
MIT Sloan School of Management

MIT Sloan School Working Paper 6172-20

Reverse Information Sharing: Reducing Costs 
in Supply Chains with Yield Uncertainty

Pavithra Harsha, Ashish Jagmohan, Retsef Levi, Elisabeth 
Paulson, and Georgia Perakis

This work is licensed under a Creative Commons Attribution-
NonCommercial License (US/v4.0)

http://creativecommons.org/licenses/by-
nc/4.0/Last Revised: October 2020

Electronic copy available at: https://ssrn.com/abstract=3692868



Reverse information sharing: Reducing costs in
supply chains with yield uncertainty

Pavithra Harsha
IBM Research, pharsha@us.ibm.com

Ashish Jagmohan
IBM Blockchain Solutions, ashishja@us.ibm.com

Retsef Levi
MIT Sloan School of Management, retsef@mit.edu

Elisabeth Paulson
MIT Operations Research Center, epaulson@mit.edu

Georgia Perakis
MIT Sloan School of Management, georgiap@mit.edu

Supply uncertainty in produce supply chains presents major challenges to retailers. Supply shortages create

frequent disruptions in terms of promised delivery times, quantity and quality delivered. To alleviate these

challenges, dual sourcing—a strategy in which buyers source a good from two different suppliers—is com-

monly employed by retailers in these supply chains. However, the benefits of dual sourcing cannot be fully

realized when a lack of transparency exists between retailers and suppliers. In this case, perceived scarcity

leads to over-ordering, further exacerbating the problem of supply unreliability in settings where multiple

retailers compete for supply. This paper studies a supply chain for a perishable good consisting of N retailers

who compete for supply and practice dual sourcing, but do not have transparency to the inventory distri-

butions of their suppliers a priori. The paper develops an analytical model to capture the retailers’ ordering

dynamics over repeated iterations. When the retailers underestimate the suppliers’ inventory, their orders

converge to an equilibrium where all retailers drastically over-order. This results in higher retailer costs and

supply chain waste, as well as higher costs to the suppliers for certain contract structures and parameters.

The paper analyzes the impact of an information sharing scheme in which suppliers share inventory infor-

mation downstream. This reverse information sharing counteracts perceptions of scarcity thereby reducing

over-ordering.
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History :

1. Introduction

Uncertainty and lack of transparency are defining characteristics of fresh produce supply chains.

Supply losses create uncertainty at every step of the supply chain, impacting promised delivery

times, quantity and quality delivered. This make supply chain management extremely challenging
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for fresh produce retailers. In particular, this situation increases the likelihood of costly stockouts

at retailers. Grocery stores in the U.S. are estimated to lose $75 billion in sales every year due to

stockouts and unsaleables (Wells 2017).

In order to decrease the likelihood of stockouts, most grocery retailers diversify their supply

sources, engaging in a strategy known as dual- or multi-sourcing. Grocery retailers source their

products from an average of about 250 different suppliers (McLaughlin et al. 2015). In general,

dual sourcing strategies are known to help reduce the likelihood of stockout in supply chains

with supply uncertainty. However, the benefits of dual sourcing cannot be fully realized in supply

chains suffering from lack of transparency—a common characteristic of produce supply chains

(McLaughlin et al. 2015). One potential consequence of lack of transparency is perceived scarcity,

which occurs when the retailers believe that supply is very limited. This paper demonstrates that

employing dual sourcing strategies in settings with perceived scarcity is likely to lead to over-

ordering, resulting in inflated costs to the retailers as well as substantial waste. Additionally, if

the suppliers’ contracts are such that they are sufficiently penalized for unfulfilled orders, retailer

over-ordering also increases supplier costs.

This paper studies how reverse information sharing—namely, suppliers sharing inventory and

order information downstream—enables better retailer decision-making when engaging in a dual-

sourcing strategy. In many settings, this information sharing scheme is found to reduce costs for

both retailers and suppliers, and reduces total supply chain waste. Reverse information sharing is

always beneficial to retailers, however its benefits are the most substantial in settings where the

retailers perceives supply scarcity. Therefore, unlike classic dual sourcing literature, the assumption

of the model is that retailers do not necessarily know the suppliers’ inventory distributions a priori,

but can learn information about the distributions over time through reverse information sharing.

In practice, suppliers may be hesitant to share their inventory and order information with their

retailers. Furthermore, a lack of trust may exist between the suppliers and retailers. Therefore,

a specific implementation scheme is proposed where all computations are performed by a trusted

third party (TTP). The TTP provides the retailers with enough information to enable them to

optimally update their order decisions over time, while limiting the amount of knowledge they gain

about the suppliers’ private information.

This paper develops a model that captures a supply chain consisting of N grocery retailers

who source a single good from two suppliers. The retailers compete with each other for supply,

but not for demand. For example, the retailers might source from the same regional warehouse

of a particular supplier, but are located far enough apart that they do not share customers (a

competition model similar to that of the ration gaming literature, e.g., Bray et al. (2019), Cachon

and Lariviere (1999), Cui and Shin (2018)). The model considers a discrete time infinite horizon.
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In each discrete time period (or iteration), all retailers allocate an order across the two suppliers,

who then fulfill orders based on a pre-specified fulfillment mechanism. For example, suppose that

in one iteration, a given retailer wishes to obtain 100 pounds of apples. The retailer must then

decide how much to order from each supplier, knowing that supply uncertainty exists, in order

to best meet this desired quantity (for example, by ordering 70 pounds from each supplier). The

behavior of other retailers impacts the optimal ordering decision of any given retailer, and therefore

ordering decisions can be thought of as a dynamic game among the retailers. The optimal ordering

decision of each retailer also depends on the retailers’ perceptions of the inventory distributions at

the suppliers, which can be impacted through the proposed reverse information sharing scheme.

1.1. Results and contributions

The following are the main results and contributions of this paper:

1. The paper considers a dynamic setting where the retailers start with limited information about

the suppliers’ inventory. Through reverse information sharing, the retailers gain information

over time about the suppliers’ true inventory distributions, which allows them to update their

ordering decisions. The analysis shows that, when the retailers are identical and their ordering

decisions follow best response dynamics, the retailers’ orders can converge to at most two Nash

equilibria. In the first, each retailer orders its desired quantity from both suppliers (Allocation

2Q). In the second, the orders placed to each supplier sum to the retailers desired quantity

exactly (Allocation Q).

2. Allocation Q results in lower retailer costs and supply chain waste than Allocation 2Q. Fur-

thermore, when the contracts between the retailers and suppliers sufficiently penalize suppliers

for unmet orders, Allocation Q also results in lower supplier costs. However, the dynamics will

only converge to Allocation Q under certain conditions.

3. The analysis provides sufficient conditions for the dynamics to converge to either order allo-

cation. Intuitively, when the retailers perceive supply scarcity, the dynamics will converge to

Allocation 2Q. When the retailers believe that there is ample supply, the ordering decisions

will converge to Allocation Q.

4. When retailers falsely perceive supply scarcity, reverse information sharing can induce con-

vergence to Allocation Q, resulting in a drastic decrease in order quantities, costs, and waste.

Furthermore, by using a trusted third party, reverse information sharing can be accomplished

in such a way that the retailers’ ability to learn information about the upstream supply chain

is limited. This is desirable when privacy is a concern to the suppliers.

Although this paper focuses on the use-case of a produce supply chain, yield uncertainty and lack

of transparency are not unique to perishable food supply chains. The insights of this paper can
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be readily applied to other supply chain settings with yield uncertainty; in particular, to settings

where dual sourcing strategies are employed and the retailers are not fully aware of the suppliers’

inventory distributions.

2. Related literature

The topic of this paper overlaps with many areas of research, including: dual sourcing, yield uncer-

tainty, ration gaming, information sharing in supply chains, and the impact of perceived supply.

An overview of the most relevant literature in each area is provided.

2.1. Dual sourcing and yield uncertainty

Dual or multi-sourcing strategies have been explored extensively in the literature as a tool for

mitigating the risks associated with yield uncertainty. When yield uncertainty is present, a retailer

is not guaranteed to receive its entire order. Therefore, retailers are benefited by placing orders

with multiple suppliers. The majority of work in this area focuses on single retailer or manufacturer

who makes sourcing decisions in a single period (Dada et al. 2007, Anupindi and Akella 1993). This

stream of work, although not the focus of this paper, has many interesting directions including

studying the retailer’s strategic choice of suppliers (Federgruen and Yang 2009, Gerchak and Parlar

1990, Niu et al. 2019), the suppliers’ strategic choices of prices and other attributes (Demirel et al.

2018), and the effects of supply correlation and risk propagation between different tiers of suppliers

(Ang et al. 2017, Bimpikis et al. 2018).

A handful of work extends these models to a setting with two or more retailers who compete

for demand through Cournot competition (Tang and Kouvelis 2011, Wu et al. 2019). Both Tang

and Kouvelis (2011) and Wu et al. (2019) assume that the retailers are faced with proportional

random yield—meaning that the retailers receive a random portion of the amount ordered from

each supplier. These random portions are uncorrelated, implying that the retailers do not compete

for inventory. This paper, on the other hand, takes the opposite approach by assuming that the

retailers do not compete for demand but instead compete for inventory. This is a more common

assumption in the ration gaming and inventory competition models discussed in the next section.

Lastly, the dual sourcing literature generally assumes that the retailers are aware of the suppliers’

yield uncertainties and can optimize their sourcing strategies using this information. Tomlin (2009)

is unique in that it considers the case where retailers must learn the distribution of their suppliers’

yield. Like Tomlin (2009), this paper assumes that the retailers do not know the suppliers’ yields

a priori. However, the yield distributions can be learned over time. Although both Tomlin (2009)

and this paper include “supply learning”, the model considered in Tomlin (2009) focuses on the

decisions of a single retailer, whereas this paper focuses on inventory competition among many

retailers.
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2.2. Ration gaming and inventory competition

Ration gaming (or capacity allocation) describes the situation when a supplier receives multiple

orders, usually simultaneously, but does not have enough inventory to meet all orders. Therefore,

the supplier must choose a fulfillment rule to distribute the inventory among the buyers. Knowing

the fulfillment rule, and after forming some belief about the behaviors of the other buyers, each

buyer can compute its optimal order quantity. Typically, the solution concept in ration gaming

models is a Nash equilibrium order quantity for each buyer.

Cachon and Lariviere (1999) considers different fulfillment mechanisms and the Nash equilibria

that they induce among the retailers, searching for mechanisms with desirable properties. For

example, truth-telling mechanisms—those that incentivize the buyers to only order their true

desired quantity— are often desirable since they mitigate over-ordering. Over-ordering generally

has negative implications on the entire upstream supply chain. For example, Lee et al. (1997) and

Bray et al. (2019) both study the impact of ration gaming on the bullwhip effect. Cachon and

Lariviere (1999) show that, in their setting, although a truth-telling mechanism (i.e., one that

induces the retailers to order exxactly their desired quantities) does exist, it does not maximize

retailer profits nor supplier profits, and therefore the supply chain is better off with a different

mechanism that is not truth-telling. Cui and Shin (2018) propose a behavioral model to study

ration gaming under a proportional rationing rule, and explore the extent to which over-ordering

is influenced by different characteristics of the supplier and other retailers.

Similar to ration gaming, another stream of literature studies inventory management decisions

under supply competition (Bernstein and Federgruen 2005, Cachon 2001). Most related to this

paper, Cachon (2001) considers the optimal re-ordering point for N retailers who source from a

single supplier. Similar to the ration gaming literature, the retailers compete for supply but not

for customers. Like the model proposed in this paper, Cachon (2001) considers orders that take

place over a time horizon.

