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1.  Introduction

Recent theoretical work on the behavior of aggregate stock market prices has tried

to account for several empirical regularities. These include the excess volatility puzzle of

LeRoy and Porter (1981) and Shiller (1981), the equity premium puzzle of Mehra and

Prescott (1985), the low correlation of stock returns and consumption growth, and, most

importantly, the evidence on predictability of stock market returns using the aggregate

dividend-price ratio (Campbell and Shiller, 1988; Fama and French, 1988). Both

traditional and behavioral models have tried to account for this evidence.

Yet this research has largely neglected another set of relevant data, namely those

on actual investor expectations of stock market returns. As recently summarized by

Greenwood and Shleifer (2014) using data from multiple investor surveys, many

investors hold extrapolative expectations, believing that stock prices will continue rising

after they have previously risen, and falling after they have previously fallen.1 This

evidence is inconsistent with the predictions of many of the models used to account for

the other facts about aggregate stock market prices. Indeed, in most traditional models,

investors expect low returns, not high returns, if stock prices have been rising: in these

models, rising stock prices are a sign of lower investor risk aversion or lower perceived

risk. Cochrane (2011) finds the survey evidence uncomfortable, and recommends

discarding it.

In this paper, we present a new model of aggregate stock market prices which

attempts to both incorporate extrapolative expectations held by a significant subset of

investors, and address the evidence that other models have sought to explain. The model

includes both rational investors and price extrapolators, and examines security prices

when both types are active in the market. Moreover, it is a consumption-based asset

pricing model with infinitely lived consumers optimizing their decisions in light of their

beliefs and market prices. As such, it can be directly compared to some of the existing

1 Greenwood and Shleifer (2014) analyze data from six different surveys. Some of the surveys are of
individual investors, while others cover institutions. Most of the surveys ask about expectations for the next
year’s stock market performance, but some also include questions about the longer term. The average
investor expectations computed from each of the six surveys are highly correlated with one another and are
all extrapolative. They are also negatively related to subsequent realized returns, which makes it hard to
interpret them as rational forecasts. Earlier studies of stock market investor expectations include Vissing-
Jorgensen (2004), Bacchetta, Mertens, and van Wincoop (2009), and Amromin and Sharpe (2013).
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research.  We suggest that our model can reconcile the evidence on expectations with the

evidence on volatility and predictability that has animated recent work in this area.

Why is a new model needed? As Table 1 indicates, traditional models of financial

markets have been able to address pieces of the existing evidence, but not the data on

expectations. The same holds true for preference-based behavioral finance models, as

well as for the first generation belief-based behavioral models that focused on random

noise traders. Several papers listed in Table 1 have studied extrapolation of fundamentals.

However, these models also struggle to match the survey evidence: after good stock

market returns driven by strong cash flows, the investors they describe expect higher cash

flows, but, because these expectations are reflected in the current price, they do not

expect higher returns.2 Finally, a small literature, starting with Cutler, Poterba, and

Summers (1990) and DeLong et al. (1990b), focuses on models in which some investors

extrapolate prices. Our goal is to write down a more “modern” model of price

extrapolation that includes infinite horizon investors, some of whom are fully rational,

who make optimal consumption decisions given their beliefs, so that the predictions can

be directly compared to those of the more traditional models.

Our infinite horizon continuous-time economy contains two assets: a risk-free

asset with a fixed return; and a risky asset, the stock market, which is a claim to a stream

of dividends and whose price is determined in equilibrium. There are two types of

traders. Both types maximize expected lifetime consumption utility. They differ only in

their expectations about the future. Traders of the first type, “extrapolators,” believe that
the expected price change of the stock market is a weighted average of past price

changes, where more recent price changes are weighted more heavily. Traders of the

second type, “rational traders,” are fully rational: they know how the extrapolators form
their beliefs and trade accordingly. The model is simple enough to allow for a closed-

form solution.

2 For example, in the cash-flow extrapolation model of Barberis, Shleifer, and Vishny (1998), investors’
expectations of returns remain constant over time, even though their expectations of cash flows vary
significantly. More elaborate models of cash-flow extrapolation—for example, models with both
extrapolators and rational traders—may, as a byproduct, come closer to matching the survey evidence;
here, we present an alternative approach that may be simpler and more direct. Models in which investors
try to learn an unknown cash-flow growth rate face similar challenges to models of cash-flow
extrapolation. We discuss learning-based models in more detail in Section 2.1.
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We first use the model to understand how extrapolators and rational traders

interact. Suppose that, at time t, there is a positive shock to dividends. The stock market

goes up in response to this good cash-flow news. However, the extrapolators cause the

price jump to be amplified: since their expectations are based on past price changes, the

stock price increase generated by the good cash-flow news leads them to forecast a higher

future price change on the stock market; this, in turn, causes them to push the time t stock

price even higher.

More interesting is rational traders’ response to this development. We find that

the rational traders do not aggressively counteract the overvaluation caused by the

extrapolators. In part, this is because they are risk averse. However, it is also because

they reason as follows. The rise in the stock market caused by the good cash-flow news—
and by extrapolators’ reaction to it—means that, in the near future, extrapolators will

continue to have bullish expectations for the stock market: after all, their expectations are

based on past price changes, which, in our example, are high. As a consequence,

extrapolators will continue to exhibit strong demand for the stock market in the near

term. This means that, even though the stock market is overvalued at time t, its returns in

the near future will not be particularly low—they will be bolstered by the ongoing

demand from extrapolators. Recognizing this, the rational traders do not sharply decrease

their demand at time t; they only mildly reduce their demand. Put differently, they only

partially counteract the overpricing caused by the extrapolators.

Using a combination of formal propositions and numerical analysis, we then

examine our model’s predictions about prices and returns. We find that these predictions

are consistent with several key facts about the aggregate market and, in particular, with

the basic fact that when its price is high (low) relative to dividends, the stock market

subsequently performs poorly (well). When good cash-flow news is released, the stock

price in our model jumps up more than it would in an economy made up of rational

investors alone: as described above, the price jump caused by the good cash-flow news

feeds into extrapolators’ expectations, which, in turn, generates an additional price
increase. At this point, the stock market is overvalued and its price is high relative to

dividends. Since, subsequent to the overvaluation, the stock market performs poorly on

average, its price level relative to dividends predicts subsequent price changes in our

model, just as it does in actual data. The same mechanism also generates excess
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volatility—stock market prices are more volatile than can be explained by rational

forecasts of future cash flows—as well as negative autocorrelations in price changes at all

horizons, capturing the negative autocorrelations we see at longer horizons in actual data.

The model also matches some empirical facts that, thus far, have been taken as

evidence for other models. For example, in actual data, surplus consumption, a measure

of how current consumption compares to past consumption, is correlated with the value

of the stock market and predicts the market’s subsequent return. These facts have been

taken as support for habit-based models. However, they also emerge naturally in our

framework.

Our numerical analysis allows us to quantify the effects described above.

Specifically, we use the survey data studied by Greenwood and Shleifer (2014) and

others to parameterize the functional form of extrapolation in our model. For one

reasonable parameterization, we find that if 50% of investors are extrapolators while 50%

are rational traders, the standard deviation of annual price changes is 30% higher than in

an economy consisting of rational traders alone.

There are aspects of the data that our model does not address. For example, even

though some of the investors in the economy are price extrapolators, the model does not

predict the positive autocorrelation in price changes observed in the data at very short

horizons. Also, there is no mechanism in our model, other than high risk aversion, that

can generate a large equity premium. And while the presence of extrapolators reduces the

correlation of consumption changes and price changes, this correlation is still much

higher in our model than in actual data.

In summary, our analysis suggests that, simply by introducing some investors

with extrapolative expectations into an otherwise traditional consumption-based model of

asset prices, we can make sense not only of some important facts about prices and

returns, but also, by construction, of the available evidence on the expectations of real-

world investors. This suggests that the survey evidence need not be seen as a nuisance, or

as an impediment to understanding the facts about prices and returns. On the contrary, the

extrapolation observed in the survey data is consistent with the facts about prices and

returns, and may be the key to understanding them.

In Section 2, we present our model and its solution, and discuss some of the basic

insights that emerge from it. In Section 3, we assign values to the model parameters. In
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Section 4, we show analytically that the model reproduces several key features of stock

prices. Our focus here is on quantities defined in terms of differences—price changes, for

example; given the structure of the model, these are the natural objects of study. In

Section 5, we use simulations to document the model’s predictions for ratio-based

quantities, such as the price-dividend ratio, which are more commonly studied by

empiricists. Section 6 concludes. All proofs and some discussion of technical issues are

in the Appendix.

2. The model

In this section, we propose a heterogeneous-agent, consumption-based model in

which some investors extrapolate past price changes when making forecasts about future

price changes. Constructing such a model presents significant challenges, both because of

the heterogeneity across agents, but also because it is the change in price, an endogenous

quantity, that is being extrapolated. By contrast, constructing a model based on

extrapolation of exogenous fundamentals is somewhat simpler. To prevent our model

from becoming too complex, we make some simplifying assumptions: about the dividend

process (a random walk in levels), about investor preferences (exponential utility), and

about the risk-free rate (an exogenous constant). We expect the intuitions of the model to

carry over to more complex formulations.3

We consider an economy with two assets: a risk-free asset in perfectly elastic

supply with a constant interest rate r; and a risky asset, which we think of as the

aggregate stock market, and which has a fixed per-capita supply of Q. The risky asset is a

claim to a continuous dividend stream whose level per unit time evolves as an arithmetic

Brownian motion

,t D D tdD g dt d   (1)

where Dg and D are the expected value and standard deviation of dividend changes,

respectively, and where t is a standard one-dimensional Wiener process. Both Dg and D

are constant. The value of the stock market at time t is denoted by Pt and is determined

endogenously in equilibrium.

3 Several other models of the aggregate stock market make similar assumptions; see, for example,
Campbell and Kyle (1993) and Wang (1993). We discuss the constant interest rate assumption in Section
2.1.
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There are two types of infinitely lived traders in the economy: “extrapolators” and
“rational traders.” Both types maximize expected lifetime consumption utility. The only

difference between them is that one type has correct beliefs about the expected price

change of the risky asset, while the other type does not.

The modeling of extrapolators is motivated by the survey evidence analyzed by

Vissing-Jorgensen (2004), Bacchetta, Mertens, and van Wincoop (2009), Amromin and

Sharpe (2013), and Greenwood and Shleifer (2014). These investors form beliefs about

the future price change of the stock market by extrapolating the market’s past price
changes. To formalize this, we introduce a measure of “sentiment,” defined as

( ) 0 ,,
t t s

t s dteS dP 





    (2)

where s is the running variable for the integral and where dPsdt  Ps  Psdt. St is simply a

weighted average of past price changes on the stock market where the weights decrease

exponentially the further back we go into the past. The definition of St includes even the

most recent price change, dPtdt = Pt  Ptdt. The parameter  plays an important role in

our model. When it is high, sentiment is determined primarily by the most recent price

changes; when it is low, even price changes in the distant past have a significant effect on

current sentiment. In Section 3, we use survey data to estimate .

We assume that extrapolators’ expectation of the change, per unit time, in the

value of the stock market, is

, 0 1[ ] / ,e e
P t t t tg dP dt S   (3)

where the superscript “e” is an abbreviation for “extrapolator,” and where, for now, the

only requirement we impose on the constant parameters 0 and 1 is that 1  0. Taken

together, Eqs. (2) and (3) capture the essence of the survey results in Greenwood and

Shleifer (2014): if the stock market has been rising, extrapolators expect it to keep rising;

and if it has been falling, they expect it to keep falling. While we leave 0 and 1

unspecified for now, the numerical analysis we conduct later sets 0  0 and 1  1; we

explain in Section 3 why these are natural values to use.

We do not take a strong stand on the underlying source of the extrapolative

expectations in (3). One possible source is a judgment heuristic such as

representativeness, or the closely related “belief in the law of small numbers” (Barberis,
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Shleifer, and Vishny, 1998; Rabin, 2002). People who believe in the law of small

numbers think that even short samples will resemble the parent population from which

they are drawn. As a consequence, when they see good recent returns in the stock market,

they infer that the market must currently have a high average return and will therefore

continue to perform well.4

To compute their optimal consumption-portfolio decision at each moment of time,

extrapolators need to form beliefs not only about the expected instantaneous price change,

but also about the evolution of future prices. We assume that, in extrapolators’ minds,

prices evolve according to

0 1 ,( ) e
t t P tdd S t dP      (4)

where, again from the extrapolators’ perspective, e
t is a Wiener process. The drift term

simply reflects the expectations in (3), while the instantaneous volatility P is the actual

instantaneous volatility that is endogenously determined in equilibrium and that we

assume, and later verify, is a constant. Since volatility can easily be estimated from past

data, we assume that extrapolators know its true value.

