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People spend considerable time on digital media, and during this time they are often exposed to 

others’ emotion expressions. This exposure can lead their own emotion expressions to become 

more like others’ emotion expressions, a process we refer to as digital emotion contagion. This 

paper reviews the growing literature on digital emotion contagion. After defining emotion 

contagion, we suggest that one unique feature of digital emotion contagion is that it is mediated 

by digital media platforms that are motivated to upregulate users’ emotions. We then turn to 

measurement, and consider the challenges of demonstrating that digital emotion contagion has 

occurred, and how these challenges have been addressed. Finally, we call for a greater focus on 

understanding when emotion contagion effects will be strong versus weak or non-existent.  
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The Ubiquity of Digital Emotion Contagion 

In 2014, PNAS published a study that sought to demonstrate emotion contagion on social 

media using an experimental design [1]. In this study, the content that Facebook users saw was 

manipulated without their knowledge to be less negative or less positive. Users’ emotions were 

evaluated with a dictionary-based program that counts the number of positive and negative 

words in each text [2]. Results indicated that those who were exposed to less negative or less 

positive emotions produced less of these emotions themselves. This is the only published study 

that has manipulated users’ emotions without their knowledge on a digital media platform. 

Perhaps fittingly, the emotional response of the general public to this article seemed to 

illustrate its thesis, as intense emotions become more intense as they spread over social media, 

bringing more and more users to express their outrage and anxiety about the possibility that their 

emotions were being manipulated without their explicit consent [3]. The growing outrage 

expressed by the public eventually led the scientist who authored the report to apologize in a 

public Facebook post and admit that potential benefits may not have outweighed the costs.  

The controversy surrounding this study has drawn increased attention to digital emotional 

contagion. Growing research in this space highlights the idea that digital emotion contagion 

occurs in response to a variety of situations, both public and private, and that emotion contagion 

can play a key role in users’ emotions and behavior in a variety of domains. For example, it 

seems that the digital era we live in has given rise to a large number of online social movements, 

all highly driven by emotions [4–6], and that emotion contagion is playing a crucial role in 

driving the spread of these emotions [7]. People also seem to share their personal emotions 

online in a way that affects not only their own well-being [8], but also the well-being of others 
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who are connected to them [9]. With the tremendous exposure to others’ emotions on digital 

media, the contagious spread of digital emotions seems to play an important role in affecting 

users’ emotions and behavior.  

In this paper, we review the growing literature on digital emotion contagion while 

making two central points. The first point is that digital emotion contagion should be understood 

as mediated emotion contagion, and that the goals of the digital media companies that serve as its 

mediators may influence the way digital emotion contagion unfolds in important ways. After 

providing a general review of emotion contagion in the first section, we dedicate the second 

section to examining whether and how the mediating role of digital media companies can affect 

contagion. The second point that we make is that despite its apparent impact on emotional 

dynamics online, proving that digital emotion contagion has occurred is harder than one might 

expect. This point in discussed in sections 3 and 4, which focus on the challenges of measuring 

digital emotion contagion, and the ways these challenges have been met thus far. Finally, we 

conclude with a section that reviews central findings in this domain, and in light of existing 

findings, offers new questions and directions for future research on digital emotion contagion.  

Emotion Contagion 

Emotion contagion has long been recognized as a central driver of individual and 

collective behavior, as reflected in the writings of philosophers like Hegel [10] and social 

scientists like Le Bon and Durkhein [11,12]. Within experimental psychology, a seminal book on 

emotion contagion [13] helped to initiate a wave of empirical research that has sought to specify 

the nature of emotion contagion and clarify its driving mechanisms [14–16]. Building on 

previous research, we define emotion contagion as the process by which a perceiver’s emotions 

become more similar to others’ emotions as a result of exposure to these emotions. Importantly, 
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we see emotion contagion as a process that can either be conscious or unconscious, with the only 

necessary condition being that it contributes to increased similarity in emotions between two or 

more individuals.  