The model proposed in this paper combines ideas from Cachon and Lariviere (1999) and Cachon

(2001) with the yield uncertainty and dual sourcing literature. Like Cachon (2001) and Cachon and

Lariviere (1999), we study the Nash equilibrium of the retailers’ ordering decisions (in this paper,

the equilibrium is found by considering the convergence of best response dynamics). However,

instead of focusing on the retailers’ underlying inventory management system, we instead focus on

the decision of how to allocate each order across the two suppliers.

Furthermore, unlike the ration gaming and yield uncertainty literature which generally assume

that the retailers are aware of the inventory distributions at the suppliers, we assume that the

retailers only have a perception of the suppliers’ inventory, which can change over time with reverse

information sharing.
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2.3. Information sharing and perceived supply

Information sharing in supply chains is a widely studied topic. Specifically, literature on upstream

information sharing (e.g., from retailers to suppliers) is ubiquitous and arguably the most well-

studied form of information sharing in supply chains (Shang et al. 2016, Li and Zhang 2008, Ha

and Tong 2008, Cachon and Fisher 2000, Gaur et al. 2005, Lee et al. 2000, Cachon and Lariviere

2001, Li 2002). This type of information, while extremely valuable to supply chain management,

is not the focus of this paper.

We refer to reverse information sharing as a supplier sharing information with its retailers. In

the supply chain literature, a handful of studies consider information sharing schemes similar to

reverse information sharing (Chen 2003). Choi et al. (2008) consider the value of a supplier sharing

supply yields with its manufacturer in a serial supply chain, finding that information sharing is

most valuable when supply yield has high variance and demand has low variance. Croson and

Donohue (2006) investigate the impact of inventory transparency on the bullwhip effect in a linear

supply chain. Chen and Yu (2005) quantify the value of information about leadtimes for a retailer

ordering goods from a single supplier. Jain and Moinzadeh (2005) consider a serial supply chain

in which the manufacturer allows the retailer to observe its inventory levels. The optimal ordering

policy for the retailer is computed, and the value of the information to the retailer is estimated

through computational experiments. This paper considers a similar type of reverse information

sharing as Jain and Moinzadeh (2005), but in a very different supply chain setting.

The idea of reverse information sharing has similarities to the concept of sellers sharing infor-

mation with their customers, which has been studied in the marketing literature. In particular,

the impact of a buyers’ perception of supply, and how sellers can influence this perception, has

been studied (Cui and Shin 2018, Gallino and Moreno 2014, Allon and Bassamboo 2011, Byun and

Sternquist 2012). For example, Allon and Bassamboo (2011) considers how a firm can influence

customer behavior through information about availability, and how these results depend on the

customers’ heterogeneity and the trustworthiness of the information.

Trust is a closely related topic to information sharing, and the importance of trust in supply

chain information sharing schemes is a widely studied topic (Özer et al. 2011, 2014, Özer and

Zheng 2017, Spiliotopoulou et al. 2016). Most relevant to this paper are settings that consider the

extent to which a customer trusts information provided by a supplier. For example, in Allon and

Bassamboo (2011), it is specifically noted that it is not realistic to assume that customers will

blindly trust inventory information offered by a retailer. Özer et al. (2018) consider a setting where

a seller assists its buyers in making their decision about which products or services to purchase. The

assistance can come in the form of advice or information sharing, and the implications of different

assistance schemes on trust is studied. Desai (2000) considers the problem of a manufacturer who
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must convince a retailer to order a new, high-demand product through signaling. Although the

specific information that is shared in these settings is different from this paper, the notion of trust

between the buyer and seller remains important.

In this paper, a specific information sharing implementation is proposed that takes place on a

blockchain platform. Blockchain has emerged as a promising technology that can aid in real-time

verifiable information sharing, and thus its usefulness in supply chains is becoming apparent Gaur

and Gaiha (2020), Cheung et al. (2018). For example, Chod et al. (2020) show that signaling

through inventory transactions on a blockchain is an efficient mechanism for firms to signal their

quality. This paper considers how suppliers’ verifiable inventory and order data can be used to

enable trustworthy reverse information sharing between a supplier and its retailers.

The remainder of the paper is organized as follows: Section 3 gives an overview of the model

and discusses a retailer’s optimal ordering decision in a single iteration when the behavior of other

retailers is fixed. Section 4 considers a game-theoretic version of the model where all retailers

are strategic, and discusses convergence of the best response dynamics. Section 5 presents an

extensive numerical example to illustrate the various information sharing schemes proposed. Section

6 suggests a specific implementation of the reverse information sharing scheme that assures privacy.

Section 7 summarizes the main findings and concludes.

3. The Model

This section presents the details of the supply chain model studied in this paper. The notation that

is introduced throughout this section is summarized in Table 1. Furthermore, Figure 1 illustrates

the dynamis of the model.

Parameters
N Number of retailers
Qi Quantity desired by Retailer i each iteration
chi Holding cost for Retailer i
csi Stockout cost for Retailer i
Random variables
Xj Random variable representing Supplier j’s inventory realizations, distributed as Xj ∼ fXj .

In iteration k, Supplier j receives Xj
k units of inventory, a realization of the random

variable Xj.
Aji (q−i) Random variable representing the amount of inventory that will be available from Supplier

j for Retailer i in a given iteration, given the order quantities q−i to Supplier j from all
other retailers. The perceived CDF of Aji (q−i) in iteration k is denoted by F

A
j
i (q−i),k

. For

brevity, Aji (q−i) may also be written as Aji or simply as Aj when the retailers are identical.
Decision variables
qji,k Amount of inventory that Retailer i orders from Supplier j during iteration k

Table 1 Model notation
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Figure 1 Supply chain dynamics with two suppliers and N retailers (S1 = Supplier 1, and R1 = Retailer 1,

etc.). Each iteration consists of three steps: 1) orders from retailers are allocated across boths uppliers, 2)

suppliers fulfill orders using their available inventory, 3) information is updated. “FAj ,k transmitted to retailers” is

shorthand for “F
A

j
i (q−i),k

transmitted to Retailer i for all i.”

Consider a supply chain consisting of two suppliers who supply a single perishable good to

N grocery retailers. Because of the nature of the fresh produce supply chain, inventory at the

suppliers is stochastic. Fluctuations in supply can be caused by many factors such as weather,

pests, and defects during transportation, among others. Therefore, shortages can take place. As

in many supply chains with yield uncertainty, retailers are benefited by employing a dual-sourcing

strategy. Under a dual sourcing strategy, the retailers order goods from both suppliers in order to

mitigate the risk of shortages. However, due to a lack of transparency between the retailers and

suppliers, the retailers do not know the suppliers’ inventory distributions. Instead, the retailers

have a perception about the suppliers’ inventory. This perception impacts their ordering decisions.

In this paper, all N retailers source from the same two suppliers, and hence they compete with

each other for inventory. However, the assumption is that their physical retail locations are far

enough apart that they do not compete for demand. This is similar to the setting in the ration

gaming literature (Cachon and Lariviere 1999). Orders take place over an infinite, discrete time

horizon. Each discrete time period is referred to as one iteration. In each iteration, the suppliers

each receive a stochastic amount of inventory (described in Section 3.1), the retailers simultaneously

allocate orders to both suppliers (described in Section 3.2), and the suppliers then fulfill orders

(described in Section 3.3). In this sense, the dynamics of the model can be thought of as a repeated

ration game.

Each iteration, the retailers have a desired total quantity of inventory that they would like to

receive, and must decide how much inventory to order from each supplier in order to achieve this
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goal (Section 3.4 describes their problem in more detail). The optimal ordering decision depends

on the retailers’ current perception of the suppliers’ inventory distributions, as well as the number

and behavior of other retailers. Through reverse information sharing, information about these

unknown quantities is gained over time, allowing the retailers to update their order decisions. The

information sharing schemes considered in this paper are discussed in more detail in Section 3.6.

3.1. Inventory

In iteration k, Supplier j receives a random quantity of inventory Xj
k that is drawn i.i.d. from a

supplier-specific distribution with density fXj . Prior to the first iteration, the suppliers are aware of

the number of retailers, N , and their desired quantity per iteration, Qi for i∈ {1, ...,N}. Supplier j

is not aware of the other supplier’s inventory distribution. Knowing this information, each supplier

decides on and fixes their own sourcing strategy (i.e., fixes fXj ) prior to the first iteration. These

inventory distributions are assumed to remain fixed throughout the time horizon. The supplier’s

decision is not the focus of this paper, and fXj , j = 1,2, will be considered given.

Although there are markets for less fresh produce, typically grocery stores have strict freshness

requirements. Therefore, it is unlikely that a supplier would sell their old produce to grocery

retailers. The supplier may instead decide to donate, discard, or salvage the old produce. Therefore,

the following natural assumption is introduced:

Assumption 1. At the start of a new iteration, the remaining inventory (if any) from the pre-

vious iteration is no longer utilized.

This assumption is also similar to assuming that the product has a fixed lifetime, which is commonly

employed in the perishable inventory management literature (Schmidt and Nahmias 1985, Chen

et al. 2014).

3.2. Order allocation

Each iteration, all retailers place an order. Retailer i wishes to receive a total of Qi units of

inventory, and must decide how much to order from each supplier. It is assumed that Qi is fixed

over the horizon for each retailer. For example, suppose that Retailer i wishes to receive 10 units of

inventory each iteration (Qi = 10). In a given iteration, based on the retailer’s information about

the supply chain, Retailer i may decide to order 7 units from Supplier 1 and 6 units from Supplier

2. Note that even though the retailer desires 10 units, she chose to order a total of 13 units in order

to hedge against inventory uncertainty. This order allocation decision is the primary decision of

interest in this paper. The decision variables q1i,k and q2i,k denote the amount that Retailer i orders

from Supplier 1 and 2, respectively, during iteration k. Because of the inventory uncertainty, it is

possible that q1i,k + q2i,k >Qi, as in the example above. When this is the case, the retailer is said to

have over-ordered.
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3.3. Fulfillment

In each iteration, once the orders from all retailers are placed, the suppliers must fulfill orders.

Suppose that Supplier j receives Xj
k units of inventory in iteration k, and receives orders

{qj1,k, q
j
2,k, ..., q

j
N,k}. If

∑
i q
j
i,k ≤X

j
k, each retailer will receive their entire order. If

∑
i q
j
i,k >X

j
k, Sup-

plier j will distribute inventory according to a specified fulfillment mechanism. This paper focuses

on a random lottery mechanism (also called the lexicographic rule, as in Cachon and Lariviere

(1999)), which is used in practice (Bray et al. 2019). Under this mechanism, retailers are placed

in a random order and orders are sequentially fulfilled until supply runs out. In a single supplier

setting, this mechanism is truth inducing, meaning that all retailers will order exactly their desired

quantity (Cachon and Lariviere 1999). However, under a dual-sourcing strategy, retailers may be

benefited by over-ordering.

