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Abstract

We introduce ThreeDWorld (TDW), a platform for interactive multi-modal physical1

simulation. TDW enables simulation of high-fidelity sensory data and physical2

interactions between mobile agents and objects in rich 3D environments. Unique3

properties include: real-time near-photo-realistic image rendering; a library of ob-4

jects and environments, and routines for their customization; generative procedures5

for efficiently building classes of new environments; high-fidelity audio rendering;6

realistic physical interactions for a variety of material types, including cloths, liq-7

uid, and deformable objects; customizable “avatars” that embody AI agents; and8

support for human interactions with VR devices. TDW’s API enables multiple9

agents to interact within a simulation and returns a range of sensor and physics10

data representing the state of the world. We present initial experiments enabled by11

TDW in emerging research directions in computer vision, machine learning, and12

cognitive science, including multi-modal physical scene understanding, physical13

dynamics predictions, multi-agent interactions, models that ‘learn like a child’, and14

attention studies in humans and neural networks.15

1 Introduction16

A longstanding goal of research in artificial intelligence is to engineer machine agents that can17

interact with the world, whether to assist around the house, on a battlefield, or in outer space. Such18

AI systems must learn to perceive and understand the world around them in physical terms in order to19

be able to manipulate objects and formulate plans to execute tasks. A major challenge for developing20

and benchmarking such agents is the logistical difficulty of training an agent. Machine perception21

systems are typically trained on large data sets that are laboriously annotated by humans, with new22

tasks often requiring new data sets that are expensive to obtain. And robotic systems for interacting23

with the world pose a further challenge – training by trial and error in a real-world environment is24

slow, as every trial occurs in real-time, as well as expensive and potentially dangerous if errors cause25

damage to the training environment. There is thus growing interest in using simulators to develop26

and benchmark embodied AI and robot learning models [21, 40, 31, 33, 42, 9, 36, 43, 6].27

World simulators could in principle greatly accelerate the development of AI systems. With virtual28

agents in a virtual world, training need not be constrained by real-time, and there is no cost to errors29

(e.g. dropping an object or running into a wall). In addition, by generating scenes synthetically, the30

researcher gains complete control over data generation, with full access to all generative parameters,31

including physical quantities such as mass that are not readily apparent to human observers and32
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Figure 1: TDW’s general, flexible design supports a broad range of use-cases at a high level of
multi-modal fidelity: a-c) Indoor and outdoor scene rendering; d) Advanced physics – cloth draping
over a rigid body; e) Robot agent picking up object; f) Multi-agent scene – "parent" and "baby"
avatars interacting; g) Human user interacting with virtual objects in VR; h) Multi-modal scene –
speaker icons show playback locations of synthesized impact sounds.

therefore difficult to label. Machine perceptual systems could thus be trained on tasks that are not33

well suited to the traditional approach of massively annotated real-world data. A world simulator can34

also in principle simulate a wide variety of environments, which may be crucial to avoid overfitting.35

The past several years have seen the introduction of a variety of simulation environments tailored to36

particular research problems in embodied AI, scene understanding, and physical inference. Simulators37

have stimulated research in navigation (e.g., Habitat [33], iGibson [41]), robotic manipulation (e.g.,38

Sapien [43]), and embodied learning (e.g., AI2Thor [21]). The impact of these simulators is evident39

in the many challenges they have enabled in computer vision and robotics. Existing simulators each40

have various strengths, but because they were often designed with specific use cases in mind, each41

is also limited in different ways. In principle a system could be trained to see in one simulator, to42

navigate in another and to manipulate objects in a third. However, switching platforms is costly for43

the researcher. We saw the need for a single simulation environment that is broadly applicable to the44

science of intelligence, by combining rich audio-visual rendering, realistic physics, and flexibility.45