Contagion has been shown to occur via at least three mechanisms. The first is mimicry, in 

which an emotional expression activates synchronous behavior on the part of the perceiver, 

which in turn activates affective processes [13,17]. Mimicry represents a family of synchronous 

behaviors that primarily includes facial expressions, but also body postures, eye movements, 

speech gestures, and laughter [15,18]. The second mechanism is category activation, in which 

exposure to emotional expressions primes an emotion category, which in turn leads to activation 

of specific emotional processes [14,19]. Activation is differentiated from mimicry as it does not 

necessarily involve behaviorally copying an emotional expression, and therefore can result from 

exposure to emotional cues via other forms of communication such as text. Finally, the third 

mechanism is social appraisal, in which individuals use others’ emotions as a guide for their own 

emotion appraisals, leading to similar emotional experiences [20,21]. These three mechanisms 

are not mutually exclusive and can occur in tandem.  

Driven by these three mechanisms, emotion contagion can occur as result of many types 

of exposures to others’ emotions. This includes face to face interactions [13], exposure to 

emotions through text [22,23], and even information gleaned about what other people feel in 

response to a certain stimulus [24,25]. The variety of mechanisms by which contagion can 

develop means that it occurs in many different contexts and situations, ranging from 

interpersonal relationships [26,27] to large collectives [28,29].  
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For our purposes here, it is useful to limit the scope of emotion contagion and distinguish 

it from related phenomena. First, emotion contagion may be differentiated from contagion of 

other, longer term, affective processes such as moods, by focusing on short-term changes in 

emotions lasting for seconds or minutes [30]. Second, emotion contagion is meant to capture 

cases in which exposure to other people’s emotions leads to similarity in their emotions. This is 

in contrast to cases in which exposure to others’ emotions leads to different or complimentary 

emotions [31–34], which is especially frequent when individuals are exposed to emotions of 

people from rival groups [35]. 

Emotion Contagion on Digital Media 

When people interact face-to-face or by phone, their emotional responses are directly 

perceived by others in an unmediated way. This makes most non-digital interactions different 

from interactions on digital media, which are almost always mediated by companies who control 

and manipulate both the content that users see and how they respond to each other. Even on 

platforms in which there is relatively less management of users’ exposure to information, such as 

online forums, digital news outlets, and video communication platforms, the nature of 

interactions is guided by top-down design decisions that maximize some behaviors over others. 

We argue that digital media companies are generally motivated to upregulate users’ emotions, 

and that this potentially amplifies the frequency and intensity of users’ exposure to emotions and 

therefore emotion contagion (Figure 1). These effects may be further amplified by the size and 

character of digital social networks. Despite exposure to more frequent and more intense 

emotions, however, it is not yet clear whether and to what degree other processes such as 

habituation and fatigue act to reduce the strength of digital emotion contagion. 
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Figure 1. Digital emotion contagion occurs when a perceiver’s emotions become more similar to 

an expresser’s emotions over time due to the influence of the expresser’s emotions. Digital 

emotion contagion should be understood as mediated emotion contagion, and the goals of the 

digital media companies that serve as its mediators lead individuals to be exposed to more 

intense emotions at a higher frequency.   

 

Figure 2. The number of likes and retweets (log+1 transformed) as a function of the emotions 

expressed in the tweets (very negative to very positive). We downloaded ~1.5 million random 

tweets from Twitter API. We then conducted sentiment analysis of the tweets using 

SentiStrength [112]. The analysis of each text using SentiStrength provides two scores (discrete 

numbers) ranging from 1-5, one score for positive intensity and one score for negative intensity. 

We combined the two for -4 (very negative) to 4 (very positive) number. As most tweets do not 

receive any likes or retweets, we conducted a log+1 transformation to the likes and retweets data. 

We then fit both a linear and a quadratic functions to the data. Results suggested that the 

quadratic function was a better predictor of the data, indicating that participants tend to like and 

retweet emotional tweets compared to non-emotional ones, but also that likes and retweets tend 

to be higher for positive compared to negative emotions.  

 

 

 

Exposure to emotions produced by other users helps to keep users engaged. One of the 

strongest pieces of evidence for this claim can be seen in the Facebook contagion paper [1], 
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which reports on the “withdrawal effect,” in which users have the tendency to produce less 

content if they are exposed to fewer emotions. If exposing users to others’ emotions keeps them 

engaged, and if engagement is a key outcome for digital media, digital media companies should 

try to upregulate users’ emotions by increasing the frequency and intensity of expressed 

emotions (particularly positive emotions, see Box 1). This is likely to magnify emotion 

contagion online.  