3.4. Retailers’ costs and optimal order allocation

Recall that Qi denotes Retailer i’s desired quantity in each iteration. In each iteration, if the retailer

receives more or less inventory than Qi, she incurs marginal costs. Because the retailers practice

dual sourcing and thus may over-order, it is possible for a retailer to receive more than Qi in a

given iteration. Furthermore, because of the supply uncertainty at the suppliers, it is also possible

for a retailer to receive less than Qi in a given iteration. For every unit that is received over Qi,

the retailer faces additional holding cost. If the retailer receives less than Qi, she faces stockout

costs. When determining the order allocation q1i,k and q2i,k for iteration k, Retailer i’s objective is

to minimize the following marginal cost function:

min
q=(q1,q2)

C(q) :=E[chi(R(q)−Qi)
+ + csi(Qi−R(q))+] (Problem Cret)

where R(q) is the total amount of inventory received from both suppliers. Additionally, chi and

csi are the holding cost and stockout cost for Retailer i, respectively. The random variable R(q)

can be written as

R(q) = min{q1,A1
i (q

j
−i,k)}+ min{q2,A2

i (q
j
−i,k)} (1)

where Aji (q
j
−i,k) denotes the amount of inventory at Supplier j that is available for Retailer i, given

the order quantities placed by the other retailers to Supplier j in iteration k, denoted by qj−i,k.

The random function Aji (q
j
−i,k) can be written as

Aji (q
j
−i,k) =

Xj
k −

∑
l∈{1,...,N}\i

1o(l)<o(i)q
j
l,k

+

(2)
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where o(l) denotes the position of retailer l in the random lottery of iteration k. Notice that because

of Assumption 1, Aji (q
j
−i,k) depends only on the inventory received during iteration k. Because the

orders from other retailers are fixed for now, Aji (q
j
−i,k) can be written simply as Aji .

As an example, suppose that during iteration k, X1
k = 20, and 10 retailers each order 5 units of

inventory from Supplier 1. Recall that each supplier uses the random lottery mechanism. Then,

the distribution of A1
i is the following:

A1
i =



20 w.p. 1/10

15 w.p. 1/10

10 w.p. 1/10

5 w.p. 1/10

0 w.p. 6/10

(3)

Notice that, because of the lottery mechanism and because the retailers are all identical in terms

of the quantity ordered, the distribution of A1
i is identical across all retailers in this example, and

therefore can be denoted simply by A1. Because Retailer i does not know the suppliers’ inventory or

the number of other retailers (or the other retailers’ order quantities, in the case where the retailers

are asymmetric), the optimal order allocation decision depends on Retailer i’s perception of the

distributions of A1 and A2. This perception is formed, in part, based on the chosen information

sharing scheme (discussed in Section 3.6).

To gain intuition about the retailers’ optimal ordering decisions, first take the perspective of a

single retailer (Retailer 1), and consider fixing the ordering decisions of other retailers (Retailers 2

through N). Section 4 further builds on this model by considering the best response dynamics of

all N retailers acting strategically.

For brevity, Aj1(q−i,k) will be denoted simply by Aj. During iteration k, the retailer’s perceived

distribution of Aj is denoted by its perceived cumulative distribution function (CDF) FAj ,k. The

retailer will choose the order allocation that solves Problem Problem Cret. The solution to Problem

Cret is denoted by q∗1,k, where the subscript 1 denotes Retailer 1. The following proposition char-

acterizes the retailer’s optimal solution to Problem Cret. The proof of Proposition 1 shows that,

on the domain D := {q1, q2 : q1 + q2 >Q, q1 ≤Q, q2 ≤Q}, the cost function in Problem Cret has a

unique minimizer. Therefore, the optimal solution either lies at a unique point in the interior of

this domain (given by q̃1, q̃2 in the Proposition below), or lies on the boundary of the domain.

Proposition 1. When q̃1 + q̃2 >Q, q∗1,k = {q̃1, q̃2} where

q̃1 :=Q−F c−1

A2,k

(
cs

cs + ch

)
and

q̃2 :=Q−F c−1

A1,k

(
cs

cs + ch

)
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Figure 2 Illustration of three different optimality cases for Retailer 1, with Q= 10. In the leftmost figure, the

optimal solution occurs at (q̃1, q̃2). In the middle figure, the optimal solution occurs at (Q,Q). In the rightmost

figure, the optimal solution occurs along the boundary q1 + q2 =Q.

where F c
Aj ,k

denotes the complementary CDF of the perceived distribution of Aj during cycle k (i.e.,

F c
Aj ,k

(x) = 1−FAj ,k(x)). Notice that F c−1

Aj ,k

(
cs

cs+ch

)
≥ 0 since Aj is non-negative. If q̃1 + q̃2 ≤Q, q∗1,k

is the unique solution to {
q1 =Q− q2

F c
A1,k

(q1) = F c
A2,k

(q2)
(4)

The proof of Proposition 1 is in Appendix EC.1. Figure 2 illustrates the possible optimal solutions

for Retailer 1.

3.5. Suppliers’ costs and contracts

Each supplier/retailer pair has a contract in place, which determines how the supplier is com-

pensated. The contract also incentivizes the supplier to meet the retailer’s orders by penalizing

unfulfilled orders. Throughout the paper it is assumed that every supplier/retailer pair has an

identical contract in place. For each order, the supplier is compensated per unit delivered and is

penalized if the retailer’s order is not met in full. For example, if a retailer orders 5 units and

only receives 3 units, the supplier is paid for the 3 units that are delivered and is penalized for

not meeting the entire order. Therefore, the suppliers’ profit is a combination of their per unit

payments and their penalties. Supplier j’s cost per iteration is given by:

N∑
i=1

(p · rji,k− penalty(qji,k, r
j
i,k)) (5)

Where p is the unit price received, qji,k is the amount that was ordered by Retailer i during

iteration k, and rji,k is the amount that was delivered to Retailer i. The function penalty(qji,k, r
j
i,k)

governs the cost that the supplier incurs when they do not fulfill an order in its entirety. The penalty

function depends on the contract between the suppliers and retailers, and can have many different

structures. For example, several major retailers use a penalty function known as the “On-Time

In-Full” (OTIF) policy, which takes the following form:

penalty(q, r) = γ(q− r)1r/q≤τ (6)
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where τ is an OTIF threshold, and γ is a penalty amount (Health 2017, Cosgrove 2019). Smith and

Nassauer (2019) report that Walmart’s OTIF policy is set to have τ = .87 and γ = .03. Although

penalty functions can vary, they should be non-decreasing in r—the amount delivered to the

retailer. The OTIF penalty function described above clearly satisfies this assumption, since the

penalty is linearly increasing in q− r if r/q≤ τ .

3.6. Information sharing

As the analysis in Section 3.4 elucidates, the optimal ordering decision of a retailer in iteration k

depends in part on their belief about the distribution of Aji (q
j
−i,k). Notice, from Equation 2, that

Aji (q
j
−i,k) depends on the inventory that Supplier j receives, the orders from other retailers, as well

as the number of other retailers. In order for the retailers to update their orders optimally, they must

either be told q∗i,k directly, or receive an estimate of F
A
j
i (q

j
−i,k)

each iteration. The three information

sharing schemes given below describe three different possibilities regarding what information is

shared between the suppliers and retailers. A detailed discussion of how the information should be

shared is deferred to Section 6. For simplicity of exposition, up until Section 6 it will be assumed

that the suppliers share information directly with the retailers. This decision does not impact the

analysis of the retailers’ ordering dynamics, which is the main focus of the paper.

This paper compares three information sharing schemes:

1. Base information (BI) sharing: Retailer i has an initial belief about FXj for j ∈ {1,2}

and q−i. The retailers do not directly receive any new information over the horizon. (Section

6 discusses how the retailers can still indirectly derive information.)

2. Full information (FI) sharing: The retailers know the true distribution FXj for j ∈ {1,2}.

Additionally, the retailers observe q−i,k—the quantities ordered by the other retailers—after

each iteration k.

3. Reverse information sharing (RI): To begin, the retailers start as in the BI sharing

scheme above. Each iteration, their estimate of FXj is updated based on all historical inventory

realizations for Supplier j. Additionally, the retailers observe q−i,k after each iteration k.

The difference between the FI and RI schemes is the estimate of the inventory distributions. In

the FI scheme, the distribution of Xj is known for j = 1,2. The FI scheme is considered to be an

unrealistic best-case scenario for the following reasons: 1) In real-world settings, the suppliers likely

do not know the true distribution of Xj, and 2) if a lack of trust exists between the suppliers and

retailers, the retailers may not trust an estimate of FXj provided directly by Supplier j. On the

other hand, an empirical estimate of FXj based on verifiable historical inventory data promotes

trust and is implementable in practice. Therefore, the RI scheme is considered to be a realistic

alternative to the FI scheme.
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In the BI scheme, although the retailers do not directly receive updated estimates of the suppliers’

inventory distributions or the orders from other retailers, it is still possible for the retailers to

learn about this distribution based on the inventory that they receive each iteration. However,

as discussed in Section 6, learning in this fashion happens at a very slow rate (and will occur

regardless of an information sharing scheme). Therefore, in the BI scheme, it will be assumed that

F
A
j
i (q−i),k

(x) = F
A
j
i (q−i),0

(x) for all k, x≥ 0, and all q−i ∈Πi∈{1,...,N}\i[0,Qi].

4. N identical retailers

In this section, the analysis of Section 3.4 is extended to the case where all N retailers strategically

update their orders. This updating is assumed to follow best response dynamics (Fudenberg et al.

1998). Namely, in iteration k, the Retailer i will update its order allocation to be the best response

to the perceived distribution of Aji (q−i,k−1) in iteration k, where q−i,k−1 is a vector of the chosen

order quantities of the other retailers in the previous iteration. This section studies the convergence

behavior of these dynamics.

When all N retailers are identical, they share a common objective function and will thus choose

the same order quantities each iteration. Therefore, Aji (q−i,k−1) is written simply as Aj(qjk−1) in

this section, where qjk−1 denotes the order placed to Supplier j by all retailers in iteration k− 1.

Let q∗k = (q1
∗
k , q

2∗
k ) denote the retailers’ optimal order allocation during iteration k. The optimal

order allocation is a direct extension of the characterization given in Proposition 1 for the single

retailer case. When a retailer places an order in iteration k, they will choose the order allocation

that solves Problem Cret, computed using the distributions FA1(q1
∗
k−1

),k and FA2(q2
∗
k−1

),k.

From Proposition 1, we know that q∗k = {q̃1, q̃2} when q̃1 + q̃2 >Q, where q̃1, q̃2 satisfy

q̃1 :=Q−F c−1

A2(q2
∗
k−1

),k

(
cs

cs + ch

)
(7)

and

q̃2 :=Q−F c−1

A1(q1
∗
k−1

),k

(
cs

cs + ch

)
(8)

If q̃1 + q̃2 ≤Q, q∗k is the unique solution to

{
q1 =Q− q2

F c
A1(q1

∗
k−1

),k
(q1) = F c

A2(q2
∗
k−1

),k
(q2)

(9)

In this setting, it is natural to study the long-run behavior of the retailers, and ask the following

questions: Do the retailers’ order allocations converge? If they do converge, what do they converge

to? Before answering these questions, convergence is first defined in this setting, as well as the

notion of temporary convergence.
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Definition 1 (Convergence). The retailers’ dynamics are said to converge to q∗ if, for every

ε > 0, there exists a K such that for all k > K, ||q∗k − q∗|| < ε. Here, || · || is taken to be the L1

norm.