ThreeDWorld (TDW) is a general-purpose virtual world simulation platform that supports multi-46

modal physical interactions between objects and agents. TDW was designed to accommodate a47

range of key domains in AI, including perception, interaction, and navigation, with the goal of48

enabling training in each of these domains within a single simulator. It is differentiated from existing49

simulation environments by combining high-fidelity rendering for both video and audio, realistic50

physics, and a single flexible controller.51

In this paper, we describe the TDW platform and its key distinguishing features, as well as several52

example applications that illustrate its use in AI research. These applications include: 1) A learned53

visual feature representation, trained on a TDW image classification dataset comparable to ImageNet,54

transferred to fine-grained image classification and object detection tasks; 2) A synthetic dataset55

of impact sounds generated via TDW’s audio impact synthesis and used to test material and mass56

classification, using TDW’s ability to handle complex physical collisions and non-rigid deformations;57

3) An agent trained to predict physical dynamics in novel settings; 4) Sophisticated multi-agent58

interactions and social behaviors enabled by TDW’s support for multiple avatars; 5) Experiments on59

attention comparing human observers in VR to a neural network agent.60

A download of TDW’s full codebase and documentation is available at: https://github.com/61

threedworld-mit/tdw; the code for creating the datasets described below are available at:62

TDW-Image, TDW-Sound, and TDW-Physics.63

Related Simulation Environments TDW is distinguished from many other existing simulation64

environments in the diversity of potential use cases it enables. A summary comparison of TDW’s65

features to those of existing environments is provided in Table 1. These environments include66

AI2-THOR[21], HoME[40], VirtualHome[31], Habitat[33], Gibson[42], iGibson [41], Sapien [43]67

PyBullet [9], MuJuCo [36], and Deepmind Lab [6].68
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TDW is unique in its support of: a) Real-time near-photorealistic rendering of both indoor and69

outdoor environments; b) A physics-based model for generating situational sounds from object-70

object interactions (Fig. 1h); c) Procedural creation of custom environments populated with custom71

object configurations; d) Realistic interactions between objects, due to the unique combination of72

high-resolution object geometry and fast-but-accurate high-resolution rigid body physics (denoted73

“R+” in Table 1); e) Complex non-rigid physics, based on the NVIDIA Flex engine; f) A range of74

user-selectable embodied agent avatars; g) A user-extensible model library.75

Table 1: Comparison of TDW’s capabilities with those of related virtual simulation frameworks.
Platform Scene

(I,O)
Physics

(R/R+,S,C,F)
Acoustic

(E,P)
Interaction
(D,A,H)

Models
(L,E)

Deepmind Lab [6] D, A
MuJuCo [36] R+, C, S D, A
PyBullet [9] R+, C, S E D, A
HoME [40] R E
VirtualHome [31] I D, A
Gibson [42] I
iGibson [41] I R+ D, A ,H L
Sapien [43] I R+ D, A L
Habitat [33] I E
AI2-THOR [21] I R D L
ThreeDWorld I, O R+, C, S, F E, P D, A, H L, E

Summary: Table 1 shows TDW differs from these frameworks in its support for different types of:76

• Photorealistic scenes: indoor (I) and outdoor (O)77

• Physics simulation: just rigid body (R) or improved fast-but-accurate rigid body (R+), soft body78

(S), cloth (C) and fluids (F)79

• Acoustic simulation: environmental (E) and physics-based (P)80

• User interaction: direct API-based (D), avatar-based (A) and human-centric using VR (H)81

• Model library support: built-in (L) and user-extensible (E)82

2 ThreeDWorld Platform83

2.1 System Overview84

The TDW simulation consists of two basic components: (i) the Build, a compiled executable running85

on the Unity3D Engine, which is responsible for image rendering, audio synthesis and physics86

simulations; and (ii) the Controller, an external Python interface to communicate with the build.87