The second type of investor, the rational trader, has correct beliefs, both about the

dividend process in (1) and about the evolution of future stock prices.

There is a continuum of both rational traders and extrapolators in the economy.

Each investor, whether an extrapolator or a rational trader, takes the risky asset price as

given when making his consumption-portfolio decision and has constant absolute risk

aversion (CARA) preferences with risk aversion  and time discount factor .5 At time 0,

each extrapolator maximizes

0
0

e
tt C

e e
dt

   
 

 


 (5)

subject to his budget constraint

4 Another possible source of extrapolative expectations is the experience effect analyzed by Malmendier
and Nagel (2011). One caveat is that, as we show later, the investor expectations documented in surveys
depend primarily on recent past returns, while in Malmendier and Nagel’s (2011) results, distant past
returns also play a significant role.

5 The model remains analytically tractable even if the two types of investor have different values of  or
.
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( )(1 )

,

e e e
t t dt t t t t t t t t t dt t

e e e e e
t t t t t

e e e e

t t

e

t

edW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


(6)

where ,e
tW ,e

tC and e
tN are his time t per-capita wealth, consumption, and number of

shares he invests in the risky asset, respectively. Similarly, at time 0, each rational trader

maximizes

0
0

r
tt C

r e
dt

   
 

 


 (7)

subject to his budget constraint

( )(1 )

,

r r r r r r
t t dt t t t t t t t t t dt t

t t t t t t

r r r

t
r r r r

t
r

dW W W C dt N P rdt N D dt N P W

rW dt C dt rN Pdt N dP N D

W

dt

        

    


(8)

where ,r
tW ,r

tC and r
tN are his time t per-capita wealth, consumption, and number of

shares he invests in the risky asset, respectively, and where the superscript “r” is an

abbreviation for “rational trader.”
Rational traders make up a fraction , and extrapolators 1  , of the total investor

population. The market clearing condition that must hold at each time is

(1 ) ,r e
t t QN N    (9)

where, as noted above, Q is the per-capita supply of the risky asset. Both extrapolators

and rational traders observe Dt and Pt on a continuous basis.6

Using the stochastic dynamic programming approach developed in Merton

(1971), we obtain the following proposition.

Proposition 1. (Model solution.) In the heterogeneous-agent model described above, the

equilibrium price of the risky asset is

.t
t t

D
A BS

r
P    (10)

The price Pt and sentiment St evolve according to

,
1 (1 )t

D
P tt

gB
dP S dt d

B B r

 
      


 

(11)

6 As in any framework with less than fully rational traders, the extrapolators could, in principle, come to
learn that their beliefs about the future are inaccurate. We do not study this learning process; rather, we
study the behavior of asset prices when extrapolators are unaware of the bias in their beliefs.
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,
1

D
t P tt

g
dS S dt d

B r


    



 


 (12)

where .
(1 )

D
P B r





 At time t, the value functions for the extrapolators and the rational

traders are

2

,{ }

2

{ },

max exp( ),

ma

( , , )

( , , ) x exp( ) .

s

s

r

e

e e
s s t

s s

s

r r
s t

s C
e e e e e e e

t t t t
N t

r r r r r r r

N t

t t
C

s C

t t t t t t
C

e
J ds t r W

e
J d

W S t a S b S c

W S t a S b Ss t W cr





  





 

 
      

  
 

      
 

    

    









(13)

The optimal share demands for the risky asset from the extrapolators and from the

rational traders are

0 1 0 1, ,e e e r r r
t t t tS N SN        (14)

and the optimal consumption flows of the two types are

2

2

log(

lo

)
,

)
,

g(

e e e
e e t t
t t

t t
t t

r r r
r r

a S b S c r
C rW

a S b S c r
C rW





 

 

 
 






 

(15)

where the optimal wealth levels, e
tW and r

tW ,evolve as in (6) and (8), respectively. The

coefficients A, B, ea , eb , ec , ra , rb , rc , 0
e , 1

e , 0
r , and 1

r are determined through a system

of simultaneous equations. 

Comparing extrapolators’ beliefs about future prices in (4) with the actual price

process in (11), we see that extrapolators’ beliefs are incorrect. While extrapolators think

that the expected instantaneous price change depends positively on the sentiment level St,

Eq. (11) shows that it actually depends negatively on St: in Corollary 2 below, we show

that, in the equilibrium we study, B  (0, 1), so that the coefficient on St in (11) is

negative. Substituting Eq. (4) into the differential form of (2), namely,

,t t tdS dS dt P    (16)

we obtain extrapolators’ beliefs about the evolution of sentiment,
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 0 1( 1) .e
t t P tdS S d dt        (17)

Comparing (12) to (17), we see that these beliefs are also incorrect. For example, when 0

 0 and 1  1, extrapolators think that sentiment follows a random walk; in reality,

however, it is mean-reverting.

While the extrapolators have incorrect beliefs about the evolution of prices and

sentiment, they are fully time-consistent. At time t, an extrapolator’s consumption-

portfolio decision is a function of two state variables: his wealth e
tW and sentiment .tS

When computing his time t decision, the extrapolator makes a plan as to what he will do

in all future states {( , )}.e
t tW S  If, at time t  , he arrives in state ( , ),e

t tW S  he is

time-consistent: he takes the action that he had previously planned to take in that state.

His only error is that, since his beliefs about the evolution of prices and sentiment are

incorrect, he misestimates the probability of moving from state ( , )e
t tW S at time t to state

( , )e
t tW S  at time t  .

To understand the role that extrapolators play in our model, we compare the

model’s predictions to those of a benchmark “rational” economy, in other words, an
economy where all traders are of the fully rational type, so that   1.7

Corollary 1. (Rational benchmark.) If all traders in the economy are rational (  1), the

equilibrium price of the risky asset is

2

2 2
,tD D

tP
DQ g

r r r


   (18)

and therefore evolves according to

.D D
t tdt

g
dP

r r
d


  (19)

The value function for the rational traders is

2 2 21
( , ) exp .

2
D

t t
r r r Qr

W t
r r

J t W
r

r
  

      
 


 (20)

The optimal consumption flow is

7 Another way of reducing our model to a fully rational economy is to set 0 and 1, the parameters in
(3), to gD /r and zero, respectively. In this case, the rational traders and the extrapolators have the same,
correct beliefs about the expected price change of the risky asset.
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2 2

2
,r r D

t t

Qr
rW

r
C

r








 (21)

where the optimal wealth level, r
tW ,evolves as

2 2

.
2

r D D
t t

Q Qr

r r
dW dt d

r

  
 








(22)



2.1. Discussion

In Sections 4 and 5, we discuss the model’s implications in detail. However, the
closed-form solution in Proposition 1 already makes apparent its basic properties.

Comparing Eqs. (10) and (18), we see that, up to a constant, the effect of

extrapolators on the risky asset price is given by the term BSt, where, as noted above and

stated formally in Corollary 2 below, B  (0, 1). Intuitively, if the sentiment level St is

high, indicating that past price changes have been high, extrapolators expect the stock

market to continue to perform well and therefore push its current price higher.

Eq. (12) shows that, in equilibrium, sentiment St follows a mean-reverting

process, one that reverts more rapidly to its mean as β increases. Put differently, the
mispricing BSt generated by extrapolators is eventually corrected, and more quickly so

for higher values of β. To see why, recall that an overpricing occurs when good cash-flow

news generates a price increase that then feeds into extrapolators’ beliefs, leading them to
push the price still higher. The form of extrapolation in (2), however, means that, as time

passes, the price increase caused by the good cash-flow news plays a smaller and smaller

role in determining extrapolators’ beliefs. As a result, these investors become less bullish

over time, and the mispricing corrects. This happens more rapidly when β is high
because, in this case, extrapolators quickly “forget” all but the most recent price changes.

Comparing Eqs. (11) and (19), we see that, as noted in the Introduction, the

presence of extrapolators amplifies the volatility of price changes—specifically, by a

factor of 1/(1  B) > 1. And while in an economy made up of rational investors alone,

price changes are not predictable—see Eq. (19)—Eq. (11) shows that they are predictable

in the presence of extrapolators. If the stock market has recently experienced good

returns, so that sentiment St has a high value, the subsequent stock market return is low
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on average: the coefficient on St in (11) is negative. In short, high valuations in the stock

market are followed by low returns, and low valuations are followed by high returns. This

anticipates some of our results on stock market predictability in Sections 4 and 5.

Eq. (14) shows that extrapolators’ share demand is a positive linear function of

sentiment St: in Corollary 2 below, we show that the derived parameter 1
e is strictly

positive. In other words, after a period of good stock market performance, one that

generates a high sentiment level St, extrapolators form more bullish expectations of future

price changes and increase the number of shares of the stock market that they hold. With

a fixed supply of these shares, this automatically means that the share demand of rational

traders varies negatively with sentiment St: rational traders absorb the shocks in

extrapolators’ demand. While extrapolators’ beliefs are, by assumption, extrapolative,

rational traders’ beliefs are contrarian: their beliefs are based on the true price process in

Eq. (11) whose drift depends negatively on St.

Eq. (21) shows that, in the fully rational economy, optimal consumption is a

constant plus the product of wealth and the interest rate. Eq. (15) shows that, when

extrapolators are present in the economy, the consumption policy of each type of trader

also depends on linear and quadratic terms in St. We can show that the derived

parameters ea and ra in Eq. (15) satisfy 0ea  and 0;ra  we also find that eb and rb

typically satisfy .e rb b The fact that e rb b indicates that extrapolators increase their

consumption more than rational traders do after strong stock market returns. After strong

returns, extrapolators expect the stock market to continue to rise; an income effect

therefore leads them to consume more. Rational traders, on the other hand, correctly

perceive low future returns and therefore do not raise their consumption as much. The

fact that ea and ra are both negative indicates that, when sentiment deviates substantially

from its long-run mean, both types increase their consumption. When St takes either a

very high or a very low value, both types perceive the stock market to be severely

misvalued and therefore expect their respective investment strategies to perform well in

the future. This, in turn, leads them to raise their consumption.

Since extrapolators have incorrect beliefs about future price changes, it is likely

that, in the long run, their wealth will decline relative to that of rational traders. However,

the equilibrium price in (10) is unaffected by the relative wealth of the two trader types:

under exponential utility, the share demand of each type, and hence also the stock price,
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are independent of wealth. The exponential utility assumption allows us to abstract from

the effect of “survival” on prices, and to focus on what happens when both types of trader
play a role in setting prices.

The idea, inherent in our model, that uninformed investors will affect prices even

in the long run, is not completely unrealistic. In reality, people earn labor income which

can sustain a losing investment strategy for many years; and while some uninformed

investors may be forced to exit the financial markets because of poor performance, they

are likely to be replaced, at least in part, by a new cohort of naïve traders with little prior

experience. In addition, even if the wealth of an uninformed investor declines over time,

this process can take a long time (Yan, 2008). We have used numerical simulations to

confirm this in the context of our model. We find that, if, at time 0, the extrapolators and

rational traders each hold 50% of aggregate wealth, then, after 50 years, for the

benchmark parameter values that we lay out in Section 3, the extrapolators on average

still hold 40% of aggregate wealth.8

At the heart of our model is an amplification mechanism: if good cash-flow news

pushes the stock market up, this price increase feeds into extrapolators’ expectations

about future price changes, which then leads them to push the current price up even

higher. However, this then further increases extrapolators’ expectations about future price
changes, leading them to push the current price still higher, and so on. Given this infinite

feedback loop, it is important to ask whether the heterogeneous-agent equilibrium we

described above exists. The following corollary provides sufficient conditions for

existence of equilibrium.