The definition of convergence above is a standard definition. In what follows, the notion of tempo-

rary convergence is introduced. Intuitively, the order allocation dynamics are said to temporarily

converge if they converge for a finite number of iterations. This may occur in the RI scheme if the

retailers’ initial belief about one or both of the suppliers’ inventory distributions is far from the true

distribution. For example, suppose that the retailers begin by strongly believing that the suppliers

have limited inventory. However, in reality, the suppliers have ample inventory. In this case, it is

possible that the order dynamics will temporarily converge to an equilibrium where all retailers

over-order. However, once the retailers have observed enough inventory realizations so that their

estimate of the inventory distributions have sufficiently changed, their orders may shift to a new

equilibrium where no over-ordering occurs. This phenomenon is observed empirically in Section 5.

Definition 2 (Temporary convergence). The retailers’ dynamics are said to temporarily

converge to q∗ from time K to K +m if, for every ε > 0 and k ∈ {K, ...,K +m}, ||q∗k−q∗||< ε.
The convergence of the order allocations depends heavily on the notion of Nash equilibrium. The

definition of Nash Equilibrium, below, says that the chosen allocation must simultaneously be a

best response for all retailers.

Definition 3 (Nash equilibrium). An order allocation (q1NE ,q2NE ) is a Nash equilibrium if

and only if

qj
NE

= argminq C(q|F
A1(q1NE )

,F
A2(q2NE )

)

for j = 1,2 where C(q|FA1(q1),FA2(q2)) denotes the cost from Problem Cret computed with respect

to the distributions FA1(q1) and FA2(q2).

Proposition 2 (below) gives us insight into the long-run behavior of the best response dynamics

under any information scheme where the perceived distribution of Aj(q) converges pointwise to a

function FAj(q),∞(x) on the domain x∈ [0,Q] as k→∞, for all fixed q ∈ [0,Q] and j = 1,2. Notice

that this is equivalent to convergence of the estimated inventory distributions of both suppliers.

In order to understand the long-term convergence behavior of the best response dynamics, it

suffices to consider the Nash equilibria of the dynamics under FAj(qj),∞(x). The following propo-

sition is an extension of the classic theorem of best response dynamics, which says that if the

best response dynamics of a game with a static payoff function converge to a strategy profile, the

strategy profile must be a Nash equilibrium of the game (Fudenberg et al. 1998).

Proposition 2. If FAj(qj),k(x) converges pointwise to FAj(qj),∞(x) on the domain x∈ [0,Q] for

all fixed qj ∈ [0,Q] for j = 1,2, and the retailers’ dynamics converge, they must converge to a Nash

equilibrium under the distributions FA1(·),∞(x) and FA2(·),∞(x).
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Let FAj(q)(x) denote the true distribution of Aj(q) for all q ∈ [0,Q], meaning that it is computed

using the true inventory distribution of Supplier j. Assuming that FAj(q),k(x) converges pointwise

to FAj(q)(x) for all q ∈ [0,Q] under the RI scheme, in order to understand the long-run behavior of

the retailers it suffices to consider the Nash equilibrium of the best response dynamics using the

true distribution of Aj(q). This is equivalent to considering the convergence behavior of the best

response dynamics under the FI scheme.

We now study the long-run behavior of the retailers’ order allocation. Proposition 3 characterizes

all possible convergent order allocations. Under Condition 1, there are at most three possible Nash

equilibria. However, the best response dynamics can only converge to two of the three equilibria.

When Condition 1 does not hold, it is possible that more than three equilibria exist.

Proposition 3. Assume that FAj(qj),k(x) converges pointwise to FAj(qj)(x) as k→∞, for all

q ∈ [0,Q]. Under Condition 1 (given below), there are at most three Nash equilibria order alloca-

tions with respect to the distributions FAj(qj)(x), j = 1,2, characterized by:

Equilibrium NEQ. Each retailer orders exactly Q units of inventory in total (q1 + q2 =Q).

Equilibrium NE2Q. Each retailer orders exactly Q units of inventory from at least one of the

suppliers (either q1 =Q and/or q2 =Q).

Equilibrium NE′. Each retailer orders (q1, q2) where q1 <Q,q2 <Q and q1 + q2 >Q.

Furthermore, the best response dynamics can only converge to NEQ and NE2Q. When Condition 1

(below) does not hold, NEQ and NE2Q remain Nash equilibria, and there could be additional equi-

libria that satisfy the conditions of Equilibrium NE′ (above), meaning that there could be multiple

equilibria that lie in the domain D= {q1, q2 : q1 + q2 >Q,q1 <Q,q2 <Q}.

Condition 1. The distributions of X1 and X2 (the suppliers’ inventory distributions) satisfy

fXj (Q− q)<
N∑
m=2

fXj (Q+ (m− 1)q)

for all q ∈ [0,Q].

Condition 1 results in a regularity condition on the best response dynamics given by Equations

7 and 8. A Nash Equilibrium can only occur in the domain D if Equations 7 and 8 are satisfied

simultaneously for some choice of q1 and q2. In other words, a Nash equilibrium occurs at some

allocation (q1
NE
, q2

NE
) in D if and only if

q1
NE

=Q−F c−1

A2(q2
NE

),k

(
cs

cs + ch

)
(10a)

q2
NE

=Q−F c−1

A1(q1
NE

),k

(
cs

cs + ch

)
(10b)

(q1
NE

, q2
NE

)⊂D (10c)
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are all satisfied. In the q1−q2 plane, the intersection points of the functions q2
NE

(q1) and q1
NE

(q2)

(defined by Equations 10a and 10b above) determine the Nash equilibria on the domain D. When

Condition 1 is met, these functions can intersect at most once on domain D. Condition 1 will hold

as long as the suppliers’ inventory distributions are “reasonable,” meaning that the suppliers do

not have unrealistically small quantities of inventory. Since there are N retailers, each desiring a

total quantity of Q every iteration, under reasonable inventory distributions fXj (Q− q) should be

quite small, and fXj (Q+ (m− 1)q) should be larger than fXj (Q− q) for some m≥ 2. Therefore,

in most realistic settings Condition 1 will hold.

In what follows we address the following question: When do the dynamics converge to NEQ

versus NE2Q? Corollary 1 provides sufficient conditions for the dynamics to converge to either

NEQ or NE2Q, based on the distribution of Xj for j = 1,2.

Corollary 1. Let let (q1U , q
2
U) be the solution to the system of Equations 11 and let (q1L, q

2
L) be

the solution to the system of Equations 12, given by:


E[X2

1X2∈[Q−q2,Q−q2+Nq1]] = q1N
cs

cs + ch

E[X1
1X1∈[Q−q1,Q−q1+Nq2]] = q2N

cs
cs + ch

(11)

and


E[X2

1X2∈[Q−q2,Q−q2+(N−1)q1]] = q1N
cs

cs + ch

E[X1
1X1∈[Q−q1,Q−q1+(N−1)q2]] = q2N

cs
cs + ch

(12)

If (q1L, q
2
L)∈D and (q1U , q

2
U)∈D, the best response dynamics can converge to either NEQ or NE2Q,

depending on the initial ordering decisions of the retailers. If (q1L, q
2
L)∈D′ where D′ = {q1, q2 : q1 ≥

Q or q2 ≥Q}, then the dynamics will converge to NEQ. Finally, if (q1U , q
2
U)∈D′′ where D′′ = {q1, q2 :

q1 + q2 ≤Q}, then the dynamics will converge to NE2Q.

Furthermore, if Condition 13 (below) holds for j = 1,2, then the order allocation corresponding to

equilibrium NE2Q is the allocation (Q,Q), and the dynamics could converge to the this equilibrium.

E[Xj
1Xj∈[0,(N−1)Q]]≤QN

cs
cs + ch

(13)

Corollary 1 gives a practical method for determining the convergence behavior of the ordering

dynamics, based only on the suppliers’ inventory distributions. Recall that equilibrium NE2Q is

characterized by an order allocation (q1, q2) such that at least one qj is equal to Q. The final

statement of Corollary 1 provides a condition such that the order allocation of NE2Q will be equal
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to (Q,Q). Intuitively, this condition will hold as long as both suppliers have limited inventory (in

the sense of Equation 13 holding).

Corollary 1 is demonstrated pictorially in Figure 3. Assuming that the inventory at both sup-

pliers follows a normal distribution, Figure 3 shows ranges of the means and variances of the

inventory distributions that would result in the retailers converging to either NEQ or NE2Q (or

the indeterminate case where the dynamics can converge to either equilibrium). These images were

created using the conditions of Corollary 1, and solving the systems of Equations 11 and 12 for

various parameters of the inventory distributions. When the coefficient of variation is high for both

distributions (bottom right of Figure 3), the dynamics will always converge to NE2Q for the range

of means explored. In this case, there is a large amount of risk associated with the inventory, as

it can fluctuate widely from iteration to iteration at both suppliers. Therefore, the retailers will

always over-order to hedge against this risk.

When the coefficient of variation is relatively small for both suppliers (top left of Figure 3),

the retailers’ dynamics will converge to NE2Q when the means are small, and will converge to

NEQ when both means are large enough. There is also a middle ground where the dynamics can

converge to either equilibrium. Finally, when the inventory distributions are asymmetric in terms

of their variability, the convergence behavior depends almost entirely on the mean of the inventory

distribution of the supplier with more variability.

It should also be noted that in all scenarios considered in Figure 3, NE2Q always corresponds

to the allocation order (Q,Q). In other words, the last condition of Corollary 1 is always met for

the ranges of parameters explored.

The following proposition concerns the convergence rate of the best response dynamics when the

suppliers’ inventory distributions are fixed. Let Lj be the largest integer such that the following

inequality holds:

N∑
m≥Lj+1

fXj (Q+ (m− 1)q)≥
Lj−1∑
m=0

(Lj −m)fXj (Q+ (m− 1)q) (14)

for all q ∈ [0,Q]. Notice that the expression above is equivalent to the expression in Condition 1

when Lj = 1. The integers L1 and L2 impact the convergence rate of the best response dynamics,

described below in Proposition 4.

Proposition 4. Suppose the best response dynamics start at (Q,Q). If (Q,Q) is a Nash

equilibrium under the true distribution FAj(q)(x), the retailers’ best response dynamics con-

verge immediately. If (Q,Q) is not Nash equilibrium under the true distribution FAj(q)(x),

let L = min{L1,L2} (where each Lj is defined by Equation 14). Furthermore, let b = Q −

min{F c−1

A1(Q)

(
cs

cs+ch

)
,F c−1

A2(Q)

(
cs

cs+ch

)
}, where Aj is the uncensored version of Aj (i.e., the operation
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Figure 3 Illustration of Corollary 1 when Xj ∼N(X̄j , (X̄j ·CoV (Xj))2), Q= 10, N = 50, and cs
cs+ch

= .8. Note

that CoV (Xj) is the coefficient of variation of Xj , defined as
σj
X̄j where σj is the standard deviation of Xj .

(·)+ is removed in Equation 2). The retailers’ order dynamics will converge to NEQ after at most

n iterations, where

n=
log
(
−2b+(1+L)Q

2(Q−b)

)
log(L)

(15)

for L> 1 and 0< b<Q.

First, notice that when b ∈ [0,Q/2], n ≤ 1 and the dynamics converge after only one iteration.

This occurs when the suppliers have ample inventory. Specifically, this occurs when P[Aj(Q) ≥

Q/2]≥ cs
cs+ch

for j = 1,2. When b∈ [Q/2,Q], n is decreasing in L. In this case, it always holds that

n≤ Q
2(Q−b) , which is the limit of Equation 15 when L→ 1. This provides an upper bound on the

number of iterations required to reach convergence, independent of L (as long as L≥ 1, which can

be enforced by Condition 1).
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4.1. Supply chain costs

This section considers the cost of each equilibrium order allocation in terms of 1) supplier costs,

2) retailer costs, and 3) supply chain waste.