Users can define their own tasks through it, using an API comprising over 200 commands. Running a88

simulation follows a cycle in which: 1) The controller sends commands to the build; 2) The build89

executes those commands and sends simulation output data back to the controller. Unlike other90

simulation platforms, TDW’s API commands can be combined into lists and sent to the build within91

a single time step, allowing the simulation of arbitrarily complex behavior. Researchers can use92

this core API as a foundation on which to build higher-level, application-specific API "layers" that93

dramatically reduce development time and enable widely divergent use cases.94

2.2 Photo-realistic Rendering95

TDW uses Unity’s underlying game-engine technology for image rendering, adding a custom lighting96

approach to achieve near-photorealistic rendering quality for both indoor and outdoor scenes.97

Lighting Model. TDW uses two types of lighting; a single light source simulates direct light coming98

from the sun, while indirect environment lighting comes from “skyboxes” that utilize High Dynamic99

Range (HDRI) images. For details, see Fig 1(a-c) and the Supplement. Additional post-processing100

is applied to the virtual camera including exposure compensation, tone mapping and dynamic101

depth-of-field (examples).102

3D Model Library. To maximize control over image quality we have created a library of 3D model103

“assets” optimized from high-resolution 3D models. Using Physically-Based Rendering (PBR)104

materials, these models respond to light in a physically correct manner. The library contains around105

2500 objects spanning 200 categories organized by Wordnet synset, including furniture, appliances,106

animals, vehicles, and toys etc. Our material library contains over 500 materials across 10 categories,107

many scanned from real world materials.108

3

https://bit.ly/2UeSggG


Procedural Generation of New Environments. In TDW, a run-time virtual world, or “scene”, is109

created using our 3D model library assets. Environment models (interior or exterior) are populated110

with object models in various ways, from completely procedural (i.e. rule-based) to thematically111

organized (i.e. explicitly scripted). TDW places no restrictions on which models can be used with112

which environments, which allows for unlimited numbers and types of scene configurations.113

2.3 High-fidelity Audio Rendering114

Multi-modal rendering is an unique aspect of TDW, and our audio engine provides both physics-driven115

impact sound generation, and reverberation and spatialized sound simulation.116

Generation of Impact Sounds. TDW’s includes PyImpact, a Python library that uses modal synthe-117

sis to generate impact sounds [37]. PyImpact uses information about physical events such as material118

types, as well as velocities, normal vectors and masses of colliding objects to synthesize sounds that119

are played at the time of impact (examples). This “round-trip” process is real-time. Synthesis is120

currently being extended to encompass scraping and rolling sounds [1].121

Environmental Audio and Reverberation. For sounds placed within interior environments, TDW122

uses a combination of Unity’s built-in audio and Resonance Audio’s 3D spatialization to provide real-123

time audio propagation, high-quality simulated reverberation and directional cues via head-related124

transfer functions. Sounds are attenuated by distance and can be occluded by objects or environment125

geometry. Reverberation automatically varies with the geometry of the space, the virtual materials126

applied to walls, floor and ceiling, and the percentage of room volume occupied by solid objects (e.g.,127

furniture).128

2.4 Physical Simulation129

In TDW, object behavior and interactions are handled by a physics engine. TDW supports two130

physics engines, providing both rigid-body physics and more advanced soft-body, cloth and fluid131

simulations. Unity’s rigid body physics engine (PhysX) handles basic physics behavior involving132

collisions between rigid bodies. To achieve accurate but efficient collisions, we use the powerful133

V-HACD algorithm [26] to compute “form-fitting” convex hull colliders around each library object’s134

mesh, used to simplify collision calculations. In addition, an object’s mass is automatically calculated135

from its volume and material density upon import. However, using API commands it is also possible136

to dynamically adjust mass or friction, as well as visual material appearance, on a per-object basis137

enabling potential dissociation of visual appearance from physical behavior (e.g. objects that look like138

concrete but bounce like rubber). TDW’s second physics engine – Nvidia Flex – uses a particle-based139

representation to simulate soft deformable bodies, cloth and fluids Fig. 1(d).140