Corollary 2. (Existence of equilibrium.) When 1    0, the equilibrium described in

Proposition 1 exists if

1 2( ), 2 .rr      (23)

When   0, the equilibrium described in Proposition 1 exists if (23) holds and if

1 12 , .r     (24)

8 Nonetheless, it would be useful to construct a model of price extrapolation in which the relative wealth
of informed and uninformed traders affects prices—for example, a model with power utility or Epstein-Zin
preferences. However, such a model would be far less tractable than the one we present here; and we
conjecture that, if it allows for labor income or for cohorts of new uninformed investors to enter the
markets on a regular basis, its predictions will be similar to those of the current model.
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In particular, under each set of conditions, there exists an equilibrium in which B  (0,

1), 1
e is strictly positive, and 1

r is strictly negative. 

Corollary 2 shows that, when all investors in the economy are extrapolators, there

may be no equilibrium even for reasonable parameter values; loosely put, the feedback

loop described above may fail to converge. For example, if 1 = 1 and  = 0.5, there may

be no equilibrium in the case of   0 if the interest rate is less than 50%. However, the

corollary also shows that, if  > 0—in words, if there are any rational traders at all in the

economy—the equilibrium is very likely to exist: for most empirically plausible values of

r, , and 1, the sufficient conditions in (23) are satisfied.

One of the assumptions of our model is that the risk-free rate is constant. To

evaluate this assumption, we compute the aggregate demand for the risk-free asset across

the two types of trader. We find that this aggregate demand is very stable over time and,

in particular, is only weakly correlated with the sentiment level St. This is because the

demand for the risk-free asset from one type of trader is largely offset by the demand

from the other type: when sentiment St is high, rational traders increase their demand for

the risk-free asset (and move out of the stock market), while extrapolators reduce their

demand for the risk-free asset (and move into the stock market). When sentiment is low,

the reverse occurs. This suggests that, even if the risk-free rate were endogenously

determined, it would not fluctuate wildly, nor would its fluctuations significantly

attenuate the effects we describe here.

Our model is similar in some ways to that of Campbell and Kyle (1993)—a model

in which, as in our framework, the risk-free rate is constant, the level of the dividend on

the risky asset follows an arithmetic Brownian motion, and infinitely lived rational

investors with exponential utility interact with less rational investors. The difference

between the two models—and it is an important difference—is that, in Campbell and

Kyle (1993), the share demand of the less rational investors is exogenously assumed to

follow a mean-reverting process, while, in our model, extrapolators’ share demand is

derived from their beliefs.

It is also useful to compare our framework to models of rational learning. Wang

(1993) considers an economy with informed investors, uninformed investors, and noise

traders with exogenous mean-reverting demand for a risky asset. The dividend stream on
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the risky asset has a time-varying drift that is known to the informed investors but not to

the uninformed investors, who instead try to estimate the drift from past dividends and

prices.

The model of Wang (1993) captures a number of facts about asset prices, but is

less consistent with the survey evidence on expectations. Greenwood and Shleifer (2014)

show that, in a regression of the average investor expectation of future returns on the past

return and the past change in fundamentals, the coefficient on the past return is strongly

positive while the coefficient on the past change in fundamentals is insignificant. In the

economy described by Wang (1993), however, the expectations of both the informed and

uninformed investors about future price changes typically depend negatively on past price

changes, after controlling for past fundamentals: if prices go up without a

contemporaneous increase in dividends, both investor types infer that noise trader

demand has gone up; since this demand is mean-reverting, both investor types forecast

low, not high, price changes in the future.

The idea that investors extrapolate past price changes features prominently in

classic qualitative accounts of asset bubbles (Kindleberger, 1978; Minsky, 1986; Shiller,

2000). Our model shows formally how, even in the presence of fully rational traders,

price extrapolators can generate the most fundamental feature of a bubble, namely a

substantial and long-lived overvaluation of an asset class. Our focus on extrapolation

differentiates our framework from existing models of bubbles, such as the rational bubble

model of Blanchard and Watson (1982) and the heterogeneous-beliefs models of

Harrison and Kreps (1978) and Scheinkman and Xiong (2003); in these other models,

investors do not hold extrapolative expectations.

While our model shows how extrapolation can lead to overvaluation, the goal of

our analysis is not to understand bubbles, but rather, to understand the behavior of the

aggregate stock market, and, in particular, the joint behavior of consumption, dividends,

and prices. Since we built our model with this goal in mind, it is not surprising that there

are several features of bubbles that it does not capture—for example, the persistent

momentum in prices while a bubble is forming, the high trading volume at the bubble’s
peak, and the riding of the bubble by rational investors (Brunnemeier and Nagel, 2004).

An extrapolation-based model of bubbles that captures this rich set of facts has yet to be

developed.
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3. Parameter values

In this section, we assign benchmark values to the basic model parameters. We

use these values in the numerical simulations of Section 5. However, we also use them in

Section 4. While the core of that section consists of analytical propositions, we can get

more out of the propositions by evaluating the expressions they contain for specific

parameter values.

For easy reference, we list the model parameters in Table 2. The asset-level

parameters are the risk-free rate r; the initial level of the dividend 0 ;D the mean Dg and

standard deviation D of dividend changes; and the risky asset supply Q. The investor-

level parameters are the initial wealth levels for the two types of investor, 0
eW and 0 ;rW

absolute risk aversion  and the time discount rate ; 0 and 1, which link the sentiment

variable to extrapolators’ beliefs; , which governs the relative weighting of recent and

distant past price changes in the definition of sentiment; and finally, μ, the fraction of

rational traders in the investor population.9

We set r = 2.5%, consistent with the low historical risk-free rate. We set the initial

dividend level 0D to 10, and given this, we choose 0.25;D  in other words, we choose

a volatility of dividend changes small enough to ensure that we only rarely encounter

negative dividends and prices in the simulations we conduct in Section 5. We set

0.05Dg  to match, approximately, the value of /D Dg  in actual data. Finally, we set the

risky asset supply Q to 5.

We now turn to the investor-level parameters. We set the initial wealth levels to

0 0
e rW W  5000; these values imply that, at time 0, the value of the stock market

constitutes approximately half of aggregate wealth. We set risk aversion  equal to 0.1 so

that relative risk aversion, computed from the value function as /WW WRRA WJ J 

,r W  is 12.5 at the initial wealth levels. And we choose a low time discount rate of  =

1.5%, consistent with most other asset pricing frameworks.

This leaves four parameters: 0, 1, , and μ. As shown in Eq. (3), 0 and 1

determine the link between sentiment St and extrapolators’ beliefs. We use 0  0 and 1

 1 as our benchmark values. The integral sum of the weights on past price changes in the

definition of sentiment in (2) is equal to one; informally, St represents “one unit” of price

9 For much of the analysis, we do not need to assign specific values to 0 ,D 0 ,eW and 0 ;rW the values of
these variables are required only for the simulations in Section 5.
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change. It is therefore natural for extrapolators to scale St by 1  1 when forecasting a

unit price change in the future. Given this value of 1, we set 0  0 because this ensures

that extrapolators’ beliefs are correct “on average”: while extrapolators overestimate the

subsequent price change of the stock market after good past price changes and

underestimate it after poor past price changes, the errors in their forecasts of future price

changes over any finite horizon will, in the long run, average out to zero.10

The parameter  determines the relative weight extrapolators put on recent as

opposed to distant past price changes when forming expectations about the future; a

higher value of  means a higher relative weight on recent price changes. To estimate ,

we use the time series of investor expectations from the Gallup surveys studied by

Greenwood and Shleifer (2014). We describe the estimation procedure in detail in

Appendix C. In brief, we run a regression of the average investor expectation of the price

change in the stock market over the next year, as recorded in the surveys, on what our

model says extrapolators’ expectation of this quantity should be at that time as a function

of the sentiment level and the model parameters. If the average investor expectation of

the future price change that we observe in the surveys depends primarily on recent past

price changes, the estimated  will be high. Conversely, if it depends to a significant

extent on price changes in the distant past, the estimated  will be low. The estimation

makes use of Proposition 2 below, and specifically, Eq. (26), which describes the price

change expected by extrapolators over any future horizon.

Proposition 2. (Price change expectations of rational traders and extrapolators.)

Conditional on an initial sentiment level S0  s, rational traders’ expectation of the price
change in the stock market over a finite time horizon (0, t1) is

1

1

1
0 0[ | ] 1 e( ) ,ktr D D

t

g g t
P P S s

r r
B s     

 
   (25)

while extrapolators’ expectation of the same quantity is

10 Another motivation for 0  0 and 1  1 is that, for these values, the beliefs in Eq. (3) are the beliefs
that an investor would hold if he had in mind a particular incorrect but natural model of the world, namely
that stock prices follow a random walk with an unobserved drift that itself follows a random walk; see
Adam, Beutel, and Marcet (2014) for a model in which investors’ extrapolative expectations are grounded
in an argument of this type. We have also used the survey evidence to estimate 0 and 1 and find the
estimated values to be close to zero and one; see Appendix C for details. The results we present in Sections
4 and 5 are similar whether we use the estimated values or the values zero and one.
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where
1

k
B





and m  (1  1). When 0  0 and 1  1, (26) reduces to

1 0 0 1 .[ | ]t
e P P S s st  (27)



Eqs. (25) and (26) confirm that the expectations of extrapolators load positively on the

sentiment level, while the expectations of rational traders load on it negatively.

When we use the procedure described in Appendix C to estimate  from the

survey data, we obtain a value of approximately 0.5. For this value of , extrapolators’
expectations depend primarily on recent past price changes; specifically, when forming

their expectations, extrapolators weight the realized annual price change in the stock

market starting four years ago only 22% as much as the most recent annual price change.

While we pay most attention to the case of   0.5, we also present results for   0.05

and   0.75. When   0.05, the annual price change four years ago is weighted 86% as

much as the most recent annual price change, and when   0.75, only 11% as much.11

The final parameter is μ, the fraction of rational traders in the investor population.

We do not take a strong stand on its value. While the average investor expectation in the

survey data is robustly extrapolative, it is hard to know how representative the surveyed

investors are of the full investor population. In our analysis, we therefore consider a range

of values of μ: 1 (an economy where all investors are fully rational), 0.75, 0.5, and 0.25.

We do not consider the case of   0 because Corollary 2 indicates that, when all

investors are extrapolators, the equilibrium may not exist for reasonable values of  and

1. While we consider four different values of μ, we focus on the lower two values,

namely 0.5 and 0.25. The fact that the average investor in the surveys studied by

Greenwood and Shleifer (2014)—surveys that include both individual and institutional

11 When we estimate , we assume that the surveyed investors correspond to the extrapolators in our
model: after all, the presence of extrapolators in our economy is motivated precisely by the survey
evidence. If we instead assumed that the surveyed investors correspond to all investors in our model, we
would likely obtain a similar value of . Since rational traders’ beliefs are the “mirror image” of
extrapolators’ beliefs, rational traders and extrapolators weight past price changes in a similar way when
forming their expectations.
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respondents—exhibits extrapolative expectations suggests that many investors in actual

financial markets are extrapolators.

For a given set of values of the basic parameters in Table 2, we solve a system of

simultaneous equations, as outlined in Appendix A, to compute the “derived” parameters:

0 ,e 1 ,e 0 ,r and 1 ,r which determine the optimal share demands (see Eq. (14)); ,ea ,eb ,ec

,ra ,rb and ,rc which determine the optimal consumption policies (see Eq. (15)); A and B,

which specify how the price level Pt depends on the level of the sentiment St and the level

of the dividend Dt (see Eq. (10)); and finally, ,P the volatility of price changes (see Eq.

(11)). For example, if   0.25,   0.5, and the other basic parameters have the values

shown in Table 2, the values of the derived parameters are:

0 0 1 1

3 3 310

1.54, 15.39, 0.51, 1.54,

1.22 , 1.28 , 7.31 , 0.042,

1.63, 3.47, 117.04, 0.99, 19.75.
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(28)

Before we turn to the empirical implications of the model, we make one more

observation about investor expectations. When we say that our model can “match” the
survey evidence, or that it is “consistent” with it, we mean that, in our model, a

significant fraction of the investor population is comprised of traders—specifically,

extrapolators—whose expectation of future price changes depends positively on past

price changes. However, we could also define “matching” the survey evidence in a
stricter sense, namely to mean that the average expectation of future price changes across

all investors in the model is extrapolative.