Suppose the best response dynamics converge to an order allocation q. We know from Proposition

3 that q either corresponds to NEQ or to NE2Q. If q corresponds to NEQ, then every retailer

orders exactly Q units of inventory total. If q corresponds to NE2Q, each retailer orders Q units of

inventory from at least one of the suppliers. As Proposition 3 and Corollary 1 state, there are cases

where the dynamics can converge to either NEQ or NE2Q. The question that this section seeks to

answer is: Which Nash equilibrium is better for each of the supply chain metrics listed above?

First consider the cost to the suppliers. Recall that, for one iteration, Supplier j’s cost is given

by

CSj =
N∑
i=1

(−p · rji,k + penalty(qji,k, r
j
i,k)) (16)

where p is the unit price, qji,k is the amount that was ordered, and rji,k is the amount that was

actually delivered to Retailer i in the given iteration. The term penalty(qji,k, r
j
i,k) is the penalty

cost.

In iteration k, total waste is given by

Waste =X1
k +X2

k −
∑
i

min{Ri,k,Q}

where Ri,k denotes the total amount received by Retailer i in iteration k.

The following proposition says that the order allocation NEQ is best for the retailers’ cost and

supply chain waste under very realistic assumptions. Furthermore, it is also best for the suppliers

as long as the suppliers are sufficiently penalized for unmet orders. When the suppliers are not

penalized for unmet orders, they prefer allocation NE2Q.

Proposition 5. If penalty(q,x) = 0 for all x, and CSj (q) denotes the supplier’s expected cost

per iteration under order allocation q:

CSj (NE2Q)≤CSj (NEQ)

Furthermore, there exists an H > 0 such that when the partial derivative of the penalty function

with respect to the amount delivered, ∂penality(q,r)

∂r
, is larger than H for all q,

CSj (NE2Q)≥CSj (NEQ)

as long as FXj (QN)> 0.
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Let CR(q;X1
k ,X

2
k) denote the retailers’ expected cost in iteration k, given order allocation q and

inventory realizations X1
k and X2

k . Suppose that the order allocation at NE2Q is equal to (Q,Q).

Then,

CR(NEQ;X1
k ,X

2
k)≤CR(NE2Q;X1

k ,X
2
k)

when NQ≤ 5Xj
k for j = 1,2.

Let W (q;X1
k ,X

2
k) denote the supply chain waste during iteration k given order allocation q and

inventory realizations X1
k ,X

2
k . Then,

W (NEQ;X1
k ,X

2
k)≤W (NE2Q;X1

k ,X
2
k).

The proof of Proposition 5 can be found in Appendix EC.1.

To provide intuition about the proposition, first consider the suppliers’ costs. If there were no

penalty costs, the suppliers would prefer larger orders from the retailers. This would ensure that

the most inventory possible is sold for a unit price of p. In this case, the supplier does not care how

many orders can be fulfilled (or how many orders are not fulfilled)—they only care about delivering

the largest quantity possible. Therefore, when penalty cost is zero, NE2Q is the most preferred

equilibrium to the suppliers, because it results in the largest order quantities for both suppliers.

When p = 0 and penalty costs exist, the suppliers’ costs are minimized when they are able to

meet every order, which occurs when orders are small. Therefore, in this situation, NEQ is the

most preferred equilibrium to the suppliers, because it results in the smallest order quantities.

For any fixed p, as the penalty cost grows, the supplier will prefer smaller and smaller order

quantities. Therefore, at some point, NEQ will become the most preferred equilibrium to the

suppliers. Notice that the OTIF penalty function, discussed in Section 3.5 is not able satisfy

Proposition 5. Under an OTIF contract, ∂penality(q,r)

∂r
= 0 when r/q ≤ τ . Therefore, ∂penality(q,r)

∂r

cannot be made arbitrarily large, as the Proposition calls for. Under an OTIF contract, the suppliers

may always prefer allocation NE2Q regardless of the magnitude of the penalty (the parameter γ

in Equation 6). This misalignment of incentives is most likely to occur when the OTIF threshold

τ (from Equation 6) is too low. In this case, the suppliers may be able to stay below the OTIF

threshold even when retailers engage in over-ordering, thereby always incurring zero penalty costs

even when orders are consistently not met in full. In this case, the suppliers will prefer that the

retailers over-order.

From the retailers’ perspective, the intuition behind Proposition 5 is that NEQ most often results

in the highest probability of each retailer receiving a positive amount of inventory. At equilibrium

NE2Q, since every retailer is over-ordering, many retailers end up without any inventory. Further-

more, some of those that do receive a shipment will receive 2Q—double their desired quantity.
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For the waste component, the argument is similar to that of the retailers. Since the suppliers’

inventory distributions are fixed throughout the horizon, the only way to decrease supply chain

waste is by increasing the service level at the retailers. Therefore, similar to the argument above

for the retailers, waste is minimized at NEQ.

4.2. Non-identical retailers

This section briefly considers the case when the retailers are not identical (in terms of their holding

and stockout costs, desired order quantities, and contracts). Problem Cret can easily be extended

to a retailer-specific objective function. In iteration k, Retailer i’s optimization problem, following

best response dynamics, is given by:

min
qi

Ci(qi, |{FAj(q−i,k−1),k}j=1,2) := E[chi(R(qi)−Qi)+ + csi(Qi−R(qi))
+|{FAj(q−i,k−1),k}j=1,2] (17)

where q−i,k−1 denotes the orders from other retailers during iteration k − 1. Furthermore, the

notion of convergence and Nash equilibria can also be easily extended. The characterization of all

Nash equilibria, however, is much more complex. From Section 4.1 it is clear that avoiding NE2Q is

desirable in terms of many supply chain metrics. In general, over-ordering is undesirable for retailer

costs and supply chain waste, as well as supplier costs as long as the suppliers are sufficiently

penalized when orders are not met in full. Corollary 2, which is an extension of Corollary 1 for

the case of non-identical retailers, characterizes circumstances under which qi = (Qi,Qi) for all

i∈ {1, ...,N} is a possible equilibrium allocation.

Corollary 2. If

E[Xj
1Xj∈[0,(N−1)Qmin]]≤QminN

cs
cs + ch

for j = 1,2, the best response dynamics can converge to qi = (Q,Q) for all i. Here, Qmin := miniQi.

5. Numerical experiments

This section presents a detailed example scenario and the resulting dynamics under all three infor-

mation sharing schemes. In this scenario there are 100 identical retailers with Q= 10, ch = 4, and

cs = 8. The initial order allocation for all retailers is either (5,5) or (10,10). The dynamics are

simulated over 50 iterations.

Note that if all retailers order Q from both suppliers, the amount of inventory that Sup-

plier j would need each iteration is max inv := QN = 1,000. Inventory realizations at supplier

j are distributed as Xj ∼ LogNormal(µj, σj
2
). The mean and variance of Xj will be expressed

in terms of max inv as βjmax inv and (ρβjmax inv)2, respectively. In the BI scheme, and to

start in the RI scheme, the retailers will initially assume that inventory is distributed as Xj ∼

LogNormal(αµj, (ασj)2). Therefore, the parameter α represents the retailers’ misperception about
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Figure 4 Evolution of retailers’ order allocation for each information sharing scheme. The starting allocation in

all cases is q = (10,10).

the suppliers’ inventory. When α= 1, the retailers know the inventory distribution exactly. How-

ever, when α< 1, they perceive inventory to be scarcer than it is. In this scenario, βj, ρ, and α are

given by:

β1 = 0.8, β2 = 0.7, ρ= 0.5, α= 0.6

The inventory distributions are intentionally constructed so that, in the BI scheme, the order

dynamics could converge to either NEQ or NE2Q. The convergent allocation depends on the

starting allocation. In the BI scheme, when the retailers start at q = (5,5), the best response

dynamics converge to q = (5,5). However, when the retailers start at q = (10,10), the best response

dynamics converge to q = (10,10). This demonstrates the existence of both Nash equilibria NEQ

and NE2Q. However, in the full information scheme, the dynamics will converge to NEQ, which

happens to be the order allocation (5.5,4.5), regardless of the starting allocation.

In the RI scheme, the order allocation dynamics, starting at (10,10), temporarily converge to

(10,10). However, after some time, the retailers learn more about the true distribution of the

available inventory, and the retailers’ order allocations eventually converge to NEQ. This conver-

gence happens very quickly over only three iterations. Figure 4 shows the evolution of the order

allocations under each information sharing scheme, starting at the point q = (10,10).

Now consider the performance of each information sharing scheme in terms of the supply chain

metrics. Let the total waste over the 50 iterations under the FI scheme be denoted by W ∗, and the

retailer cost be denoted by C∗R. The BI scheme, starting at q = (5,5), yields total waste equal to

1.16W ∗ and retailer cost equal to 5.57C∗R. The RI scheme, starting at q = (5,5), yields waste equal
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to 1.06W ∗ and retailer cost equal to 3.37C∗R. Thus, the RI scheme results in 14% less waste and 34%

less cost to the retailers than the BI scheme. Although, under both schemes, the retailers choose

an allocation such that q1 + q2 =Q, the allocation chosen under the BI scheme is not optimal. In

the RI scheme, the retailers’ eventually converge to the optimal allocation, resulting in lower costs

and waste.

The cost to the suppliers depends on their contracts and parameters of the cost function given

in Equation 5. We will assume that each supplier/retailer pair uses a marginal penalty function,

given by penalty(q, r) = γ · (q−r). Notice that this penalty function is able to satisfy the conditions

of Proposition 5. The marginal price received by the supplier per unit delivered is set to p= 4.

Figure 5 shows Supplier 1’s profits under different values of γ. Supplier 2’s profits follow a similar

pattern. Profits are shown for the RI and BI schemes, starting from initial allocation q = (10,10).

The profits are scaled by the profit obtained by starting at allocation NEQ under the FI scheme.

A y-value greater than 1 indicates that the supplier’s profits under the given information scheme

and associated value of γ, starting from an order allocation of q = (10,10), achieve higher profit

than allocation NEQ in the FI scheme.

When γ is low, the BI scheme achieves the highest profits for Supplier 1 (the y-axis exceeds

a value of 1 and outperforms the RI scheme) because Supplier 1 is better off with larger order

allocations. Thus, the BI scheme is preferred to the suppliers since the retailers order 10 units from

both suppliers for the entire horizon. When γ is large enough, NE2Q becomes less desirable to

the supplier until, eventually, the supplier achieves higher profits when the retailers choose NEQ

(corresponding to a y-value less than 1).

6. Enabling privacy through a trusted third party

This section discusses implementations of the reverse information (RI) and full information (FI)

sharing scheme and its consequences regarding privacy. The retailers’ private information is consid-

ered to be their stockout and holding costs, and the suppliers’ private information is their inventory

distribution, FXj , and N , the number of retailers in the supply chain. In this section, an imple-

mentation of the RI and FI sharing schemes is proposed that does not allow the suppliers to infer

the retailers’ private information, and allows the retailers to gain limited new information about

the suppliers’ private information.