2.5 Interactions and Avatar141

TDW provides three paradigms for interacting with 3D objects: 1) Direct control of object behavior142

using API commands. 2) Indirect control through an “avatar” or embodiment of an AI agent. 3)143

Direct interaction by a human user, in virtual reality (VR).144

Direct Control. Default object behavior in TDW is completely physics-based via commands in the145

API; there is no scripted animation of any kind. Using physics-based commands, users can move an146

object by applying an impulse force of a given magnitude and direction.147

Avatar Agents. Avatars serve as the embodiment of AI agents, and come in several types:148

• Disembodied cameras for generating first-person rendered images, segmentation and depth maps.149

• Basic embodied agents whose avatars are geometric primitives such as spheres or capsules that can150

move around the environment and are often used for algorithm prototyping.151

• More complex embodied avatars with user-defined physical structures and associated physically-152

mapped action spaces. For example, TDW’s Magnebot is a complex robotic body, fully physics-153

driven with articulated arms terminating in 9-DOF end-effectors (Fig. 1e). By using commands154

from its high-level API such as reach_for(target position) and grasp(target object), Magnebot155

can be made to open boxes or pick up and place objects. In addition, as a first step towards sim2real156

transfer, researchers can also import standard URDF robot specification files into TDW and use157

actual robot types such as Fetch, Sawyer or Baxter as embodied agents.158

Avatars can move around the environment while responding to physics, using their physics-driven159

articulation capabilities to change object or scene states, or can interact with other avatars within a160

scene (Fig. 1f).161
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Human Interactions with VR devices. TDW also supports users interacting directly with 3D162

objects using VR. Users see a 3D representation of their hands that tracks the actions of their own163

hands (Fig. 1g). Using API commands, objects are made “graspable" such that any collision between164

object and virtual hands allows the user to pick it up, place it or throw it (example). This functionality165

enables the collection of human behavior data, and allows humans to interact with avatars.166

3 Example Applications167

3.1 Visual and Sound Recognition Transfer168

We quantitatively examine how well feature representations learned using TDW-generated images169

and audio data transfer to real world scenarios.170

Visual recognition transfer We generated a TDW image classification dataset comparable in size to171

ImageNet; 1.3M images were generated by randomly placing one of TDW’s 2,000 object models in172

an environment with random conditions (weather, time of day) and taking a snapshot while pointing173

the randomly positioned virtual camera at the object ( Details in Supplement).174

Table 2: Visual representations transfer for fine-grained image classifications.
Dataset Aircraft Bird Car Cub Dog Flower Food Mean
ImageNet 0.74 0.70 0.86 0.72 0.72 0.92 0.83 0.78
SceneNet 0.06 0.43 0.30 0.27 0.38 0.62 0.77 0.40
AI2-THOR 0.57 0.59 0.69 0.56 0.56 0.62 0.79 0.63
TDW 0.73 0.69 0.86 0.7 0.67 0.89 0.81 0.76

We pre-trained four ResNet-50 models [17] on ImageNet [10], SceneNet [16], AI2-Thor [21]175

and the TDW-image dataset respectively. We directly downloaded images of ImageNet [10] and176

SceneNet [16] for model trainings. For a fair comparison, we also created an AI2-THOR dataset177

with 1.3M images using a controller that captured random images in a scene and classified its178

segmentation masks from ImageNet synset IDs. We then evaluated the learned representations by179

fine-tuning on downstream fine-grained image classification tasks using Aircraft [25], Birds [38],180