Increased frequency and intensity of emotion expressions are not only achieved by 

selectively showing participants more emotional posts, but also by creating an incentive structure 

that motivates participants to express emotions. Digital media platforms usually incentivize 

competition for attention and positive reinforcement in the forms of likes or shares [36].  

Expressing emotions is an extremely useful way to attract attention and receive likes [4,37–39]. 

As seen in Figure 2, the intensity of emotional expression predicts the amount of both likes and 

retweets users receive on Twitter, and this effect is stronger for positive compared to negative 

emotions (Box 1). The rewards that users receive for expressing emotions create an incentive 

system that further perpetuates later expression of emotions and therefore contributes to further 

emotion contagion [40].  
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Figure 2. The number of likes and retweets (log+1 transformed) as a function of the emotions 

expressed in the tweets (very negative to very positive). We downloaded ~1.5 million random 

tweets from Twitter API. We then conducted sentiment analysis of the tweets using 

SentiStrength [112]. The analysis of each text using SentiStrength provides two scores (discrete 

numbers) ranging from 1-5, one score for positive intensity and one score for negative intensity. 

We combined the two for -4 (very negative) to 4 (very positive) number. As most tweets do not 

receive any likes or retweets, we conducted a log+1 transformation to the likes and retweets data. 

We then fit both a linear and a quadratic functions to the data. Results suggested that the 

quadratic function was a better predictor of the data, indicating that participants tend to like and 

retweet emotional tweets compared to non-emotional ones, but also that likes and retweets tend 

to be higher for positive compared to negative emotions.  

 

The overarching goal to increase the frequency and intensity of emotion expressions is 

combined with the structure of social networks in online platforms in a way that increases digital 

emotion contagion. Because digital social networks encourage users to connect and interact with 

as many people as possible, users tend to have larger social networks online and can get exposed 

to content produced by users who are more distant in their network [41,42]. This often leads to 

online emotions spreading to a larger number of users and more distant populations [41]. Think 
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for example of the spread of emotions in response to the death of Khaled Mohamad, a 28-year-

old Egyptian man from Alexandria who was beaten to death by the Egyptian police in June 2010. 

Mainstream media did not report the death. However, the Facebook page dedicated to Khaled’s 

death became an occasion for Egyptians to express their frustration to each other. This frustration 

reached so many people, and increased the intensity of their anger to such a degree, that it led to 

mass demonstrations in Tahrir Square which contributed to the collapse of the Egyptian 

government and the initiation of the Arab Spring [43]. As this example suggests, thanks to the 

mediating role of digital media companies, there is also an increase in the number and the size of 

social movements which are driven by an ample exchange of emotions, both online and offline 

[6,36, box 2]. 

On the face of it, it seems that digital emotion contagion should be more intense, more 

frequent, and more far-reaching than non-digital contagion. But this may not always be the case. 

This is because frequent exposure to emotions can also lead to habituation [44] or fatigue [4], 

making each exposure to emotional expression online less impactful on the perceiver’s emotions. 

Considering that people spend ample amount of time online, they may learn to ignore, at least at 

some level, the tremendous volume of emotion expressions around them. Furthermore, online 

social connections tend to be less intimate and valuable to users than offline relationships 

[45,46], which may also mean that people are less influenced by the emotions of their online 

friends. So even though digital emotion contagion is likely to be a much more frequent and 

intense than non-digital emotion contagion, it is also possible that each such exposure to others’ 

emotions on digital media has less of an impact on the individual’s emotions. Further work is 

needed to test whether and under what conditions the activating factors outweigh the inhibiting 

factors.  
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Measuring Digital Emotion Contagion:  Defining the Challenges  

Emotion contagion occurs when a perceiver’s emotions become more similar to others’ 

emotions as a result of exposure to these emotions. However, given the number of factors that 

contribute to changes in a person’s emotion from moment to moment [47], and given the typical 

absence of critical information regarding these other factors when using data from digital media, 

it is by no means clear when emotion contagion has occurred. It is therefore important both to 

discuss the challenges that digital emotion contagion researchers face, and to consider the ways 

in which these challenges have been addressed.  