For simplicity, this section is written assuming that all retailers are identical. However, the

implementation described can also be utilized when the retailers are not identical. Note that a

sufficient quantity for the suppliers to keep private, in order to ensure that N and FXj remain

private, is the distribution of Aj(q) for all q ∈ [0,Q], which is a function of FXj and N . The

implementation described in this section ensures that the retailers’ marginal information gain
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Figure 5 Supplier 1’s costs for various values of γ

(relative to no information sharing) is exactly a single point that lies on the true CDF of Aj(q)

for a single q ∈ [0,Q], for j = 1,2. Suppose that the two dimensional function FAj(q)(x) can be

parametrized by an m-dimensional vector, which the retailers wish to learn and Supplier j wishes

to keep hidden. The retailers’ marginal information gain in the proposed implementation reduces

the retailers’ learning task by exactly one dimension. Instead of learning an m-dimensional vector,

retailers must learn an m− 1-dimensional vector.

Before discussing the retailers’ learning problem, first consider the suppliers’ ability to learn the

retailers’ private information. In any information sharing scheme, the only information that the

suppliers observe about the retailers is their order quantities. Recall from Proposition 1 that the

optimal order quantity sent to Supplier j depends on the retailers’ perceived distribution of A−j—

the distribution of available inventory at the other supplier—as well as the ratio cs
cs+ch

. Because

Supplier j does not know the retailers’ perceived distribution of A−j, the ratio cs
cs+ch

cannot be

readily identified.

Now consider the retailers’ ability to learn the suppliers’ private information under the BI scheme,

where no information sharing occurs. Each iteration, the retailers observe the inventory that they

receive from each supplier, which is typically a censored observation of Aj(qj
∗

k ). Neither inventory

realizations, nor the number of other retailers, is every directly observed. Recall that Aj(qjk) =

(Xj
k−Mqjk)

+, where M is a random variable representing the number of retailers of higher priority

than a given retailer, and is therefore a discrete uniform random variable taking integer values

from 0 to N . Therefore, any new observation of Aj(q), for any q, helps to estimate the distribution

of Xj as well as N .
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Every iteration, each retailer is likely to receive either zero or qj
∗

k units of inventory from Supplier

j. When a retailer receives qj
∗

k units of inventory, this is a censored observation since the amount of

inventory received by Retailer i is equal to min{Aji , q
j∗

k }. Because of the random lottery fulfillment

mechanism, only one retailer each iteration receives an amount of inventory in the open interval

(0, qj
∗

k ). Therefore, after K iterations, the expected number of times that a retailer receives either

zero or qj
∗

k units is K(N − 1)/N . Notice that this information is always gained regardless of the

presence of an information sharing scheme. In what follows, we discuss a specific implementation of

the FI and RI schemes that allows the retailers to learn very little additional information about the

distribution of Aj. Namely, the implementation proposed ensures that the additional information

learned by the retailers consists of only one point that lies on the two dimensional function FAj(q)(x).

In order for either the FI or RI sharing scheme to be effective, the retailers must either obtain

an estimate of FAj each iteration, or receive q∗k directly. However, there are many possible imple-

mentations for sharing this information, and many factors to consider when choosing the best

implementation. This section focuses on an implementation that promotes privacy and trust.

Suppose that suppliers share their inventory and order data with a trusted third party (TTP),

and the TTP continually updates its estimate of the function FAj(q)(x). In the FI scheme, it can be

assumed that the TTP knows the function FAj(q)(x) exactly for all x > 0, q ∈ [0,Q]. Additionally,

retailers share their holding and stockout costs with the TTP. Using this information, the TTP

computes and transmits qNEk to the retailers each iteration, where qNEk corresponds to a Nash

equilibrium order quantity under the current estimate of FAj(q)(x). Notice that the TTP does not

follow best response dynamics. Instead, the TTP directly transmits an (estimated) equilibrium

order allocation every iteration.

Before discussing the benefits of this implementation strategy, we first discuss the TTP itself.

In practice, the TTP does not need to be a physical entity, such as a third-party firm (although

it could be). Instead, it could be a platform such as blockchain that is capable of verifying and

auditing data and performing computations automatically. The proposed implementation relies on

the suppliers communicating truthful inventory and order information to the TTP. Even when

the incentives of the suppliers and retailers align (i.e., when they both prefer allocation NEQ),

there could still be reason for the suppliers to transmit false information. For example, they may

try to secure a larger order allocation than the other supplier by lying about their inventory. To

that end, blockchain technology can play a critical role. The benefits of blockchain in supply chain

settings are beginning to emerge. Some of the key advantages to using blockchain are the ability to

readily trace, verify, and audit data (Gaur and Gaiha 2020, Cheung et al. 2018). Because blockchain

enables items to be fully traced in supply chains, and prevents tampering with existing data, it is
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extremely difficult for individual entities to enter false information into the platform. Therefore,

the supply chain entities should prefer the use of blockchain to more standard platforms.

To understand the benefits of the proposed implementation, first consider the FI sharing scheme.

Under this scheme, the TTP directly transmits qNE to all retailers in the very first iteration, where

qNE are the orders corresponding to one of the Nash equilibria of the system. If both NEQ and

NE2Q exist, the TTP will choose to transmit orders corresponding to the equilibrium that produces

the lowest total supply chain cost. Note that if the TTP were to follow the best response dynamics,

instead of transmitting the Nash equilibrium order quantities immediately, the orders would end

up at a Nash equilibrium eventually. Thus, by transmitting the Nash equilibrium order allocation

immediately, the TTP effectively speeds up the convergence process.

This speed up has two important benefits. First, it ensures that the orders converge to the Nash

equilibrium that produces the smallest total supply chain cost, in the case where two equilibria

exist. If the TTP were to follow best response dynamics, allowing the retailers each to arbitrarily

choose their initial order allocation in the first iteration, the TTP would not have control over

which equilibrium the dynamics would converge to. Second, it minimizes the retailers’ ability to

learn the suppliers private information. To understand this point, consider the following. The

true distribution of Aj, denoted FAj(q)(x), can again be thought of as a two-dimensional function

in x ≥ 0 and q ∈ [0,Q]. Any best response order quantity derived using the true distribution of

Aj will give the retailers new information regarding the function FAj(q)(x). Knowing that qj
∗

k

was derived using best response dynamics and is the solution to either Equations 7 and 8 or

system of Equations 9, the retailers are able to learn a point that lies on the function FAj(q)(x)

for every new order allocation quantity qj
∗

k . Namely, the retailers will be able to infer that the

function FAj(q∗
k−1

)(x) must go through the point (Q− q−j
∗

k , cs
cs+ch

) or (q−j
∗

k ,F c

Aj(q
j∗
k−1

),k
(qjk)). In other

words, variation in the order quantities under the best response dynamics enables the retailers to

learn the suppliers’ private information. Therefore, under the FI sharing scheme, it is beneficial to

transmit the order allocations corresponding to the Nash equilibrium of the system immediately.

By directly transmitting a Nash equilibrium order allocation, the retailers are only able to infer

one point that lies on the function FAj(q)(x). Let the Nash equilibrium order quantity be denoted

(q1
NE
, q2

NE
). If q1

NE
+ q2

NE
= Q the retailers can infer that the function F

Aj(qj
NE

)
(x) must go

through the point (q−j
NE
,F c

Aj(qj
NE

)
(qj

NE
)). If q1

NE ≥ Q or q2
NE ≥ Q, the retailers can infer the

function F
Aj(qj

NE
)
(x) must go through the point (Q− q−jNE , cs

cs+ch
). Because the equilibrium order

quantities were transmitted immediately, the retailers do not learn any additional points.

In the RI scheme, a similar implementation can be followed. Namely, each iteration, instead

of transmitting each retailer’s best response, the TTP can transmit a Nash equilibrium order

allocation based on the current estimated function FAj(q),k(x). (Similar to above, if two Nash
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equilibria exist, the TTP will choose the one with the smallest total supply chain cost). Under this

implementation, the retailers cannot learn more than they could under the FI scheme. Thus, the

retailers can again learn at most one point that lies on the true function FAj(q)(x). This reduces

the dimensionality of the retailers’ learning problem by exactly one dimension.

7. Conclusions

This paper considers how reverse information sharing can improve supply chain performance in

settings with yield uncertainty and lack of transparency. In particular, if the suppliers are willing

to share inventory and order information with a trusted third party, the third party can transmit

sufficient information to the retailers that allows them to update their order allocations. This

transmission can be done in a way that limits the retailers’ ability to learn new information about

the supplier’s “private information” (such as their inventory distribution or the number of retailers

that they sell to). This information sharing scheme is particularly beneficial in situations where

the retailers perceive supply scarcity at the suppliers. In these settings, without any information

sharing, the retailers are incentivized to over-order. However, with appropriate reverse information

sharing, over-ordering can be mitigated, benefiting the entire supply chain.

The reverse information sharing scheme proposed in this paper could be implemented in prac-

tice through the use of blockchain. Not only does blockchain enable end-to-end transparency and

visibility, thereby making it unlikely that supply chain entities could enter false information, but

secure computations can also be automatically performed on blockchain platforms. Besides the

reverse information sharing scheme proposed in this paper, there are many other potential uses

for blockchain in supply chains, and specifically in perishable food supply chains. Having visibility

into the freshness levels of inventory at various points in the supply chain, or aggregate statistics

about these freshness levels, could have consequences for inventory management. For example, if

the retailers had visibility into freshness levels at their suppliers, prices and shipping times could be

modified according to the freshness levels. In addition, contracts could have an objective freshness

component. Currently, quality is largely subjective and retailers can reject shipments if they per-

ceive the quality to be too low. Objective measures of freshness, enabled through full traceability,

could increase fairness and objectiveness in perishable supply chains.
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EC.1. Proofs

Proof of Proposition 1

First, we write C(q) in an equivalent form as

C(q) =Qcs + ch

∫ ∞
Q

1−FR(x)dx− cs
∫ Q

0

1−FR(x)dx

=Qcs + (ch + cs)

∫ ∞
Q

(1−FR(x))dx− csE[R]

We can write E[R] as

E[R] =

∫ q1

0

1−FA1(x)dx+

∫ q2

0

1−FA2(x)dx

To analyze the function C(q) we will consider separate domains, over which
∫∞
Q

(1 −

FR(x))dx is smooth and differentiable.

Let D1 = {q1, q2 : q1 + q2 >Q,q1 ≤Q,q2 ≤Q}. On domain D1,∫ ∞
Q

(1−FR(x))dx=

∫ q1+q2

x=Q

(∫ q1

b=x−q2

fA1(b)F c
A2(x− b)db

)
+F c

A1(q1)F c
A2(x− q1)dx

the derivative of the objective function with respect to qj, j ∈ {1,2}, is

(−cs + (ch + cs)F
c
A−j

(Q− qj))F c
Aj

(qj)

The unique value of qj that satisfies first order condition for optimality is

qj
∗

=Q−F c−1

A−j

(
cs

cs + ch

)
The uniqueness of q∗j comes from noting that F c

Aj(x) is a complementary CDF and is

therefore always positive and monotone decreasing.

The second derivative is positive at qj
∗

and therefore it is indeed a local minimum. The

optimal solution over this domain is thus given by

q1
∗

:=Q−F c−1

A2

(
cs

cs + ch

)
and

q2
∗

:=Q−F c−1

A1

(
cs

cs + ch

)
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When q1
∗
, q2

∗
/∈D1, we will show that the optimal solution lies on the boundary. Namely,

either satisfies q1 + q2 = Q, q1 = Q, or q2 = Q. To show this, we will first consider the

function C(q) over the domain D2 = {q1, q2 : q1 +q2 ≤Q}. On domain D2, 1−FR(x) = 0 for

x∈ [0,Q). For x=Q, 1−FR(Q) = P(R=Q) = P(A1(l)≥ q1)P(A2(l)≥ q2) when q1+q2 =Q.