CUB [39], Cars [22], Dogs [19], Flowers [29], and Food datasets [7]. We used a ResNet-5- network181

architecture as a backbone for all the visual perception transfer experiments. For the pre-training, we182

set the initial learning rate as 0.1 with cosine decay and trained for 100 epochs. We then took the183

pre-trained weights as initialization and fine-tuned on fine-grained image recognition tasks, using an184

initial learning rate of 0.01 with cosine decay and training for 10 epochs on the fine-grained image185

recognition datasets. Table 2 shows that the feature representations learned from TDW-generated186

images are substantially better than the ones learned from SceneNet [16] or AI2-Thor [21], and have187

begun to approach the quality of those learned from ImageNet. These experiments suggest that188

though significant work remains, TDW has taken meaningful steps towards mimicking the use of189

large-scale real-world datasets in model pre-training.190

Sound recognition transfer We also created an audio dataset to test material classification from191

impact sounds. We recorded 300 sound clips of 5 different materials (cardboard, wood, metal,192

ceramic, and glass; between 4 and 15 different objects for each material) each struck by a selection of193

pellets (of wood, plastic, metal; of a range of sizes for each material) dropped from a range of heights194

between 2 and 75cm. The pellets themselves resonated negligible sound compared to the objects but195

because each pellet preferentially excited different resonant modes, the impact sounds depend upon196

the mass and material of the pellets, and the location and force of impact, as well as the material,197

shape, and size of the resonant objects [37] (more video examples).198

Given the variability in other factors, material classification from this dataset is nontrivial. We trained199

material classification models on simulated audio from both TDW and the sound-20K dataset[45].200

We tested their ability to classify object material from the real-world audio. We converted the raw201

audio waveform to a sound spectrogram representation and fed them to a VGG-16 pre-trained on202

AudioSet [15]. For the material classification training, we set the initial learning rate as 0.01 with203

cosine decay and trained for 50 epochs. As shown in Table 3, the model trained on the TDW audio204

dataset achieves more than 30% better accuracy gains than that trained on the Sound20k dataset. This205

improvement is plausibly because TDW produces a more diverse range of sounds than Sound20K206

and prevents the network overfitting to specific features of the synthetic audio set.207

Multi-modal physical scene understanding We used the TDW graphics engine, physics simulation208

and the sound synthesis technique described in Sec 2.3 to generate videos and impact sounds of209

objects dropped on flat surfaces (table tops and benches). The surfaces were rendered to have the210
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Table 3: Sound perception transfer on
material recognition.

Dataset Accuracy
Sound-20K 0.34
TDW 0.66

Table 4: Comparison of the multi-modal physical scene
understanding on material and mass classification.

Method Material Mass
Vision only 0.72 0.42
Audio only 0.92 0.78
Vision + Audio 0.96 0.83

visual appearance of one of 5 materials. The high degree of variation over object and material211

appearance, as well as physical properties such as trajectories and elasticity, prevents the network212

from memorizing features (i.e. that objects bounce more on metal than cardboard). The training and213

test sets had the same material and mass class categories. However, the test-set videos contained214

objects, tables, motion patterns, and impact sounds that were different from any video in the training215

set. Across all videos, the identity, size, initial location, and initial angular momentum of the dropped216

object were randomized to ensure every video had a unique pattern of motion and bounces. The217

shape, size, and orientation of the table were randomized, as were the surface texture renderings218

(e.g., a wooden table could be rendered as "cedar," "pine," "oak," "teak," etc.), to ensure every table219

appearance was unique. PyImpact uses a random sampling of resonant modes to create an impact220

sound, such that the impacts in every video had a unique spectro-temporal structure.221

For the vision-only baseline, we extracted visual features from each video frame using a ResNet-18222

pre-trained on ImageNet, applying an average pooling over 25 video frames to arrive a 2048-d feature223

vector. For the audio-only baseline, we converted the raw audio waveforms to sound spectrograms and224

provided them as input for a VGG-16 pre-trained on AudioSet. Each audio-clip was then represented225

as a 4096-d feature vector. We then took the visual-only features, sound-only features, and the226

concatenation of visual and sound feature as input to a 2-layer MLP classifier trained for material227

and mass classification. The results (Table 4) show that audio is more diagnostic than video for both228