To have confidence that emotion contagion on digital media has occurred, we must be 

able to successfully address three challenges. The first challenge is to estimate the perceiver’s 

emotion expressions in response to a situation, ideally at two time points, before (𝑡𝑖𝑚𝑒1) and 

after (𝑡𝑖𝑚𝑒2) the perceiver is exposed to others’ emotions. The second challenge is to accurately 

estimate the perceiver’s exposure to an expresser’s or expressers’ emotions between these two 

time points. The third challenge is to show that the perceiver’s emotion expression was actually 

influenced by the expresser’s emotions as opposed to other sources of influence (such as 

concurrent changes in the situation itself). Addressing these three challenges can be difficult 

based on the nature of data available to researchers from social media. In the following section, 

we discuss each of these challenges in turn, with an eye to how they have been addressed, while 

recognizing there is no ideal approach and solutions at one level introduce problems at another.  

 

Measuring Digital Emotion Contagion: Meeting the Challenges 

When measuring contagion on digital media, the most basic challenge is to estimate the 

perceivers’ emotions based on their digital traces. Importantly, assessing such emotions involves 
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capturing users’ expression of emotions, which may be quite different from their emotional 

experiences, especially on digital media (see Box 3). In the past few years, technology has 

tremendously improved our ability to estimate emotions by looking at users’ facial expressions, 

vocal responses, and written text (Box 4). The challenge of assessing emotion based on digital 

traces is compounded by the need to assess a perceiver’s emotion at two time points, before and 

after exposure to an expresser’s emotion. In lab experiments, such baseline measurement is 

relatively easy. However, on digital media it becomes much more challenging, both because 

finding multiple expressions of emotions by the same user to the same situation is difficult, and 

because at every time point users are already exposed to some emotions by others. In practice, 

researchers often ignore perceivers’ emotions at 𝑡𝑖𝑚𝑒1and measure perceivers’ emotions at 

𝑡𝑖𝑚𝑒2, in light of different emotions expressed by others [[an approach taken also by in-lab 

experiments, see 25]. For example, in a recent study that examined digital emotion contagion of 

negative emotions in response to rain, researchers showed that decreases in positive and 

increases in negative emotions spread to other users who did not experience rain [48], and this 

was done without examining users’ baseline emotional responses. In a recent attempt to establish 

a pre-exposure measure, researchers estimated users’ emotions at 𝑡𝑖𝑚𝑒1 by looking at emotions 

expressed in an earlier content they produced in response to the same situation [7], and this 

seems to produce stronger estimates of contagion compared to just measuring changes in 𝑡𝑖𝑚𝑒2.  

Once perceivers’ emotions have been estimated, the second challenge is estimating the 

emotional content that perceivers observed before expressing their own emotions. It is seldom 

clear what users have encountered. While some users may have been surfing the web for hours, 

others may have just logged in. Previous studies have taken three different approaches to address 

this challenge (see Table 1). One approach – referred to as the window of interest approach – is 
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to look at the content perceivers could have been exposed to and assume that it was perceived 

more or less equally across users. For example, in a recent study, researchers [49] estimated the 

content observed by Twitter users by looking at the average emotional content of tweets 

produced by a certain perceivers’ followees during the hour preceding their posting [7,48,50]. A 

second approach is the overall emotional variance approach. In this approach, researchers focus 

on macro changes in emotional variance within a certain user community, with the implicit 

assumption that what every perceiver saw was more or less similar [51,52]. A third approach – 

referred to as the emotional cascades approach – focuses on the people who share or respond to 

a certain emotional content [53]. In this approach, the assumption is that exposure to emotions 

elicits similar emotions in perceivers, who then express their emotion by either replying [7,54–

57] or further sharing the content [37,58–60]. Emotional cascades resolves the challenge of 

understanding what a certain perceiver saw (although other content may also influenced their 

decision), but in the analysis of replies, it is hard to establish that a perceiver replying to an 

expresser’s emotion is reacting to the expresser rather than the situation itself [61]. In the case of 

shares, it is hard to tell whether sharing an emotional content indicates that the perceiver is 

feeling similar emotions.  

Table 1. Summary of approaches designed to estimate the content observed by the perceiver. 