Interestingly, we find that our model can match the survey data even in this

stricter sense: the expectation of the future change in price averaged across all investors

in the model—specifically, the population-weighted average of the expressions in (25)

and (26)—depends positively on the sentiment level for any   1. In other words, if

there are any extrapolators at all in the economy, the average investor expectation is

extrapolative. The reason is that, while extrapolators hold extrapolative beliefs and

rational traders hold contrarian beliefs, rational traders are less contrarian than

extrapolators are extrapolative. After all, the rational traders are contrarian only because

the extrapolators are extrapolative; they cannot, therefore, be more contrarian than the

extrapolators are extrapolative.
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While our model can match the survey evidence even in this stricter sense, we do

not focus on this interpretation. Since we do not know how representative the surveyed

investors are of the full investor population, it is unclear whether the average expectation

of future price changes across all real-world investors is extrapolative.

4. Empirical implications

In this section, we present a detailed analysis of the empirical predictions of the

model. A consequence of our assumptions that the dividend level follows an arithmetic

Brownian motion and that investors have exponential utility is that it is more natural to

work with quantities defined in terms of differences rather than ratios—for example, to

work with price changes Pt  P0 rather than returns, and with the “price-dividend

difference” P  D/r rather than the price-dividend ratio. For example, Corollary 1 shows

that, in the benchmark rational economy, it is P  D/r that is constant over time, not P/D.

In this section, then, we study the predictions of price extrapolation for these difference-

based quantities. In Section 5, we also consider the ratio-based quantities.

We study the implications of the model for the difference-based quantities with

the help of formal propositions. For example, if we are interested in the autocorrelation of

price changes, we first compute this autocorrelation analytically, and then report its value

for the parameter values in Table 2. For two important parameters, μ and β, we consider a
range of possible values. Recall that μ is the fraction of rational traders in the investor

population, while β controls the relative weighting of near-past and distant-past price

changes in extrapolators’ forecast of future price changes.
We are interested in how the presence of extrapolators in the economy affects the

behavior of the stock market. To understand this more clearly, in the results that we

present below, we always include, as a benchmark, the case of   1, in other words, the

case where the investor population consists entirely of rational traders.

4.1. Predictive power of D/r  P for future price changes

A basic fact about the stock market is that the dividend-price ratio of the stock

market predicts subsequent returns with a positive sign; moreover, the ratio’s predictive
power is greater at longer horizons. In our model, the natural analogs of the dividend-

price ratio and of returns are the dividend-price difference D/r  P and price changes,



22

respectively. We therefore examine whether, in our economy, the dividend-price

difference predicts subsequent price changes with a positive sign, and whether this

predictive power is greater at longer horizons.

It is helpful to express the long-horizon evidence in the more structured way

suggested by Cochrane (2011), among others. If we run three univariate regressions—a

regression of future returns on the current dividend-price ratio; a regression of future

dividend growth on the current dividend-price ratio; and a regression of the future

dividend-price ratio on the current dividend-price ratio—then, as a matter of accounting,

the three regression coefficients, appropriately signed, must sum to approximately one at

long horizons. Empirically, at long horizons, the three coefficients are roughly 1, 0, and

0, respectively. In other words, at long horizons, the dividend-price ratio forecasts future

returns—not future dividend growth, and not its own future value.

We can restate this point in a way that fits more naturally with our model, using

quantities defined as differences, rather than ratios. Given the accounting identity

0
0

0
0 ,( ) t

t t
tD D D D

P P
r r r r

P P
          
   

  (29)

it is immediate that if we run three regressions—of the future price change, the (negative

and scaled) future dividend change, and the future dividend-price difference, on the

current dividend-price difference—the three coefficients will sum to one in our economy,

at any horizon. To match the empirical facts, our model needs to predict a coefficient in

the first regression that, at long horizons, is approximately equal to one.12 The next

proposition shows that this is indeed the case.

Proposition 3. (Predictive power of D/r  P.) Consider a regression of the price change

in the stock market over some time horizon (0, t1) on the level of D/r  P at the start of the

horizon. The coefficient on the independent variable is13

12 If the coefficient in the first regression is approximately one, this immediately implies that the
coefficients in the second and third regressions are approximately zero, consistent with the evidence. The
coefficient in the second regression is exactly zero because dividend changes are unpredictable in our
economy. The coefficient in the third regression is then one minus the coefficient in the first regression; if
the latter is approximately one, the former is approximately zero.

13 The expectations that we compute in the propositions in Section 4 are taken over the steady-state
distribution of sentiment St. Ergodicity of St guarantees that sample statistics will converge to our analytical
results for sufficiently large samples.
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Proposition 3 shows that, in our model, and consistent with the empirical facts,

the coefficient in a regression of the price change in the stock market on the dividend-

price difference is positive and increases at longer horizons, rising in value

asymptotically toward one. These patterns are clearly visible in Table 3, which reports

the value of the regression coefficient in Proposition 3 for several values of μ and β, and
for five different time horizons: a quarter, a year, two years, three years, and four years.

In the benchmark rational economy (  1), the quantity D/r  P is constant; the

regression coefficient in Proposition 3 is therefore undefined.

The intuition for why D/r  P predicts subsequent price changes is

straightforward. A sequence of good cash-flow news pushes up stock prices, which then

raises extrapolators’ expectations about the future price change of the stock market and

causes them to push the current stock price even higher, lowering the value of D/r  P.

Since the stock market is now overvalued, the subsequent price change is low, on

average. The quantity D/r  P therefore forecasts price changes with a positive sign.

The table shows that, for a fixed horizon, the predictive power of D/r  P is

stronger for low : since the predictability of price changes stems from the presence of

extrapolators, it is natural that this predictability is stronger when there are more

extrapolators in the economy. The predictive power of D/r  P is weaker for low : when

 is low, extrapolators’ beliefs are more persistent; as a result, it takes longer for an

overvaluation to correct, reducing the predictive power of D/r  P for price changes over

any fixed horizon.

4.2. Autocorrelation of P  D/r

In the data, price-dividend ratios are highly autocorrelated at short lags. We would

like to know if our model can capture this. The natural analog of the price-dividend ratio

in our model is the difference-based quantity P  D/r. We therefore examine the

autocorrelation structure of this quantity.
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In our discussion of the accounting identity in (29), we noted that, if we run

regressions of the future change in the stock price, the (negative, scaled) future change in

dividends, and the future dividend-price difference on the current dividend-price

difference, the three regression coefficients we obtain must sum to one. Since the

dividend level follows a random walk in our model, we know that the coefficient in the

second regression is zero. We also know, from Proposition 3, that the coefficient in the

first regression is 11 .kte The coefficient in the third regression, which is also the

autocorrelation of the price-dividend difference P  D/r, must therefore equal 1 .kte The

next proposition confirms this.

Proposition 4. (Autocorrelation of P  D/r.) The autocorrelation of P  D/r at a time lag

of t1 is
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We use Proposition 4 to compute the autocorrelation of the price-dividend

difference for several pairs of values of  and , and for lags of one quarter, one year,

two years, three years, and four years. Table 4 reports the results. It shows that, in our

model, and consistent with the empirical facts, the price-dividend difference is highly

persistent at short horizons, while at long horizons, the autocorrelation drops to zero. The

table also shows that the autocorrelation is higher for low values of : when  is low,

extrapolators’ beliefs are very persistent, which, in turn, imparts persistence to the price-

dividend difference.

4.3. Volatility of price changes and of P  D/r

Empirically observed stock market returns and price-dividend ratios are thought

to exhibit “excess volatility,” in other words, to be more volatile than can be explained
purely by fluctuations in rational expectations about future cash flows. We now show

that, in our model, price changes and the price-dividend difference—the analogs of

returns and of the price-dividend ratio in our framework—also exhibit such excess
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volatility. In particular, they are more volatile than in the benchmark rational economy

described in Corollary 1, an economy where price changes are due only to changes in

rational forecasts of future cash flows.

Proposition 5. (Excess volatility.) The standard deviation of price changes over a finite

time horizon (0, t1) is

1
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while the standard deviation of P  D/r is

var ,
2

S
PD

BD
P

r k

    
 
 (33)

where
1

k
B





and
(1

.
)

D
S B r









Table 5 reports the standard deviation of annual price changes and of the price-

dividend difference P  D/r for several (, ) pairs. Panel A shows that, in the fully

rational economy (  1), the standard deviation of annual price changes is 10, in other

words, D /r. When extrapolators are present, however, the standard deviation can be

much higher: for example, 30% higher when there are an equal number of extrapolators

and rational traders in the economy, a figure that, as can be seen in the table and as we

explain below, depends little on the parameter . Similarly, Panel B shows that while the

price-dividend difference is constant in the fully rational economy, it exhibits significant

volatility in the presence of extrapolators.

The results in Proposition 5 and in Table 5 confirm the intuition in the

Introduction for why extrapolators amplify the volatility of stock prices. A good cash-

flow shock pushes stock prices up. This leads extrapolators to expect higher future price

changes and hence to bid current stock prices up even further. Rational investors

counteract this overvaluation, but only mildly so: since they understand how

extrapolators form beliefs, they know that extrapolators will continue to have optimistic

beliefs about the stock market in the near future and therefore that subsequent price

changes, while lower than average, will not be very low; as a consequence, rational

investors do not push back strongly against the overvaluation caused by the extrapolators.
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Table 5 shows that, the larger the fraction of extrapolators in the economy, the

more excess volatility there is in price changes. More interesting, the amount of excess

volatility is largely insensitive to the value of . This may seem surprising at first: since

extrapolators’ beliefs are more variable when  is high, one might have thought that a

higher  would correspond to higher volatility in price changes. However, another force

pushes in the opposite direction: rational traders know that, precisely because

extrapolators change their beliefs more quickly when  is high, any mispricing caused by

the extrapolators will correct more quickly in this case. As a consequence, when  is

high, rational traders trade more aggressively against the extrapolators, dampening

volatility. Overall, the value of  has little effect on the volatility of price changes.

Does the higher price volatility generated by extrapolators leave the rational

traders worse off? We find that, for many parameter values, it does not. Specifically, if

we start with an economy consisting of only rational traders and then gradually add more

extrapolators while keeping the per-capita supply of the risky asset constant, the value

function of the rational traders increases in value. In other words, while, taken alone, the

higher price volatility would serve to lower rational traders’ utility, this is more than
compensated for by the higher profits the rational traders expect to earn by exploiting the

extrapolators.14

4.4. Autocorrelation of price changes

Empirically, stock market returns are positively autocorrelated at short lags; at

longer lags, they are negatively autocorrelated (Cutler, Poterba, and Summers, 1991). We

now examine what our model predicts about the autocorrelation structure of the

analogous quantity to returns in our framework, namely price changes.

Proposition 6. (Autocorrelation of price changes.) The autocorrelation of price changes

over the intervals (0, t1) and (t2, t3), where t2  t1, is

14 DeLong et al. (1990a) obtain a similar result: they find that the introduction of noise traders into the
economy raises the utility of rational traders. The reason is that the presence of noise traders expands the
investment opportunity set. In our model, the extrapolators do not expand the opportunity set; they change
it, by altering the behavior of the risky asset. It is therefore less obvious, in our context, that the presence of
extrapolators will raise rational traders’ utility, but our calculations indicate that it does. DeLong et al.
(1989) point out that, when the supply of capital is endogenous, noise traders may lower rational traders’
utility by depressing the capital stock. Since the supply of shares is fixed in our model, we cannot evaluate
the importance of this channel.



27

1 3 2

1 3 2

1 3 2

0
1 2 3 0

0

( corr( ) ,
va

cov( , )
, , ) ,

var( r( ))
t t t

P t t t

t t t

P P P P
t t P P P P

P P
t

P P












 (34)

where

32 1

1 3 2

1

1

23

3 2

( )
3

0

2

0 12

2

22

2
cov( ) ( )( ),

var( ) ( )

var( ) ( ) (

, 1
2

2
1 ,

2
1 ),

S D
t t S

S D

ktkt kt
t

kt D
t S

S D D
t

k t t
t S

B
P P P P B e e e

k r

B
P P B e

k r r

B
P P

t

B t
k r r

te





 

    

  



     
 

      
 

     


 



(35)

with
1

k
B





and
(1

.
)

D
S B r









Proposition 6 shows that, in our economy, price changes are negatively

autocorrelated at all lags, with the autocorrelation tending to zero at long lags. These

patterns can also be seen in Table 6, which reports the autocorrelation of quarterly price

changes in our model for several pairs of values of  and , and at lags of one, two, three,

four, eight, and 12 quarters.