classification tasks, but that the best performance requires audiovisual (i.e. multi-modal) information,229

underscoring the utility of realistic multi-modal rendering.230

3.2 Training and Testing Physical Dynamics Understanding231

Differentiable forward predictors that mimic human-level intuitive physical understanding have232

emerged as being of importance for enabling deep-learning based approaches to model-based planning233

and control applications [23, 4, 27, 13, 5, 8, 2, 34, 11, 12, 30, 44]. While traditional physics engines234

constructed for computer graphics (such as PhysX and Flex) have made great strides, such routines are235

often hard-wired, and thus both hard to apply to novel physical situations encountered by real-world236

robots, and challenging to integrate as components of larger learnable systems. Creating end-to-end237

differentiable neural networks for intuitive physics prediction is thus an important area of research.238

However, the quality and scalability of learned physics predictors has been limited, in part by the239

availability of effective training data. This area has thus afforded a compelling use case for TDW,240

highlighting its advanced physical simulation capabilities.241

Advanced Physical Prediction Benchmark Using the TDW platform, we have created a compre-242

hensive benchmark for training and evaluation of physically-realistic forward prediction algorithms.243

This dataset contains a large and varied collection of physical scene trajectories, including all data244

from visual, depth, audio, and force sensors, high-level semantic label information for each frame, as245

well as latent generative parameters and code controllers for all situations. This dataset goes well246

beyond existing related benchmarks, such as IntPhys [32], providing scenarios with large numbers of247

complex real-world object geometries, photo-realistic textures, as well as a variety of rigid, soft-body,248

cloth, and fluid materials. Example scenarios from this dataset are seen in Fig 2 are grouped into249

subsets highlighting important issues in physical scene understanding, including:250

• Object Permanence: Object Permanence is a core feature of human intuitive physics [35], and251

agents must learn that objects continue to exist when out of sight.252

• Shadows: TDW’s lighting models allows agents to distinguish both object intrinsic properties (e.g.253

reflectance, texture) and extrinsic ones (what color it appears), which is key to understanding that254

appearance can change depending on context, while underlying physical properties do not.255

• Sliding vs Rolling: Predicting the difference between an object rolling or sliding – an easy task for256

adult humans – requires a sophisticated mental model of physics. Agents must understand how257

object geometry affects motion, plus some rudimentary aspects of friction.258
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Object Permanence Shadows Sliding vs Rolling Stability

Simple Collisions Complex Collisions Draping & Folding Fluid-Solid Interactions
Figure 2: Advanced Physical Understanding Benchmark. Scenarios for training and evaluating
advanced physical understanding in end-to-end differentiable physics predictors. These are part of a
benchmark dataset that will be released along with TDW. Each panel of four images is in order of
top-left, top-right, bottom-left, bottom-right ( more video examples).

• Stability: Most real-world tasks involve some understanding of object stability and balance. Unlike259

simulation frameworks where object interactions have predetermined stable outcomes, using TDW260

agents can learn to understand how geometry and mass distribution are affected by gravity.261

• Simple Collisions: Agents must understand how momentum and geometry affects collisions to262

know that what happens when objects come into contact affects how we interact with them.263

• Complex Collisions: Momentum and high resolution object geometry help agents understand that264

large surfaces, like objects, can take part in collisions but are unlikely to move.265

• Draping & Folding: By modeling how cloth and rigid bodies behave differently, TDW allows266

agents to learn that soft materials are manipulated into different forms depending on what they are267

in contact with.268

• Submerging: Fluid behavior is different than solid object behavior, and interactions where fluid269

takes on the shape of a container and objects displace fluid are important for many real-world tasks.270