Name Description Advantages/Disadvantages Relevant Papers 

Window of interest Summarizes the emotional 

content produced by the 

perceiver’s digital community 

at a certain timeframe prior to 

the perceiver’s expression of 

emotion at time 2. 

Advantages: relatively easy 

to implement. 

 

Disadvantages: we have no 

clear indication that 

perceivers actually saw any 

of the summarized content.  

Coviello et al., 2014 

Fan, Xu, & Zhao, 2016 

Ferrara & Yang, 2015 

Goldenberg et al., 2019 

 

Overall variance 

approach 

Measures changes in overall 

variance of emotions within a 

Advantages: provides a 

view of contagion at the 

macro level. 

Del Vicario et al., 2016  

He, Zheng, Zeng, Luo, & 

Zhang, 2016 
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certain digital community over 

time.  

 

Disadvantages: Other 

factors may lead to 

reduction in emotional 

variance within a 

community apart from 

contagion, such as changes 

in the nature of stimuli or 

the population within the 

community. 

 

Emotional cascade 

approach 

Compares the content 

produced by replies in relation 

to their related original post, or 

counting the amounts of likes 

and shares produced in 

response to a certain post.    

Advantages: Resolves the 

challenge of understanding 

what a certain perceiver 

saw. 

 

Disadvantages: Increases 

ambiguity about the content 

that the perceiver produced.  

Replies: 

Chmiel, Sobkowicz, et al., 

2011 

Dang-xuan & Stieglitz, 2012 

Goldenberg et al., 2019 

 

Shares: 

Alvarez et al., 2015 

Brady, Wills, Jost, Tucker, & 

Van Bavel, 2017 

Gruzd, Doiron, & Mai, 2011 

 

 

Even if one can determine that a perceiver’s emotions have changed, and that the 

perceiver was exposed to the emotions of another user during the period in which the perceiver’s 

emotions changed, one is still left with the third challenge of determining that the emotions of 

another user played a causal role in that change. One concern is differentiating contagion from 

similarity-based responses [62]. In a similarity-based response, two or more users are responding 

to a situation in a similar way not because they are influencing each other, but merely because 

they are similar to each other.  

Perhaps the most compelling way to establish causality is to randomly assign participants 

to experimental groups that are exposed to the exact same situation, but that differ in their 

exposure to other users’ emotional expressions. This has been done in many in-lab experimental 
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paradigms measuring non-digital emotion contagion [24,25,63]. In field contexts, researchers 

have tried to address the issue of causal inference in various ways.  For example, one recent 

paper showed that seemingly similar perceivers responded differently to the same situation when 

exposed to emotions higher or lower in intensity than their own emotions at 𝑡𝑖𝑚𝑒1[7]. Other 

studies have estimated individual and group-level influences within online communities and 

statistically controlled for the similarity-based effects [64]. However, both methods cannot fully 

guarantee that we are able to capture contagion [65]. In fact, even the Facebook contagion paper, 

which manipulated users’ perceived content, also struggled with this issue, as manipulating users 

perceived emotions may also affected the content that they observed [1]. 

What Predicts the Degree of Emotion Contagion on Digital Media? 

Current Findings and Future Directions  

Perhaps because measuring the occurrence of emotion contagion on social media is still 

in its infancy, many studies are still trying to show that contagion exists in a specific platform or 

situation. In order to move this developing field forward, we believe it will be useful to shift the 

field’s focus toward predicting when emotion contagion will be stronger or weaker. In this 

section, we summarize what the current literature suggests, and point to gaps in the literature, 

focusing in turn on the expressed emotion, the network connection, the perceiver, and the 

platform (see Outstanding Questions).  

The strength of emotion contagion is first and foremost dictated by the nature of emotions 

expressed by the expresser. It is generally assumed that stronger emotion expressions lead to 

greater emotion contagion. However, there is very little consensus in the literature on what type 

of emotions lead to stronger contagion. According to the Facebook contagion paper [1], 
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contagion for positive and negative emotions seem to be similar in size, which fits some offline 

behavioral data [66], and even experiments that examined contagion using neuroimaging [25]. 

Other findings, however, suggest that positive emotions are more prone to contagion both online 

[48,49,59,67], as well as offline [68]. These results are somewhat surprising considering the 

negativity bias, which holds that people tend to pay more attention to negative stimuli [69,70]. 