It is easy to see why, in our model, price changes are negatively autocorrelated at

longer lags. Suppose that there is good cash-flow news at time t. The stock market goes

up in response to this news, which causes extrapolators to expect higher future price

changes and hence to push the time t stock price even further up. Now that the stock

market is overvalued, the long-term future price change is lower, on average. It is

intuitive, then, that past price changes would have negative predictive power for price

changes that are some way into the future.

Negative autocorrelations are indeed observed in the data, at longer lags; to some

extent, then, our model matches the data. However, there is also a way in which our

model does not match the data: actual returns are positively autocorrelated at the first

quarterly lag, while the price changes generated by our model are not.

It may initially be surprising that our model generates negative autocorrelations in

price changes even at the shortest lags. The reason for this prediction is that, as laid out in

Eqs. (2) and (3), the weights extrapolators put on past price changes when they form

expectations decline monotonically the further back we go into the past. Consider again a
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good cash-flow shock at time t that, as described above, feeds into extrapolators’
expectations and amplifies the contemporaneous price change. The weighting scheme in

(2) means that, even an instant later, the positive time t price change that caused

extrapolators to become more bullish plays a smaller role in determining their

expectations; extrapolators therefore become a little less bullish, and there is a price

reversal.

The above discussion clarifies why some earlier models of return extrapolation—
for example, Cutler, Poterba, and Summers (1990), DeLong et al. (1990b), Hong and

Stein (1999), and Barberis and Shleifer (2003)—do generate positive short-term

autocorrelation in returns. In these models, the weights extrapolators put on past price

changes when deciding on their share demand typically do not decline monotonically, the

further back we go into the past. In particular, in these models, extrapolators’ share
demand at time t depends on the lagged price change from time t  2 to time t  1; the

lagged price change therefore matters more than the most recent price change from t  1

to t in determining share demand. This assumption leads to positive short-term

autocorrelation: a price increase at time t  1 feeds into extrapolators’ share demand only

at time t, generating another price increase at that time. This suggests that an extension of

our model in which extrapolators react to past price changes with some delay when

forming their expectations may generate both negative long-term and positive short-term

autocorrelations in price changes. We have analyzed this extension and have confirmed

that it generates the conjectured autocorrelation structure. However, we do not pursue this

approach here; doing so would complicate the analysis while improving the model’s
explanatory power in only a minor way.

4.5. Correlation of consumption changes and price changes

Another quantity of interest is the correlation of consumption growth and stock

returns. In the data, this correlation is low. We now look at what our model predicts about

the analogous quantity in our context: the correlation of consumption changes and price

changes.
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Proposition 7. (Correlation between consumption changes and price changes.) The

correlation between the change in aggregate consumption (1 )e rCC C   and the

change in price over a finite time horizon (0, t1) is
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Panels A and B of Table 7 report the correlation of consumption changes and

price changes at a quarterly and annual frequency, respectively, and for several (, )

pairs. The numbers are computed using the expressions in Proposition 7. The panels

show that, while the presence of extrapolators slightly reduces the correlation of

consumption changes and price changes relative to its value in the fully rational
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economy, the correlation is nonetheless high. As is the case for virtually all consumption-

based asset pricing models, then, our model fails to match the low empirical correlation

of consumption growth and stock returns.

4.6. Predictive power of surplus consumption

Prior empirical research has shown that a variable called the “surplus
consumption ratio”—a measure of how current consumption compares to past

consumption—is contemporaneously correlated with the price-dividend ratio of the stock

market, and, furthermore, predicts subsequent stock market returns with a negative sign

(Campbell and Cochrane, 1999; Cochrane, 2011). These findings have been taken as

support for habit-based models of the aggregate stock market. We show, however, that

these patterns also emerge from our model.

As we have done throughout this section, we study difference-based quantities—
in this case, the surplus consumption difference rather than the surplus consumption ratio.

Moreover, we focus on the simplest possible surplus consumption difference, namely the

current level of aggregate consumption minus the level of aggregate consumption at some

point in the past. Proposition 8 computes the correlation between this variable and the

current price-dividend difference P  D/r.

Proposition 8. (Correlation between the change in consumption and P  D/r.) The

correlation between the change in aggregate consumption over a finite time horizon (0,

t1) and P  D/r measured at time t1 is

1 1

1 1

1 1

1

1

1

0
0

0

cov( , / )
corr( , / )

var( )
,

var( / )
t t t

t t t

t t t

C C P D r
C C P D r

C C P D r

 
 





(39)

where

1

1 1 10

(2 ) (2
(1

)
cov( , / ))

2
ktW W S

t t t S W
D Da g rb r ag rb k

C C P D r r e
kr k

B     
    

 
    (40)

and
1 1

2 2 .var( / ) /2t t SP D r kB  The expression for
1 0var( )tC C and the definitions of a, b,

Wa , Wb , W , k, and S are given in Proposition 7. 



31

Proposition 9 examines whether the surplus consumption difference can predict

future price changes.

Proposition 9. (Predictive power of the change in consumption.) Consider a regression

of the price change in the stock market from t1 to t2 on the change in aggregate

consumption over the finite time horizon (0, t1). The coefficient on the independent

variable is

 
 

1 1

1

20

1 2

0

cov ,
( ,

v
)

ar
,

t t

C

t

tC C P P
t t

C C








(41)

where

1 2 1

2 1 1

0

( )

cov( , )

(2 ) (2 )
(1 )(1 ).

2

t t t

k t t ktW D W D S
S W

C C P P

a g rb r ag rb k B
r e e

kr k
  

 

      
        

(42)

The expression for
1 0var( )tC C and the definitions of a, b, Wa , Wb , W , k, and S are

given in Proposition 7. 

We use Proposition 8 to compute, for several (, ) pairs, the correlation between

the surplus consumption difference—the change in aggregate consumption over the

course of a quarter—and the price-dividend difference at the end of the quarter; the

results are in Panel C of Table 7. The panel shows that the two quantities are significantly

correlated. Table 8 reports the coefficient on the independent variable in a regression of

the price change in the stock market over some interval—one quarter, one year, two

years, three years, or four years—on the surplus consumption difference measured at the

beginning of the interval; the numbers in the table are based on the expressions in

Proposition 9. The table shows that the surplus consumption difference predicts

subsequent price changes with a negative sign, and that this predictive power is

particularly strong for low values of μ and high values of β. Taken together, then, Panel C

of Table 7 and Table 8 show that the surplus consumption difference can be correlated

with the valuation level of the stock market and with the subsequent stock price change

even in a framework that does not involve habit-type preferences.
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What is the intuition for these results? After a sequence of good cash-flow news,

extrapolators cause the stock market to become overvalued and hence the price-dividend

difference to be high. At the same time, extrapolators’ optimistic beliefs about the future
lead them to raise their consumption; while the rational traders do not raise their

consumption as much, aggregate consumption nonetheless increases, pushing the surplus

consumption difference up. This generates a positive correlation between the price-

dividend difference and the surplus consumption difference. Since the stock market is

overvalued at this point, the subsequent price change in the stock market is low, on

average. As a consequence, the surplus consumption difference predicts future price

changes with a negative sign.

4.7. The equity premium and Sharpe ratio

Proposition 10 below computes the equity premium and Sharpe ratio of the stock

market in our economy.

Proposition 10. (Equity premium and Sharpe ratio.) The equity premium, defined as the

per unit time expectation of the sum of the excess price change and dividend, is given by
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We use Proposition 10 to compute the equity premium for several (, ) pairs; the

results are in Panel A of Table 9. The panel shows that the equity premium rises as the

fraction of extrapolators in the economy goes up: the more extrapolators there are, the

more volatile the stock market is; the equity premium therefore needs to be higher to

compensate for the higher risk. Panel B of the table shows that the Sharpe ratio also goes

up as  falls.

5. Ratio-based quantities
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In Section 4, we focused on quantities defined in terms of differences: on price

changes, and on the price-dividend difference P  D/r. Given the additive structure of our

model, these are the natural quantities to study. However, most empirical research works

with ratio-based quantities such as returns and price-dividend ratios. While these are not

the most natural quantities to look at in the context of our model, we can nonetheless

examine what the model predicts about them. This is what we do in this section.

Since analytical results are not available for ratio-based quantities, we use

numerical simulations to study their properties. In Section 5.1, we explain the

methodology behind the simulations. In Section 5.2, we present the results. In brief, the

results for the ratio-based quantities are broadly consistent with those for the difference-

based quantities in Section 4. However, we interpret these results cautiously: because the

ratio-based quantities are not the natural objects of study in our model, they are not as

well-behaved as the difference-based quantities examined in Section 4.

5.1. Simulation methodology

To conduct the simulations, we first discretize the model. In this discretized

version, we use a time-step of t  ¼, in other words, of one quarter. As indicated in

Section 3, the initial level of the dividend is 0 10D  and the initial wealth levels are

0 0 5000.e rW W  We further set the initial sentiment level 0S to its steady-state mean of

./Dg r
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The proposition also tells us that, for any non-negative integer n,
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with i {e, r}, and where ( 1){ , 0}n t n   are independent and identically distributed draws

from a standard normal distribution. We make the conventional assumptions that the

level of the consumption stream for the interval (nt, (n+1)t) is determined at the

beginning of the interval; and that the level of the dividend paid over this interval is

determined at the end of the interval.

For a given set of values of the basic model parameters in Table 2, we use the

procedure described in Appendix A to compute the values of the derived parameters that

determine the optimal consumption and portfolio holdings—parameters such as 1 ,e for

example. We then use Eqs. (45) and (46) to simulate 10,000 sample paths for our

economy, where each sample path is 200 periods long, in other words, 50 years long. For

any quantity of interest—the autocorrelation of stock market returns, say—we compute

the value of the quantity for each of the 10,000 paths. In the next section, we report the

average value of the quantity—for example, the average return autocorrelation—across

the 10,000 simulated paths.15

5.2. Results

Table 10 presents the model’s predictions for ratio-based quantities for  

0.25 and for three different values of . As explained above, for each (, ) pair, we

15 If any of the dividend, the price, aggregate consumption, or aggregate wealth turns negative
somewhere on a simulated path, we discard that path. Since the standard deviation of dividend changes D

= 0.25 is low relative to the initial dividend level D0, this is a rare occurrence: we discard only about 1% of
paths.
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simulate 10,000 paths, each of which is 200 periods long. For each of the 10,000

paths, we compute various quantities of interest—specifically, the quantities listed in

the left column of Table 10. The table reports the average value of each quantity

across the 10,000 paths. The right-most column reports the empirical value of each

quantity computed using U.S. stock market data over the post-war period from 1947

to 2011.16

We now discuss each of these quantities in turn. Most of them are simply the

ratio-based analogs of the quantities we studied in Section 4: for example, instead of

computing the standard deviation of price changes, we compute the standard

deviation of returns. However, the simulation methodology also allows us to address

some questions that we did not discuss in any form in Section 4, such as whether the

consumption-wealth ratio or more complex formulations of the surplus consumption

ratio have predictive power for future returns.

Row 1. We report the coefficient on the independent variable in a regression

of log excess stock returns measured over a one-year horizon on the log dividend-

price ratio at the start of the year. To be clear, as described above, we run this

regression in each of the 10,000 paths we simulate; the table reports the average

coefficient across all paths, as well as the average R-squared, in parentheses.

Consistent with the findings of Section 4.1, the table shows that the dividend-price

ratio predicts subsequent returns with a positive sign.

Row 2. We report the autocorrelation of the price-dividend ratio at a one-

year lag. Consistent with the results of Section 4.2, the ratio is highly persistent.

Row 3. We compute the excess volatility of returns—specifically, the

standard deviation of annual stock returns in the heterogeneous-agent economy

divided by the standard deviation of annual stock returns in the benchmark rational

economy. Consistent with the findings of Section 4.3, stock returns exhibit excess

volatility.