Object-Object InteractionsObject-Gravity Interactions

Stable Towers Cloth-Solid InteractionsUnstable Towers
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Figure 3: Training a Learnable Physics Simulator. (a) Examples of prediction rollouts for a variety
of physical scenarios. b) Quantative evaluations of physical predictions over time for HRN compared
to no-collision ablation (green), Interaction Network [5] (red), and simple MLP (blue).
Training a Learnable Intuitive Physics Simulator The Hierarchical Relation Network (HRN) is a271

recently-published end-to-end differentiable neural network based on hierarchical graph convolution,272

that learns to predict physical dynamics in this representation [28]. The HRN relies on a hierarchical273

part-based object representation that covers a wide variety of types of three-dimensional objects,274

including both arbitrary rigid geometrical shapes, deformable materials, cloth, and fluids. Here, we275

train the HRN on large-scale physical data generated by TDW, as a proof of concept for TDW’s276

physical simulation capabilities. Building on the HRN, we also introduce a new Dynamic Recurrent277

HRN (DRHRN) (Network Details in Supplement). that achieves improved physical prediction278

results that take advantage of the additional power of the TDW dataset generation process.279

Experimental settings To evaluate HRN and DRHRN accuracy and generalization, we utilize a280

subset of the scenarios in the advanced physical understanding benchmark. We use objects of different281
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Table 5: Improved Physical Prediction Models. We measure the global (G) and local (L) position
MSE and show qualitative predictions of our DRHRN model at 40 time steps in the future on Lift,
Slide, Collide, Stack and Cloth data. |N | is the number of objects in the scene.
[G] ×10−1 Lift |3| Slide |3| Collide |3| Stack |3| Cloth |2|
[L] ×10−2 G L G L G L G L G L
HRN [28] 3.27 4.18 2.04 3.89 4.08 4.34 3.50 2.94 1.33 2.22
DPI[24] 3.37 4.98 3.25 3.42 4.28 4.13 3.16 2.12 0.42 0.97
DRHRN 1.86 2.45 1.29 2.36 2.45 2.98 1.90 1.83 0.24 0.64

Input

Ground
Truth

DRHRN

t+40

t+40

t+0

shapes (bowl, cone, cube, dumbbell, octahedron, pentagon, plane, platonic, prism, ring, sphere) and282

materials (cloth, rigid, soft) to construct the following scenarios: (1) A lift subset, in which objects283

are lifted and fall back on the ground. (2) A slide subset, in which objects are pushed horizontally on284

a surface under friction. (3) A collide subset, in which objects are collided with each other. (4) A285

stack subset, in which objects are (un)stably stacked on top of each other. And (5) a cloth subset,286

in which a cloth is either dropped on one object or placed underneath and lifted up. Three objects287

are placed in the first four scenarios, as at least three objects are needed to learn indirect object288

interactions (e.g. stacking). Each subset consists of 256-frame trajectories, 350 for training (~90,000289

states) and 40 for testing (~10,000 states).290

Given two initial states, each model is trained to predict the next future state(s) at 50 ms intervals.291

We train models on all train subsets at once and evaluate on test subsets separately. We measure292

the mean-square-error (MSE) between predicted and true particle positions in global and local293

object coordinates. Global MSE quantifies object position correctness. Local MSE assesses how294

accurately the object shape is predicted. We evaluate predictions 40 frames into the future. For a295

better visualization of training and test setups, please follow this video link.296

Prediction Results We first replicate results comparing the HRN against simpler physical prediction297

baselines. As in the original work, we find that HRN outperforms baseline models without collision-298

detection or flexible hierarchical scene description (Fig. 3). We then compare DRHRN against strong299

deterministic physics prediction baselines, including HRN as above, and DPI [24], which uses a300

different hierarchical message passing order and a hard coded rigid shape preservation constraint.301

We re-implement both baselines in Tensorflow for direct comparison. Table 5 presents results of the302

DRHRN comparison. DRHRN clearly outperforms HRN and DPI on all scenarios. It achieves a303

lower local MSE, indicating better shape preservation which we can indeed observe in the images.304

All predictions look physically plausible without unnatural deformations (more video results).305