We currently know of one study that found that negative emotions, and particularly anger, lead 

to stronger contagious on digital media [50]. Interestingly, the methods used in this paper were 

similar to another research project that found stronger contagion for positive emotions [49]. One 

difference between the two studies is that they measured emotional tweets in different languages, 

and therefore in different cultural contexts which may differ in their emotion expressions [71]. 

Based on these conflicting findings, one pressing question is which contexts and cultures lead to 

more or less emotion contagion for particular, situationally relevant emotions.  

The strength of emotion contagion depends not only on the expresser’s emotions 

(intensity and type) but also on the connection between the expresser and the perceiver. It is 

currently assumed that stronger ties between the expresser and perceiver (evaluated either by 

reciprocity or by degree of mutual connections) lead to stronger contagion [72]. Yet the 

relationship between the strength of network connection and contagion seems to depend on the 

type of expressed emotion [73]. In the first study that tested this question, [50] researchers 

compared how contagion of anger and joy were influenced by the strength of network 

connection. They found that anger contagion was stronger in weaker ties compared to joy. 

Furthermore, a recent study suggests that emotion contagion is not only influenced by network 

structure but also changes the structure itself [74]. Looking at the spread of negative emotions 

within an investment company after a drop in stock prices, results suggest that people have a 
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propensity to share their emotions with stronger ties, making these ties even stronger. Future 

studies that examine the connection between emotion contagion and network structure may be 

especially important for the advancement of our understanding of the phenomena.  

A third critical factor to consider is the perceiver. However, we know little about how 

perceivers’ attributes predict contagion. We therefore wish to suggest a few important future 

directions. First, the degree of contagion might be influenced by factors such as personality 

[75,76], which can now be evaluated by users’ behavior on social media [77]. For example, it 

seems likely that people who are more extraverted and agreeable are more likely to catch others’ 

emotions on digital media. It is also likely that users high on neuroticism are more likely to be 

more influenced by negative emotions in particular [78]. Other individual differences such as 

status (particularly online status), age, gender, and culture are also likely to influence the degree 

of contagion between users [51]. Finally, further research should be done on how user 

characteristics, such as time spent online and degree of activity versus passivity, affect digital 

emotion contagion. For example, a recent study examining emotions in online communities 

suggests that more active users tend to shift more quickly to express negative emotions [52]. 

Future work should further examine these questions.   

Finally, the type of platforms that users employ, each with its slightly different set of 

motivations in relation to a desired level of users’ emotion, and the type of content they produce 

in these platforms is also likely to influence the nature of contagion[79,80]. Different digital 

media platforms are characterized by different emotional baselines (Box 1), which may affect the 

degree of contagion of certain emotions. Social media platforms and video sharing sites like 

YouTube are often characterized by more positive emotions [1,48,64,81], although this depends 

on the specific content [82]. Online forums tend to be more positive as well, but forums that are 
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centered around well-being, depression, and anxiety are more likely to be negative, primarily due 

to the emotional baseline of the users that create the content [83]. Comments in responses to 

online newspaper articles tend to include a larger mix of emotions, and some of them tend to be 

negative [84] while others are more positive [67]. The emotional content of the situations that are 

common in digital spaces can play a role in emotion contagion. If negative situations are present 

in the vast majority of situations, users are more likely to be influenced by more negative 

emotions [7]. However, remember that although the Facebook contagion study reported much 

stronger positive emotions, no differences in contagion effect sizes were found, suggesting the 

more research should be done to answer these questions [1].  

Concluding Remarks 

 The goal of the current project was to review the growing literature on digital emotion 

contagion while making two central points. The first point is that digital emotion contagion 

should be understood as mediated emotion contagion. The goals of digital media companies – to 

increase the frequency and intensity of users’ emotions – are likely to act as excitatory factors for 

digital emotion contagion. However, increased exposure may also contribute to habituation and 

fatigue, especially considering the fact that social connection on digital media are less 

meaningful, and therefore inhibit digital emotion contagion. Future work should examine these 

different features of digital emotion contagion and their impact on the degree of contagion (see 

Outstanding Questions).  