When q1 + q2 =Q, the function C(q) can be written as

C(q) =Qcs− cs

(∫ q1

0

1−FA1(x)dx+

∫ q2

0

1−FA2(x)dx

)

When q1 + q2 <Q, the derivative of C(q) with respect to both q1 and q2 is negative, so

we know that the optimal solution must satisfy q1 + q2 = Q. On this domain, a point

satisfies the first-order conditions for optimality if and only if it satisfies the following set

of equations: q
1 =Q− q2

F c
A1(q1) = F c

A2(q2)
(EC.1)

Now consider the domain D3 := {q1, q2 : q2 ≥ Q,q1 ≤ Q}. When q2 ≥ Q, ∂C(q)
∂q2 > 0.

Therefore, the lowest cost is obtained on the boundary by setting q2 = Q. If q̃1 := Q −

F c−1

A2

(
cs

cs+ch

)
≤Q, then (q̃1,Q) is optimal. By symmetry, the same holds on domain D4 :=

{q1, q2 : q1 ≥Q,q2 ≤Q}. Namely, (Q, q̃2) is optimal if q̃2 ≤Q.

Finally, on the domain D5 := {q1, q2 : q2 ≥Q,q1 ≥Q}, the optimal point is (Q,Q).

Proof of Proposition 2

Suppose that the dynamics, starting from q0, converge to some order allocation strat-

egy q̃. In other words, for any ε there exists an N such that for all n>N ,

|q∗(n)

j (q0, FAj ,1, ..., FAj ,n)− q̃j|< ε

where q∗
(n)

j (q0, FAj ,1, ..., FAj ,n) denotes the order allocation to supplier j after n iterations

of the best response dynamics using perceived distributions FAj ,1, ..., FAj ,n, starting from

allocation q0.

Our goal is to show that, in this case, there exists a Nash equilibrium of the dynamics

under FAj ,∞ such that for any ε > 0, there exists an N such that for all n>N ,

|q∗(n)

j (q0, FAj ,1, ..., FAj ,n)− qNE
j |< ε
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Since FAj(q),k(x) converges pointwise to FAj(q),∞(x) on the domain x ∈ [0,Q] for all q ∈

[0,Q], for any ε > 0, there exists a K such that for all k >K and all n≥ 1,

|q∗(n)

j (qk, FAj ,∞)− q∗(n)

j (qk, FAj ,k+1, ..., FAj ,k+n)|< ε

where qk = q∗
(k)

j (q0, FAj ,1, ..., FAj ,k) for j ∈ {1,2}. Therefore, by the triangle inequality,

we know that q∗
(n)

j (qk, FAj ,∞) converges to q̃j as n→∞. However, from the theory of

best response dynamics and fictitious play (Fudenberg et al. 1998), we know that if the

best response dynamics under q∗
(n)

j (qk, FAj ,∞) converge, they must converge to a Nash

equilibrium under q∗
(n)

j (qk, FAj ,∞). Therefore, q̃ = qNE where qNE is a Nash equilibrium

under q∗
(n)

j (qk, FAj ,∞).

Proof of Proposition 3

Let FAj(q) be the “fixed” distribution of Aj(q), for j = 1,2, meaning that it is computed

with respect to fixed inventory distributions. Let the random variable Aj(qj) denote the

expected available inventory at Supplier j including backorders. Therefore, Aj(qj) can take

negative values and is the uncensored version of the random variable Aj(qj). Specifically,

when the retailers are identical, Aj(qj) can be written as Aj(q) = (Xj −Mqj)+, where

M is a random variable denoting the number of retailers ranked above a given retailer

in the lottery mechanism. Because of the lottery mechanism, M follows discrete uniform

distribution, taking values from 0 through N − 1, each with probability 1/N . The random

variable Aj(qj) can be written as Aj(qj) =Xj−Mqj. On the domain (0,∞], FAj(qj)(x) and

FAj(qj)(x) are identical.

Consider the functions

q̂1(q2) =Q−F c−1

A2(q2)

(
cs

cs + ch

)
and

q̂2(q1) =Q−F c−1

A1(q1)

(
cs

cs + ch

)
Notice that q̃j (from the solution to Problem Problem Cret) can equivalently be written as

q̃j := max{q̂j(q−j
∗

k−1),Q}= max{Q−F c−1

A−j(q−j)

(
cs

cs + ch

)
,Q}=Q−F c−1

A−j(q−j)

(
cs

cs + ch

)
.

First, it will be shown that q̂1(q2) is increasing in q2. This is clear by noting that

F c−1

A2(q2)

(
cs

cs+ch

)
is equal to the value of x that solves P(X2 −Mq2] ≥ x) =

(
cs

cs+ch

)
. For
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q2
′′
> q2

′
, P(X2 −Mq2

′′
]≥ y)< P(X2 −Mq2

′
]≥ y) for all y > 0. Therefore, F c−1

A2(q2)

(
cs

cs+ch

)
is decreasing in q2 and thus q̂1(q2) is increasing in q2. Similarly, q̂2(q1) is increasing in q1.

Let

x(q) := F c−1

Aj(q)

(
cs

cs + ch

)
Our goal is to lower bound the derivative x′(q). Notice that x(q) satisfies

P(X̄j −Mq≥ x(q)) =
cs

cs + ch

By the independence of Xj and M ,

EM [F c
Xj(x(q) +Mq)] =

cs
cs + ch

(EC.2)

Taking the implicit derivative of Equation EC.2, we find that

x′(q) =−
EM [MF c′

Xj(x(q) +Mq)]

EM [F c′

Xj(x(q) +Mq)]
=−EM [MfXj(x(q) +Mq)]

EM [fXj(x(q) +Mq)]

Let T0 := fXj(x(q)) and T1 := fXj(x(q)+q). By factoring out P[M =m] from every term,

we can write

|x′(q)|=
T1 +

∑
m≥2mfXj(x(q) +mq)

T0 +T1 +
∑

m≥2 fXj(x(q) +mq)

≥
T1 + 2

∑
m≥2 fXj(x(q) +mq)

T0 +T1 +
∑

m≥2 fXj(x(q) +mq)

≥ T1 + 2A

T0 +T1 +A

where A =
∑

m≥2 fXj(x(q) +mq). Notice then that x′(q) < −1 when T0 < A for all q. In

other words, x′(q)<−1 when

fXj(x(q))<
N∑

m=2

fXj(x(q) +mq)

for all q. Finally, noting that Q−x(q) = q∗, this condition can be written as

fXj(Q− q)<
N∑

m=2

fXj(Q+ (m− 1)q) (EC.3)

for all q ∈ [0,Q]
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We are now able to prove that there are at most three Nash equilibrium. A Nash equi-

librium must be a best response for every retailer. Therefore, for all i, q∗i must satisfy one

of the optimality conditions listed in Proposition 1. Since all retailers are identical, for

simplicity let (q1
NE
, q2

NE
) denote a Nash equilibrium order allocation to Supplier 1 and 2,

respectively. By Proposition 1, (q1
NE
, q2

NE
) must satisfy either

q1
NE

= max{Q−F c−1

A2(q2NE ),k

(
cs

cs+ch

)
,Q}

q2
NE

= max{Q−F c−1

A1(q1NE ),k

(
cs

cs+ch

)
,Q}

q1
NE

+ q2
NE
>Q

(EC.4)

q
1NE =Q− q2NE

F c

A1(q1NE ),k
(q1

NE
) = F c

A2(q2NE ),k
(q2

NE
)

(EC.5)

Notice that F c
A1(q),k(q) is decreasing in q. Therefore, System EC.5 has at most one solution.

Furthermore, the functions q̂1(q2) =Q−F c−1

A2(q2),k

(
cs

cs+ch

)
and q̂2(q1) =Q−F c−1

A1(q1),k

(
cs

cs+ch

)
can intersect at most once if q̂2

′
(q1)> 1 and q̂1

′
(q2)> 1. Condition EC.3 (which is also the

condition of the Proposition) ensures that q̂2
′
(q1)> 1 and q̂1

′
(q2)> 1. Therefore EC.4 has

at most one solution where q1NE <Q and q2NE <Q, which satisfies q̂2(q1) = q̂1(q2). Addition-

ally, the functions max{Q−F c−1

A2(q2
NE),k

(
cs

cs+ch

)
,Q} and max{Q−F c−1

A1(q1
NE),k

(
cs

cs+ch

)
,Q} can

intersect at most once on the boundary where q1NE =Q or q2NE =Q, and q1NE + q2NE >Q.

A Figure showing these potential Nash equilibria is shown in Figure EC.1

Therefore, System EC.5 has at most two intersection points: One where Q −

F c−1

A2(q2
NE),k

(
cs

cs+ch

)
<Q and Q−F c−1

A1(q1
NE),k

(
cs

cs+ch

)
<Q, and another where either qNE

1 =Q

or qNE
2 =Q (or both).

Finally, we prove that the best response dynamics cannot converge to the point corre-

sponding to Nash equilibrium NE ′. Let q̄2(q1) be equivalent to the function q̂1(q2) written

in terms of q1 (in other words, the graph of the function q̄2(q1) is equivalent to the set of

points {(q̂1(q2), q2)} for q2 ∈ [0,Q]). The allocation NE ′ occurs at the unique point where

q̄2(q1) = q̂1(q1). Figure EC.2 gives an intuitive “proof by picture”.

Consider the best response dynamics, starting at point q0. The point qk is used to denote

the optimal order allocation after k iterations. Notice that q2k+1 = q̂2(q1k) and q1k+1 = q̂1(q2k).

Let R1, R2, R3, and R4 correspond to the domains as shown in Figure EC.2. In R1, after
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Figure EC.1 Picture of the solutions to Systems EC.4 and EC.5. Point A is a solution to System EC.5, point B

is a solution to q̂2(q1) = q̂1(q2) (i.e. satisfies System EC.4), and point C also satisfies System EC.4 but has

q1 = q2 =Q.

Figure EC.2 Illustration of the regions considered, for the proof that the best response dynamics cannot

converge to NE′. The point NE′ is given by the intersection of the orange and blue lines. Three updates,

starting from q0, are also shown.

one iteration, q11 < q
1
0, and therefore, after two iterations q22 < q

2
0 since q22 = q̂2(q11) and q̂2(q1)

is an increasing function that lies below q̄2(q1) in this region. Furthermore, notice that if

(q1k, q
2
k) ∈ R1, (q1k+2, q

2
k+2) is necessarily also in R2. Therefore, since q22 < q20 < q2NE′ for all
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q0 starting in R1, the dynamics cannot converge to qNE′ after starting in R1. A similar

argument holds for allocation dyanmics starting in R2. In R2, the q2 components increase

every two iterations, and thus since q20 > q
2
NE′ to begin with, the dynamics cannot converge

to q2NE′ .

If the dynamics begin in either R3 or R4, after one iteration the allocation ends up in

either R1 or R2. Then, the arguments above apply. Therefore, there is no starting point

such that the best response dynamics can converge to qNE′ .

Proof of Corollary 1

The proof of Proposition 3 demonstates that the convergence of the retailers’ order

dynamics depend on the intersection of the functions q̂2(q1) and q̂2(q2) in the q1 − q2

plane. When the point of intersection lies in domain D = {q1, q1 > 0, q2 > 0q2 : q1 + q2 ≥

Q,q1 ≤Q,q2 ≤Q}, the order dynamics can converge to either NEQ or NE2Q. Corollary 2

approximates the intersection point by using an upper and lower bound on Equations 10a

and 10b .