Row 4. We compute the excess volatility of the price-dividend ratio: the

standard deviation of the price-dividend ratio in the heterogeneous-agent economy

16 Returns are based on the Center for Research in Security Prices (CRSP) value-weighted index. For
the consumption-wealth ratio, “wealth” is computed using aggregate household wealth from the Flow of
Funds accounts, following Lettau and Ludvigson (2001). For the nondurable consumption data, the sample
period starts in 1952.
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divided by its standard deviation in the benchmark rational economy. Consistent

with Section 4.3, the standard deviation of the price-dividend ratio goes up in the

presence of extrapolators.

Row 5. We compute the autocorrelation of quarterly log excess stock returns

at lags of one quarter and two years. As in Section 4.4, returns are negatively

autocorrelated.

Row 6. We report the correlation of annual log excess stock returns and

annual changes in log aggregate consumption. As in Section 4.5, this correlation is

higher in our model than in actual data.

Row 7. We compute the correlation between the surplus consumption ratio and

the price-dividend ratio, where both quantities are measured at a quarterly frequency.

Given the greater flexibility afforded by the numerical approach of this section, we use a

more sophisticated definition of surplus consumption than in Section 4.6. While this

definition is still simpler than that used by Campbell and Cochrane (1999), it captures the

spirit of their calculation. Specifically, we define the surplus consumption ratio as:
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where Ct is aggregate consumption, and where the habit level Xt adjusts slowly to

changes in consumption:
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In words, Xt is a weighted sum of past consumption levels, where recent

consumption levels are weighted more heavily. For a given , we choose n to be the

smallest positive integer for which 1
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In our calculations,

we set   0.95 and n  10.17

Row 7 of Table 10 shows that, as in Section 4.6, the surplus consumption

ratio and price-dividend ratio are positively correlated, consistent with the data.

17 When  = 0.95, quarterly consumption one year ago is weighted about 40% as much as current
consumption.
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Row 8. We report the coefficient on the independent variable in a regression

of log excess stock returns over a one-year horizon on the surplus consumption ratio

at the start of the year; the surplus consumption ratio is defined in our discussion of

Row 7. Consistent with the results in Section 4.6 and with actual data, the surplus

consumption ratio predicts subsequent returns with a negative sign.

Row 9. Empirically, the consumption-wealth ratio predicts subsequent stock

market returns with a positive sign. We examine whether our model can generate

this pattern. We compute the coefficient on the independent variable in a regression

of log excess returns over a one-year horizon on the log consumption-wealth ratio at

the start of the year. The table shows that, in our model, the ratio indeed predicts

subsequent returns, and does so with the correct sign.

What is the intuition for this predictive power? After a sequence of good cash-

flow news, extrapolators cause the stock market to become overvalued. This, in turn,

increases aggregate wealth in the economy. It also increases aggregate consumption, but

not to the same extent: rational traders, in particular, do not increase their consumption

very much because they realize that future returns on the stock market are likely to be

low. Overall, the consumption-wealth ratio falls. Since the stock market is overvalued, its

subsequent return is low, on average. The consumption-wealth ratio therefore predicts

subsequent returns with a positive sign.

Row 10. We compute the annual equity premium and Sharpe ratio in our

economy.

In summary, while it is more natural, in our framework, to study difference-

based quantities rather than ratio-based quantities, Table 10 shows that the ratio-

based quantities exhibit patterns that are broadly similar to those that we obtained in

Section 4 for the difference-based quantities.

6. Conclusion

Survey evidence suggests that many investors form beliefs about future stock

market returns by extrapolating past returns: they expect the stock market to perform well

(poorly) in the near future if it has recently performed well (poorly). Such beliefs are hard

to reconcile with existing models of the aggregate stock market. We study a
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heterogeneous-agent model in which some investors form beliefs about future stock

market price changes by extrapolating past price changes, while other investors have

fully rational beliefs. We find that the model captures many features of actual returns and

prices. Importantly, however, it is also consistent with the survey evidence on investor

expectations. This suggests that the survey evidence does not need to be seen as a

nuisance; on the contrary, it is consistent with the facts about prices and returns and may

be the key to understanding them.
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Appendix A. Proofs of Proposition 1 and Corollaries 1 and 2

Proof of Proposition 1. To solve the stochastic dynamic programming problem, we need
the differential forms of the evolution of the state variables. As noted in (16), the

differential form of the definition of sentiment, ( ) ,
t t s

t s dtdPS e  


  is

.t t tdS dS dt P    (A1)

The term tdtS captures the fact that, when we move from time t to time t  dt, all the
earlier price changes that contribute to St become associated with smaller weights
because they are further away from time t  dt than from time t; the term dPt captures
the fact that the latest price change contributes positively to St; and the parameter 
governs the stickiness of the belief updating. Also, the wealth of each type of trader
evolves as
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as in Eqs. (6) and (8).
The derived value functions for the extrapolators and the rational traders are
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The assumptions that the investors have CARA preferences, that Dt follows an arithmetic
Brownian motion, that St evolves in a Markovian fashion as in (A1), and that
extrapolators’ biased beliefs in (3) are linearly related to St jointly guarantee that the
derived value functions are functions of time, wealth, and sentiment, but nothing else
(such as Dt or Pt). We verify this claim and discuss it further after solving the model.

If we define
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then, from the theory of stochastic control,18
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Using Ito’s lemma, (A5) leads to the Bellman equations which state that, along the
optimal path of consumption and asset allocation,
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where e
Pg and r

Pg are the per unit time change in the price of the stock market expected
by extrapolators and rational traders, respectively, and where P is the per unit time
volatility of the stock price. As stated in (3), 0 1

e
Pg S   , while r

Pg derives from the
rational traders’ conjecture about the stock price process, which is yet to be determined.
In continuous time, the volatility P is essentially observable by computing the quadratic

18 See Kushner (1967) for a detailed discussion of this topic.
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variation; as a result, the two types of trader agree on its value. We assume, and later
verify, that P is an endogenously determined constant that does not depend on S or t.

Since the investors have infinite horizons, and since, as we verify later, the
evolutions of eW and rW do not depend explicitly on the level of the dividend or the
stock price, the passage of time only affects the value functions through time discounting.
We can therefore write, for i  {e, r},
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Substituting (A7) into (A6) gives the reduced Bellman equations
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The first-order conditions of (A8) with respect to iC and iN are
ii C
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The first term on the right-hand side of (A10) is the share demand due to mean-variance
considerations; the second term is the hedging demand due to sentiment-related risk.

We now conjecture, and later verify, that the true equilibrium stock price satisfies
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D
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r
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The coefficients A and B are yet to be determined. Assuming that the rational traders
know this price equation and the true process for Dt, they can combine (1), (A1), and
(A11) to obtain the true evolution of the stock price, namely
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Substituting (A12) into (A1) yields
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From (A12) and (A13) it is clear that, when B  1, sentiment St follows an Ornstein-

Uhlenbeck process with a steady-state distribution that is Normal with mean Dg

r
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That is, if the conjecture in (A11) is valid, rational traders’ expected future price change
is negatively and linearly related to the sentiment level, and P is a constant.

We noted in Eq. (4) that, in extrapolators’ minds, the stock price evolves
according to

 0 1 1
,
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eD

t t tdP S dt d
B r


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   (A15)

where, again from the perspective of extrapolators, e
t is a Wiener process. At the same

time, in order to compute the values of the derived parameters that govern their
consumption and portfolio decisions, extrapolators need to be aware of the price equation
(A11). Eq. (A11) is consistent with the beliefs in (A15) if extrapolators have incorrect
beliefs about the dividend process—specifically, if they believe that dividends evolve
according to

,e e
t D D tg dtdD d  (A16)

where e
Dg is the expected dividend change per unit time perceived by extrapolators. To

determine e
Dg , differentiate (A11) and substitute in (A1) and (A16). This gives
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Eq. (A17) is identical to (A15) so long as
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in other words, so long as extrapolators’ perceived expected dividend change depends
explicitly on St.
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Substituting (A19) into the optimal consumption rule in (A9) and the optimal share
demand in (A10) yields
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We denote the share demand of the extrapolators and rational traders as

0 1 { }., ,i i iN S i e r  (A22)

Substituting e
Pg from (3), (A11), the form of eI in (A19), the optimal consumption eC in

(A20), and the optimal share demand eN in (A22) into the reduced Bellman equation (A8)
for the extrapolators, we obtain the following quadratic equation in S,

19 If, instead, extrapolators had correct beliefs about the evolution of Dt, they would be able to use Eq.
(A11) to infer the true price process in Eq. (A12).
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If extrapolators know the values of A and B, they can use Eqs. (A24), (A25), and
(A26) to solve for their optimal share demand ,eN optimal consumption ,eC and value
function .eJ Since they are aware of the price equation (A11), the easiest way for them to
compute the values of A and B is by using past observations on dividends and prices.
Alternatively, if they know the belief structure of the rational traders and the values of 
and Q, they can infer the values of A and B by going through the intertemporal
maximization problem for the rational investors (specified below).

We now turn to the rational traders. Substituting (A11), r
Pg from (A14), the form

of rI in (A19), the optimal consumption rC in (A20), and the optimal share demand rN in
(A22) into the reduced Bellman equation (A8) for the rational traders, we obtain another
quadratic equation in S,
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which implies
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Comparing (A22) with (A21) leads to
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The optimal share demands in (A22) and the market clearing condition in (9)
imply

0 0(1 ,)r e Q     (A33)
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Eqs. (A24)–(A26) and (A28)–(A34) are the mathematical characterization of the
endogenous interaction between the rational traders and the extrapolators. The procedure
for solving these simultaneous equations is described below.

The fact that the conjectured forms of Pt, ,eI and rI in (A11) and (A19) satisfy the
Bellman equations in (A8) for all Wt and St verifies these conjectures, conditional on the
validity of the assumption that eI and rI depend explicitly only on Wt and St. To verify this
last assumption, note that the price equation in (A11), the optimal consumption rules in
(A20), and the optimal share demands e

tN and r
tN in (A22) jointly guarantee that the

evolutions of e
tW and r

tW in (A2) depend explicitly only on St. Lastly, the derived
evolution of the stock price in (A12) verifies the assumption that P is a constant. This
completes the verification procedure.

Eqs. (A11), (A12), (A13), (A22), and (A20) confirm Eqs. (10), (11), (12), (14),
and (15) in the main text, respectively, and Eqs. (A7) and (A19) together confirm (13).
This completes the proof of Proposition 1. 

Solving the simultaneous equations. We solve Eqs. (A24)–(A26) and (A28)–(A34) in
three steps. First, we use (A24), (A28), (A32), and (A34) to determine ,ea ,ra 1 ,e 1 ,r and
B. Second, we use (A25), (A29), (A31), and (A33) to determine ,eb ,rb 0 ,e 0 ,r and A.
Lastly, we solve each of (A26) and (A30) to obtain ec and ,rc respectively.

Proof of Corollary 1. When all traders in the economy are fully rational, (A19) reduces
to

( ) ,
r

trr Wr
tI W e K  (A35)

where K is a constant to be determined. Substituting (A35) into (A10) and using ,rN Q
we see that the equilibrium stock price is

2

2 2
.tD D

t

Q
P

Dg

r r r


   (A36)
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The third term on the right-hand side of this equation shows that tP is pegged to the
current level of the dividend; the other two terms capture dividend growth and
compensation for risk. Substituting (A35) and (A36) into (A8) gives

2 2 2

ex .
2

p
1 DQr

r r
K

r

  
 




 

(A37)

From (A9), optimal consumption is
2 2

log( ) .
1

2
r r r D
t t tC rW r K r

Qr

r r
W


  




  


(A38)

From (A2), (A36), and (A38), optimal wealth evolves according to
2 2

.
2

r D D
t t

Q Qr

r r
dW dt d

r

  
 








(A39)

This completes the proof of Corollary 1. 

Proof of Corollary 2. Our objective is to show that there exists a solution to
simultaneous equations (A24)–(A26) and (A28)–(A34). The proof has three steps, which
correspond to the three steps in the solution procedure outlined above.

First, we show that Eqs. (A24), (A28), (A32), and (A34) guarantee a solution for
,ea ,ra 1 ,e 1 ,r and B, with B  (0, 1).

Substituting (A32) into (A24) and (A28) gives
22 2 2 2 2 2

1
2 2

(1 ( ) (1
.

) )
,

22 ( 2 2 ) ( 2 ) 12
re

D D

rB r BB B
r

r B
a

r Br B

r
a

r

    
      

  
   

     
(A40)

Eqs. (A40) and (A32) allow us to express ,ea ,ra 1 ,e and 1
r as functions only of B.