 The second point that we make is that despite its apparent impact on emotional dynamics 

online, proving that digital emotion contagion has occurred is harder than one might expect. For 

example, users can have similar emotional responses to similar situations without any contagion, 

but differentiating such cases of similar emotional responses from contagion is extremely 
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challenging. It is therefore important to measure contagion in different ways, while recognizing 

the advantages and disadvantages of any measurement.  

It is likely that because proving that digital contagion actually occurred is challenging, 

most existing studies try to prove that contagion actually occurred. We believe that with a few 

established methods, it is now time to shift the field’s focus toward predicting when emotion 

contagion will be stronger or weaker. Future studies should ask what type of expressed emotions, 

expressed by whom, to whom, and in what platform can predict stronger or weaker contagion. 

We are excited by the opportunities ahead in this growing field supported by an ever increasing 

data and use of digital media.  
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Box 1: Positive Emotions on Digital Media 

People express all manner of emotions on social media, but overall, they seem to express 

more positive emotions than negative emotions. For example, in the Facebook contagion paper, 

46.8% of all analyzed posts contained positive words and 22.4% contained negative words [1], 

and the same is true for other digital media platforms [64,81,85]. The tendency to express more 

positive emotions is thought to arise both as a result of users’ internal motivations, and as a result 

of top-down regulation by digital media platforms.  

In general, people tend to prefer to feel and therefore express positive emotions because it 

feels better and because in most social interactions, expressing positive emotions is more helpful 

in advancing the individual social goals both online and offline [86]. Congruent with this idea is 

the finding that expression of positive emotions is generally perceived as more appropriate than 

the expression of negative emotions [81]. For example, a recent study that showed that users 

perceived the positive emotions of joy and pride to be the most appropriate emotions on 

Facebook, Twitter, Instagram, and WhatsApp, and perceived the negative emotions of sadness 

and anger to be the least appropriate emotions. Second, digital media interactions are often 

driven by social comparison [87], and expressing positive emotions proves one’s success and 

therefore helps the individual to positively compare themselves to others.  

In addition to users’ internal motivation to express positive emotions, digital media 

companies are also motivated to increase users’ positive emotions. Users produce more content 

when they are exposed to positive versus negative emotions [1]. Therefore, the design of many 

digital media platforms contributes to a positive bias in emotion expression. In most social media 

platforms, participants can express their enjoyment or gratitude in response to content by liking it 
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[88], but there are no “unlike” buttons, which leads to more positive than negative feedback. In 

addition to these explicit design features, and with the evidence that digital media companies 

wish to maximize users’ emotions, some suggest that digital media algorithms particularly 

promote content with positive emotions. For example, some have suggested that Facebook chose 

to bury posts from the Ferguson unrest, a social movement that grew after the death of Michael 

Brown in Ferguson, Missouri, in favor of more positive posts [6]. However, providing empirical 

evidence for such claims is extremely challenging, as digital media algorithms remain a black 

box for external researchers.  

 

Box 2: Digital Media, Emotion Contagion, and Social Movements 

Increased use of digital media, especially social media, has transformed the way social 

movements unfold. In particular, users’ large number of social connections and high frequency 

of social interactions are leading to more frequent online social movements [6,89]. It is almost 

impossible to imagine movements such as the Arab Spring or the Black Lives Matter without 

digital media. 

One important driver for social movements is the exchange of emotions between users, 

particularly anger [4,5,90]. Anger tends to spread faster than other emotions on social media [50] 

and to cascade to more users by shares and retweets, enabling quicker distribution to a larger 

audience [37,58]. Users are also motivated to share their anger because they wish to signal their 

social network about their morality [4,7] and to convince them to join the movement [31].  

Despite the obvious impact that digital media has on online social movements, the 

translation of online activity to collective action outside social media is often surprisingly 
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limited. For example, while the Save Darfur Facebook campaign – designed to increase 

awareness and donations to the war in Sudan – was able to recruit 1.2 million members to the 

movement, the amount and quality of activism that resulted from the campaign were relatively 

modest as most users did not donate money for the cause [91]. A similar example can be seen in 

the viral Ice Bucket Challenge, which was designed to raise awareness and donations to ALS. 

Over 28 million users joined the challenge, and $115 million were raised. Yet, donations were 

not sustained fell back to pre-campaign levels the year after [38]. Furthermore, 1 out of 4 users 

who completed the challenge did not mention ASL in their videos and only 1 out of 5 mentioned 

a donation, suggesting that much of the public interest was not translated into actual action. 

