary vectors ​𝐬  ∈ ​ ​​ I​​ with ​​s​i​​  = ​ s​∞​​,​ we have 
that ​d  ∉ ​ D​​ b​​(𝐬)​​.

Thus, a Kelso-Crawford economy is a discrete-salary market in the sense of Kelso 
and Crawford (1982) where non-integral salaries are allowed. Unlike Echenique 
(2012), I require cadets’ utility functions to be strictly increasing in salary and 
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branches’ utility functions to be quasi-linear in salary.34 These two additional 
requirements were assumed by Kelso and Crawford (1982) and offer a more realis-
tic interpretation of salaries, as discussed in detail in Section VC.

The following definition of an isomorphism refines the definition of an embed-
ding of a matching market with contracts into a matching market with salaries 
(Echenique 2012).

DEFINITION C.2: An isomorphism of a matching market ​​(X, ​C ˆ ​, ≻)​​ with a Kelso-
Crawford economy ​​(, u)​​ is a function

​	 ς : X  →  \​{​s​∞​​}​​

such that
•	 the induced function ​​(ι, β, ς)​ : X  →  I × B × ​(\​{​s​∞​​}​)​,​ defined by

	​ x  ↦ ​ (ι​(x)​, β​(x)​, ς​(x)​)​,​

is bijective;
•	 for all cadets ​i  ∈  I​ and all sets of contracts ​Y  ⊆ ​ X​i​​​, we have that

	​​ C​​ i​​(Y)​  = ​  arg max​ 
w∈Y′∪​{∅}​

​​ ​u​i​​​(x)​,​

where ​Y′​ is the set of branch-salary pairs defined as

	​ Y′  = ​ {​(β​(x)​, ς​(x)​)​ | x  ∈  Y}​;​

•	 for all branches ​b  ∈  B​ and all sets of contracts ​Y  ⊆ ​ X​b​​​, we have that

	​​ C​​ b​​(Y)​  = ​ {​(d, ​s​i​​)​ | i  ∈ ​ D​​ b​​(𝐬)​}​,​

where ​𝐬​ is the salary vector defined component-wise by

	​​ s​i​​  =  min​{​s​∞​​}​ ∪ ς​(​Y​i​​ ∩ ​Y​b​​)​​

for all ​i  ∈  I​.

We call ​ς​(x)​​ the salary corresponding to contract ​x​.

An isomorphism exhibits a matching market as effectively identical to a  
Kelso-Crawford economy. More precisely, an isomorphism between a matching mar-
ket and a Kelso-Crawford economy assigns salaries to contracts such that the agents’ 
choice functions in the matching market maximize utility in the Kelso-Crawford 
economy. Moreover, every possible combination of a cadet, a branch, and a wage in 

34 Like Echenique (2012), Kominers (2012) and Schlegel (2015) did not require utility to be monotone or 
quasi-linear in salaries.
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the Kelso-Crawford economy is required to be associated to a unique contract in the 
matching market. The precise statement of Theorem 3 builds on this formalism.

THEOREM 3 (Formal Statement): Let ​g : ​핉​​ +​  → ​ 핉​​ +​​ be a strictly decreasing 
function. If all cadets have salary-monotonic preferences, then there exist a Kelso-
Crawford economy ​​(, u)​​ and an isomorphism ​ς​ of ​​(X, ​C​sBfYC​​, ≻)​​ with ​​(, u)​​ such 
that ​ς​(i, b, t)​  =  g​(t)​​ for all ​​(i, b, t)​  ∈  X​. The cadet-proposing deferred acceptance 
algorithm corresponds to the descending salary adjustment process under any such 
isomorphism.

PROOF: 
For all ​b  ∈  B​, let ​​γ​b​​​ be the assignment valuation defined an assignment value 

matrix ​​α​​ b​​ satisfying the conditions of Proposition 2. Let

	​​ s​∞​​  > ​ sup​ 
b∈B

​ ​ ​sup​ 
I′⊆I

​ ​  ​γ​b​​​(I′)​​

and let

	​   = ​ {​ 1 _ 
​​ℓ​​

 ​ ​|​​ 1  ≤  ℓ  ≤  }​ ∪ ​{​s​∞​​}​.​

The definition of ​​ does not depend on ​b​ due to the second and third hypothe-
ses of the proposition. Define ​ς : X  →  \​{​s​∞​​}​​ by ​ς​(i, b, t)​  =  1/t​. Fix a cadet ​i​.  
Because ​i​ has a salary-monotonic preference, there exists a utility function  
​​u​i​​ : ​(H × )​ ∪ ​{∅}​  →  핉​ such that

•	​​ u​i​​​ is injective;
•	​​ u​i​​​(h, ς(t))​  < ​ u​i​​​(∅)​​ if ​∅ ​ ≻​i​​ ​ (i, b, t)​​;
•	​​ u​i​​​(​(i, b, ​​ℓ​​)​)​  < ​ u​𝒾​​​(​(i, b, ​​ℓ′​​)​)​​ for all cadets ​i​ and ​1  ≤  ℓ  <  ℓ′  ≤  ​;
•	 for all ​Y  ⊆ ​ X​i​​​, we have that

	​​ C​​ i​​(Y)​  = ​  arg max​ 
w∈Y′∪​{∅}​

​​ ​u​i​​​(w)​,​

where

	​ Y′  = ​ {​(β​(x)​, ς​(x)​)​ | x  ∈  Y}​.​

The choice of ​​s​∞​​​ guarantees that for all cadets ​i,​ branches ​b​, and salary vectors  
​𝐬  ∈ ​ ​​ I​​ with ​​s​i​​  = ​ s​∞​​,​ we have ​i  ∉ ​ D​​ b​​(𝐬)​​. Since ​​γ​b​​​ is an assignment valuation, 
Theorem 1 in Shapley (1962) guarantees that the branches’ demand functions ​​D​​ b​​ 
are grossly substitutable. Thus, ​​(, u)​​ is a Kelso-Crawford economy.

The second and third hypotheses of the theorem ensure that the induced func-
tion from ​X​ to ​I × B × ​(\​{​s​∞​​}​)​​ defined by ​​(i, b)​  ↦ ​ (i, b, ς​(t)​)​​ is bijective. The 
definition of ​​u​i​​​ ensures the compatibility between ​​C​​ i​​ and ​​u​i​​​ required by Definition C.2. 
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The definition of the valuations ​​​(​γ​b​​)​​b∈B​​​ guarantees that for all branches ​b  ∈  B​ and 
all sets of contracts ​Y  ⊆ ​ X​b​​​, we have that

	​​ C​​ b​​(Y)​  = ​ {​(d, ​s​i​​)​ | i  ∈ ​ D​​ b​​(𝐬)​}​,​

where ​𝐬  ∈ ​ ​​ I​​ is defined component-wise by

	​​ s​i​​  = ​   max​ 
s∈ς​(​Y​i​​ ∩​Y​b​​)​∪​{​s​∞​​}​

​​ s​

for all ​i  ∈  I​. Therefore, the function ​ς​ defines an isomorphism from ​​(X, ​C​sBfYC​​, ≻)​​ 
to ​​(, u)​​.

The last assertion of the theorem is clear, because both the cadet-proposing 
deferred acceptance algorithm and the descending salary adjustment process pro-
duce the cadet-optimal stable allocation by Theorem 4 in Hatfield and Milgrom 
(2005)(see also Section IID in Echenique 2012). ∎
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