Combining (A40) with (A32) and (A34) leads to a nonlinear equation for B,
22 2

1
1

(1 ( )
0 (1 ( ) .

1 ( 2

)
)

2 2 )2 ) ( 1

rB B
r r r

B r Br B
B B

r Br

       
          

 
    

         
(A41)

It is therefore sufficient to show that there exists B  (0, 1) that satisfies (A41). To do
so, denote the right-hand side of (A41) as f (B).  Note that f (0)  {[r  (2  1)](1 
)1}/(r  2); by (23), this is strictly positive for   1. When   0, (23) also implies
that f (B) goes to  as B goes to 1 from below; when   0, (23) and (24) imply that
f (1)  (1  r)(2  1)/(2  r) is strictly negative. Continuity of f (B) then guarantees
that there exists B  (0, 1) that solves (A41).

Eq. (A40) shows that, when   1, ra is strictly negative, while ea is weakly
negative. Given this, (A32) and (A34) imply that 1

r is strictly negative and that 1
e is

strictly positive.
Next, we show that Eqs. (A25), (A29), (A31), and (A33) guarantee a solution for

,eb ,rb 0 ,e 0 ,r and A. We treat ,ea ,ra 1 ,e 1 ,r and B as known coefficients.
Substituting (A31) into (A25) and (A29) gives
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2
0 1

2

( )( ) 2

1

(1
2 .

) 1

,
e

e P

r rD

P

rA rB a rA
b

r

gB

Br

b r rAA r a
B Br r B r

  


   
    

    





         

(A42)

Eqs. (A42) and (A31) allow us to express ,eb ,rb 0 ,e and 0
r as functions only of A.

Combining (A42) with (A31) and (A33) leads to a linear equation for A in which the
coefficient on A is

2 2 2 2
1(1 ) (1 ) 2( ) 2

(1
1

) .
e r

P Pr rB a a r
r

r B

r r

Br

        
  

  
 

   
(A43)

To guarantee a solution for A, it is sufficient to show that the expression in (A43) is non-
zero. Substituting ea from (A40) into (A43) and rearranging terms gives

2 2
1 1

2 2

)

)

(1
( )( 2 2 ) ( )

( ( 2 2

1

2
.

)
r

P

r r Br rB
r r Br

r

r

Br

ar

B Brr

       


      
     

 






(A44)

For B  (0, 1)
2 2

1 1

2
1 1 1

2
1 1 1

2 1
1 1 4

( )( 2 2 ) ( )

[ 2 (2 )] [ (1 ) (2 2 2 )]

2 [ (1 ) (2 2 2 )]

[( 2 ) ( 2 ) ] ( 2 )(2 ) 0,

r r r B rB

r r r B B r rB

r r rB

r r r r

      

           

       

            

(A45)

where the last inequality holds because of (23). Given (23), (A45), and the fact that ra is
strictly negative, we know that the expression in (A44) is strictly negative and hence non-
zero. This guarantees a solution for A, which in turn guarantees a solution for ,eb ,rb 0 ,e
and 0 .r

Finally, it is clear that (A26) and (A30) guarantee a solution for ec and .rc This
completes the proof of Corollary 2. We note that our proof does not rule out any
nonlinear equilibria. 

Appendix B. Proofs of Propositions 2 to 10

In this Appendix, we present abbreviated proofs of Propositions 2 to 10. In these
proofs, we make repeated use of the properties of the process ,k

t
t

teZ S where k  /(1 
B); this process evolves according to

.D
t S t

kt
ktdZ d

k
de

g

r
t

e
   (A46)

Unlike the sentiment process St, the Zt process has a non-stochastic drift term and is
therefore easier to analyze.

Proof of Proposition 2. It is straightforward to calculate rational traders’ expectations
about future price changes. Combining extrapolators’ belief about the instantaneous price
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change, (A15), and the differential definition of the sentiment variable, (A1), we find that
extrapolators’ belief about the evolution of St is

 0 1( 1) .e
t t S tdS dtS d       (A47)

Extrapolators believe that e
t is a standard Wiener process. This means that, from their

perspective, the process ,me
t

t
teZ S where m  (1  1), evolves according to

0 .me e
t S t

t mte dt e ddZ    (A48)

Using the statistical properties of this process, we obtain (26). When m  0, applying
L'Hôpital's rule to (26) gives (27). 

Proof of Proposition 3. From (A11),

1 1 1

2 1
0 0 0 0 0 0 0/ , cov( ,cov ) cov( , )( ) .t t tD r P P P S S S S D DB Br      (A49)

Clearly,
10 0cov( , 0.)tS D D  Using the properties of the Zt process, we can show

1

1

2

0 0

(1 )
cov( , )

2t

t
S

ke
S S S

k


 


 (A50)

and
2 2

2
0 0 0var( / ) var( ) .

2
SB

k
BD r P S


  (A51)

Eqs. (A49), (A50), and (A51) give (30). 

Proof of Proposition 4. From (A11),

11 0) cor ,( ).r(PD tt S S (A52)

We can show that

 
1

1 1

2

0 0 0 0cov( ) [ ], cov | | ]
2

, [ .
kt

S
t tS S s S

e
S

k
S sS






   (A53)

It is straightforward to also show that
1

2
0var( ) va /( 2 .r )t SS S k   Putting these results

together, we obtain (31). 

Proof of Proposition 5. From (A11),

1 1 1 1 1

2 1 2
0 0 0 0 0var( ) cov(var( ) 2 ., ) var( )t t t t tP P S S S S D DB r DBr D        (A54)

The quantity
1 0var( )tS S can be expressed as

1 1 10 0 0 0 0var( ) [var( | )] var( [ ]),|t s t tS S S S S s S S S s      (A55)

where the subscript s means that we are taking the expectation over the steady-state
distribution of s. We can show

1
1

1 1

1 1

2
2

0 0 0 0 0

2
2 2 2 (1 )

var( | ) var( | )
2

.
t

S
t t S

kt
kt kt kt e

S S S s e eZ Z S s e dt
k


  

       (A56)

Using the properties of the Zt process, we also find that

1

1 0 0| )[ ] (1 ktD
t

g
S S S s

r
s e

    
 

 (A57)

and
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1

1 10 0

(1
cov( )

)
, .D S

t

t

t

k

S S D D
k

e


  
 (A58)

Substituting (A56) and (A57) into (A55) gives
1

1

2

0

(1 )
var( ) .S

k

t

t

S S
e

k





 (A59)

Substituting (A58), (A59), and
1

2
0 1var( )t DD D t  into (A54) gives (32). Combining

(A11) with 2var( ) /2t SS k  leads to (33). 

Proof of Proposition 6. From (A11),

1 3 2 1 3 2 1 3 2

1 3 2 3 2 1

2 2
0 0 0

1 1
0 0

, cov( , ) cov( ,cov( )

.

)

cov( , ) cov( , )

t t t t t t t t t

t t t t t t

P P P P S S S S D D D D

S S D D S S D D

B r

Br Br



 

     

   

 

 
(A60)

Using the properties of the Zt process, we obtain

3 2 1

1 3 2

2

0cov( , ) 1
2

( )( )kt
t

k tS
t

t k
tS S S S e e e

k
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
 (A61)

and

3 2 1

1 3 20cov( , )( .1() )D S kt kt kt
t t tD D S S e e e

k
  


 


 (A62)

In addition, since the increments in future dividends are independent of any random
variable that is measurable with respect to the information set at the current time,

1 3 2 1 3 20 0cov( , ) cov( 0 ., )t t t t t tD D D D S S D D    (A63)

Substituting (A61), (A62), and (A63) into (A60) yields the first equation in (35). The
second equation in (35) is derived in Proposition 5, and the third equation can be derived
in a similar way. 

Proof of Propositions 7 to 9. From (A2), (A11), and (A20), we know that aggregate
wealth (1 )r eWW W   evolves as

2( .)t W t W t W W tdW b S ca S dt d    (A64)

Substituting this into (A20) yields

 
 

1 1 1 1

1 1

1 1

1 2 2
0 0 0 0

2 1 2 2
0 00 0

( ) ( ) ( )

( ) ( ) ( ) .

t t t t

t t

W t W t W W t t

C C r W W a S S b S S

r Sa dtb S c d a S S b Sr S









      

       
(A65)

To compute
1 0var( ),tC C we need to compute the covariance of every pair of terms in

the last line of (A65). For example, one of these covariances is20

20 Eq. (A66) makes use of Fubini’s theorem. We have checked that the conditions that allow the use of
this theorem hold in our context. For more on these conditions, see Theorem 1.9 in Liptser and Shiryaev
(2001).
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1 1 1

1

0 0 00 0 0
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[ ] [ ] [ ]
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cov , | | |

2
.

t tt

t t s t t s t s t

S
kt

S dt S S S s S S s S sS dt S dt

e

k


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

       

 

       
(A66)

The other covariance terms can be computed in a similar way. Rearranging and
simplifying terms, we obtain (37), (38), (40), and (42). 

Proof of Proposition 10. Substituting (A11) and (A12) into the definitions of the equity
premium and Sharpe ratio gives (43) and (44). 

Appendix C. Estimating 

C.1. Estimation equations

Our objective is to estimate the model parameters , 0, and 1 using survey data
on investor expectations.

Suppose that we have a time-series of aggregate stock market prices with sample
frequency t. We approximate the sentiment variable in (2) as

1

( 1)0
, ) ,( ( ; ( )) ,

n

t l t llt t tS Pn Pn w l


  
   (A67)

where
1

0

)( .; ,
l t

j

j

tn

e
w l

e
n

 

 



 


 


The weighting function is parameterized by  and by n,

which measures how far back investors look when forming their beliefs. The weights on
past price changes sum to one. To compute (A67), we use quarterly price observations on
the Standard and Poor’s (S&P) 500 index, so that t = ¼; we also set n = 60.

The central assumption of our model is that extrapolators’ expected price change
(not expected return) is

0 1[ ] / ).(e
t t tdP dt S   (A68)

The expectation in (A68) is computed over the next instant of time, from t to t  dt, not
over a finite time horizon. In actual surveys, however, investors are typically asked to
state their beliefs about the performance of the stock market over the next year. It is
therefore not fully correct to estimate , 0, and 1 using (A68). We must instead
compute what our model implies for the price change extrapolators expect over a finite
horizon. We do this in Proposition 2 and find

1

1

(
1

)

0 1 1 1 0 2

( ) 1
[ ] ( ( )( ) ( ( )) ) ,

m t

t t

t
e
t t t

m t t e
P P S t t mS

m

   
           (A69)

where 1).(1m   The first term on the right-hand side of (A69) is extrapolators’
expected instantaneous price change at time t, 0 1 ( ,)tS   multiplied by the time
horizon, 1 .t t (For example, for a six-month horizon, 1 0.5.)t t  The second term takes
into account extrapolators’ subjective beliefs about how sentiment will evolve over the
interval from t to t1. The parameters , 0, and 1 enter (A69) in a nonlinear way.
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To determine , 0, and 1, we therefore estimate both

1 110 1 )[ ] ( ( )ˆ ˆ ˆ , ) (e
t t t t ttP P n tS       (A70)

and
1

1 1

1
1 2

( )

0 1 1 0
( ) 1

[ ] ( ( ) ( )ˆ ,ˆ ˆ ˆ ˆ ˆ ˆ, )) ( , )(e
t t t

m t t

t t t
m t t e

P P t t m
m

Sn nS
 


  

             (A71)

with 1 1( ) )ˆ ˆ ˆ ˆ, (1m     and , )(ˆ
tS n constructed as described above. We also estimate

(A71) for the special case where 1 is fixed at one. In this case, (A71) becomes

1 1

2
1

1
0

0

( )
[ ] ( ( ) .