These examples show that while it is clear that digital media greatly contributes to online social 

movements, the question of how much these movements translate to action in the real world is 

still open.   

 

Box 3: Emotion Experience versus Expression on Digital Media 

To what extent do people’s emotion expressions on digital media reflect their true 

emotional experiences? After all, we know that emotion experience and expression is 

imperfectly correlated in everyday life [92], and there are factors that might either increase or 

decrease the gap between experience and expression in digital versus non-digital contexts.  

The prevailing assumption is that communication on digital media allows more 

opportunities for positive self-presentation than in non-digital contexts [93–95]. If so, we might 

assume that expression-experience differences are larger online,  such that online users either 

upregulate or downregulate emotional expressions to fit with self-presentational goals [96]. This 
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can be supported by a few arguments. First, communication on digital media is asynchronous, 

such that users do not have to respond to each other in real time [97,98]. Longer response time 

provides more opportunity for expression regulation, which may increase the difference between 

experience and expression. Second, digital communication also involves a larger audience [95], 

which often leads to an increase in self-presentation motivations [99]. Finally, digital 

communication allows for less information richness [80,97,100], which means that users have to 

amplify their expressions to make sure that perceivers understand their emotions.  

On the other hand, digital media also provide opportunities for self-disclosure and 

genuine expression of emotions in ways that are hard to come by in non-digital contexts 

[95,97,101–103]. First, digital media allows people to express themselves in anonymity, which 

seems to promote self-disclosure [103–105]. Second, online users can receive a much a larger 

amount social support from their social environment, particularly in cases in which their offline 

social environment does not support these emotions. This can sometimes lead to upregulation of 

emotion expression with the goal of getting more likes [4,40], but can also lead to genuine self-

disclosure in ways that could not occur in face-to-face interactions [101]. Finally, some argue 

that due to accountability and feedback provided by users’ social networks, digital media 

represents an extension of users’ real life and that people communicate their true self 

[80,106,107]. These considerations suggest that experience-expression differences in digital 

contexts may be either smaller than or similar to face-to-face interactions.  

 

Box 4: Estimating Users’ Emotions from Digital Media 
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Digital media activity allows researchers to detect users’ emotions from different types of 

signals [108]. Facial expressions, produced in videos and photos, can be analyzed by image 

sentiment analysis software [109]. Audio can be analyzed in terms of pitch [110]. And text 

produced by users can be analyzed used text-based sentiment analysis tools [111].  

Of these response channels, text is the most commonly analyzed. For this reason, text-

based sentiment analysis tools have received the most attention. These tools vary greatly in the 

way they process text. Some sentiment analysis tools, such LIWC, count emotional words based 

on pre-determined dictionaries [2], others add certain context rules for such dictionaries and 

include more complicated word compositions [112,113], and some use sophisticated machine 

learning algorithms [114]. The comparison between these tools is challenging as outcomes may 

depend on the specific domain (product review, social media posts etc.), and the length of the 

text (twitter posts versus blogs) [115]. It is likely that machine learning algorithms that are 

trained to predict emotions in product reviews would be superior to other tools at predicting 

emotions in their pre-trained domain, but without fine tuning, these algorithms may prove to be 

inferior to more basic tools in predicting emotions in a completely different domain. In general, 

however, there are many tools with good predictive power that correlate well with raters’ 

emotion ratings. The sentiment analysis tool VADER, for example, achieved a correlation of r 

0.88 with human raters in the rating of 4,000 tweets in the task of classifying tweets into positive, 

negative or neutral.  

One especially important component of emotions expressed in text is the use of emotion 

icons (emoticons, emojis), which are visual representations of various emotional states (and other 

states). Emoticons are extremely popular and used by 92% of online population [116]. The use of 

emoticons is extremely helpful from a communicative perspective as it provides a relatively clear 
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picture of the emotions that participants wish to express [97,117]. Emoticons are also perceived 

in a similar way to facial expressions [118]. While some basic sentiment analysis tools do not 

incorporate emoticons in their analysis, most newer tools take them into account and this 

improves their ability to estimate users emotions from their text [113].  
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