3.3 Social Agents and Virtual Reality306

Social interactions are a critical aspect of human life, but are an area where current approaches in AI307

and robotics are especially limited. AI agents that model and mimic social behavior, and that learn308

efficiently from social interactions, are thus an important area for cutting-edge technical development.309

Task Definition Using the flexibility of TDW’s multi-avatar API, we have created implementations of310

a variety of multi-agent interactive settings (Fig. 1f). These include scenarios in which an “observer”311

agent is placed in a room with multiple inanimate objects, together with several differentially-312

controlled “actor” agents (Fig. 4a). The actor agents are controlled by either hard-coded or interactive313

policies implementing behaviors such as object manipulation, chasing and hiding, and motion314

imitation. Human observers in this setting are simply asked to look at whatever they want, whereas315
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Figure 4: Multi-Agent and VR Capabilities. a) Illustration of TDW’s VR capabilities in an
experiment measuring spontaneous patterns of attention to agents executing spatiotemporal kinematics
typical of real-world inanimate and animate agents. By design, the stimuli are devoid of surface
features, so that both humans and intrinsically-motivated neural network agents must discover which
agents are interesting and thus worth paying attention to, based on the behavior of the actor agents.
Example timecourses (panel b) and aggregate attention (panel c) for different agents, from humans
over real time, and from intrinsically-motivated neural network agents over learning time.

our virtual observer seeks to maximize its ability to predict the behaviors of the actors in this same316

display, allocating its attention based on a metric of “progress curiosity” [3] that seeks to estimate317

which observations are most likely to increase the observer’s ability to make actor predictions. The318

main question is whether this form of curiosity-driven learning naturally gives rise to patterns of319

attention that mirror how humans allocate attention as they explore this same scene for the first time320

during the experiment.321

Experiments Intriguingly, in recent work, these socially-curious agents have been shown to outper-322

form a variety of existing alternative curiosity metrics in producing better predictions, both in terms of323

final performance and substantially reducing the sample complexity required to learn actor behavior324

patterns [20]. The VR integration in TDW enables humans to directly observe and manipulate objects325

in responsive virtual environments. Fig. 4 illustrates an experiment investigating the patterns of326

attention that human observers exhibit in an environment with multiple animate agents and static327

objects [18, 14]. Observers wear a GPU-powered Oculus Rift S, while watching a virtual display328

containing multiple robots. Head movements from the Oculus are mapped to a sensor camera within329

TDW, and camera images are paired with meta-data about the image-segmented objects, in order to330

determine which set of robots people are gazing at. Interestingly, the socially-curious neural network331

agents produce an aggregate attentional gaze pattern that is quite similar to that of human adults332

measured in the VR environment (Fig. 4b), arising from the agent’s discovery of the inherent relative333

“interestingness” of animacy, without building it in to the network architecture [20]. These results are334

just one illustration of TDW’s extensive VR capabilities in bridging AI and human behaviors.335

4 Future Directions336

We are actively working to develop new capabilities for robotic systems integration and articulatable337

object interaction for higher-level task planning and execution. Articulatable Objects. Currently338

only a small number of TDW objects are modifiable by user interaction, and we are actively expanding339

the number of library models that support such behaviors, including containers with lids that open,340

chests with removable drawers and doors with functional handles. Humanoid Avatars. Interacting341

with actionable objects or performing fine-motor control tasks such as solving a jigsaw puzzle requires342

avatars with a fully articulated body and hands. We plan to develop a set of humanoid avatar types343

that fulfill these requirements, with body movement driven by motion capture data and a separate344

gesture control system for fine motor control of hand and finger articulation. Robotic Systems345

Integration. Building on the modular API layering approach, we envision developing additional346

“ultra-high-level” API layers to address specific physical interaction scenarios. We are also exploring347

creating a PyBullet [9] “wrapper” that would allow replicating physics behaviors between systems by348

converting PyBullet API commands into comparable commands in TDW.349
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