2

ˆ ˆˆ ˆ , ))(e
t t t t t

t t
P P t tS n


 


  

   (A72)

C.2. Survey data
We estimate Eqs. (A70), (A71), and (A72) using the Gallup survey data studied

by Greenwood and Shleifer (2014) and others. Specifically, we identify the surveyed
investors with the extrapolators in our model, so that the expectations on the left-hand
side of Eqs. (A70), (A71), and (A72) are the average expectation of the surveyed
investors about future price changes. To compute these expectations, we start with the
“rescaled” investor expectations described in Greenwood and Shleifer (2014). After the
rescaling, the reported expectations are in units of percentage expected return on the
aggregate stock market over the following 12 months. We convert this series into
expected price changes by multiplying by the level of the S&P 500 price index at the end
of the month in which participants are surveyed. That is,

1

1
[ ] [ ] .t te e

t t t t

Surv

t

ey

t

P P
P P P

P


  


  (A73)

The resulting time series of investor expectations comprises 135 data points between
October 1996 and November 2011. The data are monthly but there are also some gaps.

We estimate (A70), (A71), and (A72) using nonlinear least squares regression.
We report coefficients and t-statistics based on Newey-West standard errors with a lag
length of six months.

Coefficient Eq. (A70) Eq. (A71) Eq. (A72)

β 0.49 0.44 0.68
[t-stat] [6.50] [5.77] [10.73]

λ0 0.09 0.07 0.07
[t-stat] [30.24] [35.41] [36.18]

λ1 1.35 1.32
[t-stat] [8.70] [9.48]

R-squared 0.77 0.74 0.75
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Table 1
Selected models of the aggregate stock market

Consumption-
based model

D/P
predicts
returns

Accounts
for
volatility

Accounts
for equity
premium

Accounts
for survey
evidence

TRADITIONAL

Habit Campbell and Cochrane (1999) Yes Yes Yes Yes No

Long-run risk
Bansal and Yaron (2004) Yes No Yes Yes No

Bansal, Kiku, and Yaron (2012) Yes Yes Yes Yes No

Rare disasters
Rietz (1988), Barro (2006) Yes No No Yes No

Gabaix (2012), Wachter (2013) Yes Yes Yes Yes No

LEARNING
Timmermann (1993) No Yes Yes No No

Wang (1993) Yes Yes Yes No No

BEHAVIORAL

Preference-based

Prospect theory Barberis, Huang, and Santos (2001) Yes Yes Yes Yes No

Ambiguity
aversion Ju and Miao (2012)

Yes Yes Yes Yes No

Belief-based

Noise trader risk
DeLong et al. (1990a) No Yes Yes No No

Campbell and Kyle (1993) Yes Yes Yes No No

Extrapolation of
fundamentals

Barberis, Shleifer, and Vishny (1998) No Yes Yes No No

Fuster, Hebert, and Laibson (2011) Yes Yes Yes Yes No

Choi and Mertens (2013) Yes Yes Yes Yes No

Hirshleifer and Yu (2013) Yes Yes Yes Yes No

Alti and Tetlock (2014) No Yes Yes No No

Extrapolation of
returns

Cutler, Poterba, and Summers (1990) No Yes Yes No Yes

DeLong et al. (1990b) No Yes Yes No Yes

Hong and Stein (1999) No Yes Yes No Yes

Barberis and Shleifer (2003) No Yes Yes No Yes

This paper Yes Yes Yes No Yes
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Table 2
Parameter values

The table lists the values we assign to the risk-free rate r; the initial level of the dividend 0 ;D the per
unit time mean gD and standard deviation D of dividend changes; the risky asset supply Q; the initial
wealth levels 0

eW and 0
rW of extrapolators and rational traders, respectively; absolute risk aversion ; the

discount rate ; the parameters 0, 1, and  which govern the beliefs of extrapolators; and the fraction  of
rational traders in the investor population.

Parameter Value

R 2.50%

D0 10

gD 0.05

σD 0.25

Q 5

0
eW 5000

0
rW 5000

 0.1

 1.50%

λ0 0

λ1 1

 {0.05, 0.5, 0.75}

 {0.25, 0.5, 0.75, 1}
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Table 3
Predictive power of D/r  P for future price changes

The table reports the model-implied value of the coefficient b in a regression of the stock price change
from time t to time t  k (in quarters) on the time t level of D/r  P,

( ) ε/ ,t k t t t t ka b DP P r P    
for k =1, 4, 8, 12, and 16, and for several pairs of values of the parameters μ and β. The calculations make
use of Proposition 3 in the main text.



 k 1 0.75 0.5 0.25

0.05

1 - 0.014 0.016 0.022

4 - 0.055 0.064 0.085

8 - 0.106 0.124 0.162

12 - 0.155 0.180 0.233

16 - 0.201 0.233 0.298

0.5

1 - 0.134 0.161 0.219

4 - 0.438 0.504 0.628

8 - 0.684 0.754 0.861

12 - 0.822 0.878 0.948

16 - 0.900 0.940 0.981

0.75

1 - 0.194 0.232 0.311

4 - 0.579 0.652 0.774

8 - 0.822 0.879 0.949

12 - 0.925 0.958 0.988

16 - 0.968 0.985 0.997
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Table 4
Autocorrelation of P  D/r

The table reports the model-implied value of the autocorrelation of P  D/r at various lags k (in
quarters) and for several pairs of values of the parameters  and . The calculations make use of
Proposition 4 in the main text.



β k 1 0.75 0.5 0.25

0.05

1 - 0.986 0.984 0.978

4 - 0.945 0.936 0.915

8 - 0.894 0.876 0.838

12 - 0.845 0.820 0.767

16 - 0.799 0.767 0.702

0.5

1 - 0.866 0.839 0.781

4 - 0.562 0.496 0.372

8 - 0.316 0.246 0.139

12 - 0.178 0.122 0.052

16 - 0.100 0.060 0.019

0.75

1 - 0.806 0.768 0.689

4 - 0.421 0.348 0.226

8 - 0.178 0.121 0.051

12 - 0.075 0.042 0.012

16 - 0.032 0.015 0.003
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Table 5
Volatility of price changes and of P  D/r

Panel A reports the model-implied value of the standard deviation of annual stock price changes for
several pairs of values of the parameters μ and β; Panel B reports the standard deviation of P  D/r for
several pairs of μ and β. The calculations make use of Proposition 5 in the main text.

Panel A: Standard deviation of annual price changes



 1 0.75 0.5 0.25

0.05 10 11.20 13.15 17.43

0.5 10 11.17 13.03 16.86

0.75 10 11.04 12.67 15.90

Panel B: Standard deviation of P  D/r



 1 0.75 0.5 0.25

0.05 0 3.66 8.92 18.29

0.5 0 1.41 3.41 6.94

0.75 0 1.16 2.80 5.70
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Table 6
Autocorrelation of price changes

The table reports the model-implied value of the autocorrelation of quarterly stock price changes at
various lags k (in quarters) and for several pairs of values of the parameters μ and β. The calculations make
use of Proposition 6 in the main text.

Autocorrelation at lag k



 k 1 0.75 0.5 0.25

0.05

1 0 -0.001 -0.004 -0.007

2 0 -0.001 -0.003 -0.007

3 0 -0.001 -0.003 -0.007

4 0 -0.001 -0.003 -0.007

8 0 -0.001 -0.003 -0.006

12 0 -0.001 -0.003 -0.006

0.5

1 0 -0.016 -0.038 -0.079

2 0 -0.013 -0.032 -0.062

3 0 -0.012 -0.027 -0.048

4 0 -0.010 -0.022 -0.038

8 0 -0.006 -0.011 -0.014

12 0 -0.003 -0.006 -0.005

0.75

1 0 -0.022 -0.054 -0.110

2 0 -0.018 -0.041 -0.076

3 0 -0.014 -0.032 -0.052

4 0 -0.012 -0.024 -0.036

8 0 -0.005 -0.008 -0.008

12 0 -0.002 -0.003 -0.002
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Table 7
Correlation of consumption changes, price changes, and P  D/r

Panel A reports the model-implied value of the correlation between quarterly changes in aggregate
consumption and quarterly changes in the stock price for several pairs of values of the parameters μ and β;
Panel B reports the correlation between annual changes in aggregate consumption and annual changes in
price; Panel C reports the correlation between quarterly changes in aggregate consumption and quarter-end
P  D/r. The calculations make use of Propositions 7 and 8 in the main text.

Panel A: Correlation between quarterly consumption changes and quarterly price changes



 1 0.75 0.5 0.25

0.05 1 0.994 0.985 0.984

0.5 1 0.929 0.842 0.840

0.75 1 0.903 0.794 0.793

Panel B: Correlation between annual consumption changes and annual price changes



 1 0.75 0.5 0.25

0.05 1 0.994 0.985 0.984

0.5 1 0.948 0.880 0.880

0.75 1 0.936 0.856 0.856

Panel C: Correlation between quarterly consumption changes and P  D/r



 1 0.75 0.5 0.25

0.05 - 0.152 0.148 0.148

0.5 - 0.436 0.398 0.409

0.75 - 0.504 0.446 0.457
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Table 8
Predictive power of changes in consumption for future price changes

The table reports the model-implied value of the coefficient b in a regression of the stock price change
from time t to time t  k (in quarters) on the change in aggregate consumption over the most recent quarter,

1( ) ε ,t k t t t t kP P a b C C      
for k  1, 4, 8, 12, 16, and for several pairs of values of the parameters  and . The calculations make use
of Proposition 9 in the main text.



 k 1 0.75 0.5 0.25

0.05

1 0 -0.011 -0.026 -0.053

4 0 -0.043 -0.101 -0.205
8 0 -0.084 -0.195 -0.393

12 0 -0.123 -0.284 -0.565
16 0 -0.159 -0.366 -0.722

0.5

1 0 -0.107 -0.214 -0.442

4 0 -0.350 -0.671 -1.268

8 0 -0.547 -1.004 -1.740

12 0 -0.658 -1.169 -1.916

16 0 -0.720 -1.250 -1.981

0.75

1 0 -0.144 -0.270 -0.553

4 0 -0.429 -0.759 -1.378

8 0 -0.610 -1.024 -1.689

12 0 -0.686 -1.116 -1.760

16 0 -0.718 -1.148 -1.776
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Table 9
The equity premium and Sharpe ratio

Panel A reports the model-implied value of the equity premium for several pairs of values of the
parameters  and ; Panel B reports the Sharpe ratio. The calculations make use of Proposition 10 in the
main text.

Panel A: Equity premium



 1 0.75 0.5 0.25

0.05 1.25 1.58 2.19 3.91

0.5 1.25 1.66 2.46 4.88

0.75 1.25 1.66 2.48 4.92

Panel B: Sharpe ratio



 1 0.75 0.5 0.25

0.05 0.125 0.140 0.166 0.221

0.5 0.125 0.144 0.176 0.247

0.75 0.125 0.144 0.176 0.248
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Table 10
Model predictions for ratio-based quantities

The table summarizes the model’s predictions for the ratio-based quantities in the left column. A full
description of these quantities can be found in Section 5.2 of the main text. The values of the basic model
parameters are listed in Table 2; , the fraction of rational traders, is 0.25. For   0.05, 0.5, and 0.75, we
report the average value of each quantity across 10,000 simulated paths. In rows (1), (8), and (9), we report
both a regression coefficient and, in parentheses, an R-squared. The right-most column presents the
empirical estimates for the post-war period from 1947–2011 (1952–2011 for consumption-related
quantities because nondurable consumption data are available only from 1952).

Quantity of interest
 Post-war U.S. stock

market data0.05 0.5 0.75

(1) Predictive power of
log(D/P)

0.29
(0.20)

0.46
(0.22)

0.45
(0.21)

0.11
(0.08)

(2) Autocorrelation of P/D 0.93 0.84 0.85 0.94

(3) Excess volatility of returns 2.31 2.57 2.46 -

(4) Excess volatility of P/D 7.21 4.85 4.55 -

(5) Autocorrelation of log excess return (k = 1) -0.01 -0.09 -0.14 0.11

Autocorrelation of log excess return (k = 8) -0.01 -0.01 -0.00 -0.02

(6) Correlation of log excess returns and log
consumption growth

0.72 0.54 0.47 0.32

(7) Correlation of surplus consumption and P/D 0.24 0.32 0.26 0.10

(8) Predictive power of
surplus consumption

-0.25
(0.15)

-0.88
(0.17)

-0.76
(0.17)

-0.77
(0.09)

(9) Predictive power of
log(C/W)

0.51
(0.15)

0.12
(0.15)

0.01
(0.15)

0.33
(0.05)

(10) Equity premium 1.19% 1.62% 1.62% 7.97%

Sharpe ratio 0.25 0.30 0.32 0.44