Equations 10a and 10b can be re-written as

N−1∑
m=0

P[X2 ≥Q− q1 +mq2] =N
cs

cs + ch
(EC.6a)

N−1∑
m=0

P[X1 ≥Q− q2 +mq1] =N
cs

cs + ch
(EC.6b)

Our goal is to come up with a very tight lower and upper approximation of the (q1, q2)

that satisfy Equations EC.6a and EC.6b. Consider the following string of inequalities:∫ N

m=0

P[Xj ≥Q− q−j +mqj ]dm≤
N−1∑
m=0

P[Xj ≥Q− q−j +mqj ]≤
∫ N

m=0

P[Xj ≥Q− q−j +mqj − qj ]dm (EC.7)

Because Xj is a non-negative random variable,∫ N

m=0

P[Xj ≥Q− a+mb]dm=
1

b

∫ Q−a+Nb

x=Q−a
P[Xj ≥ x]dx=

1

b
E[Xj

1Xj∈[Q−a,Q−a+Nb]]

Therefore, a lower approximation to the solution of System EC.6 is given by solving System

11 and an upper approximation is given by solving System 12.

Furthermore, if Condition 13 (below) holds for j = 1,2, then the order allocation cor-

responding to equilibrium NE2Q is allocation (Q,Q). f Q ≤ q̂2(q1) and Q ≤ q̂1(q2) (as in

Figure EC.2), the order allocation corresponding to equilibrium NE2Q is the allocation

(Q,Q). This should be clear by considering Figure EC.2. Using the integral lower bound
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from Expression EC.7, this statement is equivalent to Condition 13 in the statement of the

corollary.

Proof of Proposition 4

As in the proof of Proposition 3, notice that the construction of Lj ensures that
∂q̂−j(qj)

∂qj
≥ Lj, where q̂−j(qj) is defined in the proof of Proposition 3. Also recall, as in the

proof of Proposition 3, that the best response dynamics are governed by functions q̂1(q2)

and q̂2(q1) in the q1− q2 plane. In other words, given a starting allocation (q10, q
2
0), the allo-

cation in the next iteration is given by (q11, q
2
1) = (q̂1(q20), q̂2(q10)) as long as (q̂1(q20), q̂2(q10))∈

{q1, q2 : q1 + q2 ≥Q,q1 ≤Q,q2 ≤Q}.
Let bj := q̂j(Q). Notice that q̂j(q−j)≤ yj(q−j) where yj(q−j) is the linear function with

slope Lj going through the point (Q,bj). Let (q1n, q
2
n) be the order allocation after n itera-

tions, starting from (Q,Q), of the true best response dynamics (using the function q̂j(qj)).

Let (y1n, y
2
n) be the order allocation after n, starting from (Q,Q), iterations of the best

response dynamics using the linear functions yj(·). By construction, yjn ≥ q1n. See Figure

EC.3 for reference. Therefore, if (y1n, y
2
n) converges to NEQ after n iterations (meaning

that y1n + y2n ≤ Q), (q1n, q
2
n) must also satisfy q1n+2

n ≤ Q. Thus, it suffices to consider the

convergence of (y1n, y
2
n).

First consider the case when the suppliers are symmetric, so b1 = b2 = b and L1 = L2 =

L. Then, starting from (Q,Q), y1n = y2n = (Q − b)Ln−1
L−1 + Q. It follows that, when n ≥

log(−2b+(L+1)Q
2(Q−b) )

log(Q)
, yjn ≤Q/2, which implies that y1n + y2n ≤Q.

When the suppliers are not symmetric, the same inequality holds by setting b =

max{b1, b2} and L= min{L1,L2}.
Proof of Proposition 5

First we will consider the cost to Supplier j in an arbitrary iteration k. Let qj be the

amount that each retailer orders from Supplier j in this iteration. When penalty(q, r) = 0,

the supplier’s revenue is pmin{Nqj,Xj
k}. Therefore, the supplier is benefited by larger

orders. Thus, CSj(NE2Q)<CSj(NEQ).

Now consider the case when the penalty function is not identically zero. Let l := bXj
k/q

jc
be the index of the lowest priority retailer (according to the random lottery mechanism)

that still receives their entire order, and let r̂ be the remaining inventory that the l+ 1st

retailer receives. The supplier’s cost is given by

−pmin{Nqj,Xj
k}+

(
penalty(qj, r̂) + (N − (l+ 1))penalty(qj,0)

)
1Xj

k<qjN
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Figure EC.3 Illustration of the functions yj(q−j) and q̂j(q−j) as well as the best response dynamics induced by

each set of functions, starting from allocation (Q,Q).

Notice that the supplier’s expected cost depends on P(Xj
k < q

jN). As long as this probabil-

ity is positive, there is always a chance of the supplier incurring penalty costs. Furthermore,

notice that P(Xj
k < qjN)< P(Xj

k <QN) for qj <Q. Therefore, there is always a penalty

cost high enough such that the suppliers will prefer smaller orders.

Now consider the expected cost to the retailers. For simplicity, we will prove the Proposi-

tion for the case that Xj is a multiple of qj. When Xj is not a multiple of qj, the same logic

holds however the exposition is much more tedious. Let pb be the probability that a given

retailer receives its order from both suppliers, pj be the probability that it only receives

its order from Supplier j, and p0 be the probability that it does not receive anything. The

retailer’s expected cost can be written as

ch(q1 + q2−Q)pb + cs(Q− q2)p1 + cs(Q− q1)p2 + csQp0 (EC.8)

The probabilities can be written as

pb =
X1

k

Nq1
X2

k

Nq2
(EC.9)

p1 =
X1

k

Nq1
(1− X2

k

Nq2
) (EC.10)

p2 =
X1

k

Nq1
(1− X2

k

Nq2
) (EC.11)
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p0 = (1− X1
k

Nq1
)(1− X2

k

Nq2
) (EC.12)

We wish to compare Equation EC.8 under NEQ to NE2Q. Let (q1, q2) be the orders under

NEQ, so that q1 + q2 = Q. For now, let (Q,Q) be the orders under NEQ. A sufficient

condition for the cost under NEQ to be less than the cost under NE2Q is:

max{q1, q2}(p1(NEQ) + p2(NEQ)) +Qp0(NEQ)<Qp0(NE2Q)

Notice that the maximum cost incurred by any one retailer is csQ. Therefore, when Xj

is not a multiple of qj, there can be at most two retailers each iteration that receive an “in-

between” amount of inventory (i.e., an amount between 0 and qj). Therefore, a sufficient

condition for the inequality above to hold is that

max{q1, q2}N(p1(NEQ) + p2(NEQ)) +QNp0(NEQ) + 2Q<QNp0(NE2Q)− 2Q

Notice that this cost is now the expected cost of all retailers. To account for the costs

incurred by the retailers that recieve an “in-between” amount, we have added 2Q to the

right-hand side and subtracted 2Q from the left hand side.

Without loss of generality assume that q1 ≥ q2. Then the inequality above holds if:

N ≤ ((q1)
2 + q1q2− (q2)

2)X2
kX

1
k

(q2Q(4q21 + 4q1q2 +X1
k(q1− q2)))

(EC.13)

To avoid confusion with exponents, qj in the expression above is the order allocation to

Supplier j (formerly written as qj). Notice that if q1 = q2, Condition is met EC.13. There-

fore, the suppliers are symmetric, the retailers always prefer NEQ to NE2Q. Substituting

q2 =Q− q1, Condition EC.13 can be re-written as

N ≤X2
k

Q2− 3Qq1 + (q1)
2

Q3− 3Q2q1 + qQ(q1)2

On the domain Q/2≤ q1 ≤Q, the RHS above has a unique minimum at q1 = 2
3
Q, at which

the RHS is equal to X2
k

5
Q

. Therefore, as long as

NQ≤ 5Xj
k

for j = 1,2, the retailers will prefer NEQ.

This condition is extremely reasonable and can be interpreted as saying that neither

supplier has extremely limited supply.
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Now consider supply chain waste. We will prove this in the case that the suppliers are

symmetric, however analogous (but messier) logic can be used to prove the statement in

the case that the suppliers are not symmetric. Because the suppliers are symmetric, the

retailers will order the same quantity from both suppliers, denoted by q. Also for simplicity

assume that Xj
k is a multiple of q for j = 1,2. For a single iteration with orders (q, q), waste

is given by

(X1
k −Nq)+ + (X2

k −Nq)+ +n2(2q−Q) +n1(q−Q)+

where n2 is the number of retailers who receive their entire order from both suppliers, and

n1 is the number who receive their entire order from only one supplier.

First consider the order allocation NEQ. Since the suppliers are symmetric, NEQ =

(Q/2,Q/2). Notice that at equilibrium NEQ there is never waste at the retailers. Waste

at the suppliers is given by (X1
k −NQ/2)+ + (X2

k −NQ/2)+.

Now consider the order allocation NE2Q = (Q,Q). Waste is given by

(X1
k −NQ)+ + (X2

k −NQ)+ +n2Q

The expected value of n2 is N ·max{1, X1
k

NQ
} ·max{1, X2

k

NQ
}. Consider diving the domain of

possible inventory realizations into three segments: [0,NQ/2], (NQ/2,NQ), and [NQ,∞).

By considering the nine possible combinations of X1
k and X2

k falling into each of these

segments, it is straightforward to see that the expected waste under NEQ is smaller than

the expected waste under NE2Q. For example, consider the case when both X1
k and X2

k

lie in [0,NQ/2]. In this case, there is no waste at NEQ, so automatically we have that

W (NEQ)≤W (NE2Q). Now consider the case whenX1
k ∈ [0,NQ/2] andX2

k ∈ (NQ/2,NQ).

Waste under NEQ is given by X2
k −NQ/2. Waste under NE2Q is given by

N
X1

k

NQ

X2
k

NQ
Q=X1

kX
2
k

1

NQ

Since X1
k ≤NQ/2, X1

kX
2
k

1
NQ
≤X2

k . Therefore, W (NEQ)≤W (NE2Q). This analysis can be

repeated for all nine cases. Similar analysis can be done for the case when the supplier’s

are not symmetric (and thus the allocation at NEQ is not symmetric).

Proof of Corollary 2

The proof of Corollary 2 is very similar to the proof of the last statement of Corollary

1. If Qi is the best response to all other retailers ordering Ql, for l ∈ {1, ...,N} \ i, then it
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is true that (Qi,Qi) for all i is a Nash equilibrium. Notice that Qi is the best response to

all other retailers ordering Ql, for l ∈ {1, ...,N} \ i when Qi−F c−1

Aji (Q−i)

(
cs

cs+ch

)
≥Q, where

Aj
i is the uncensored version of Aj

i as stated in the Corollary. This is equivalent to

F c−1

Aji (Q−i)

(
cs

cs + ch

)
≤ 0

or

P[Aj
i (Q−i)≥ 0]≤ cs

cs + ch
.

This can be written as

P

Xj −
∑

l∈{1,...,N}\i

1o(l)<o(i)Ql ≥ 0

≤ cs
cs + ch

.

A sufficient condition for the inequality above to hold is that

P

Xj −
∑

l∈{1,...,N}\i

1o(l)<o(i)Qmin ≥ 0

≤ cs
cs + ch

,

where Qmin = miniQi. Following the same technique as in the proof of Corollary 2, a

sufficient condition for the inequality above to hold is that

E[Xj
1Xj∈[0,(N−1)Qmin]]≤QminN

cs
cs + ch

for j = 1,2.

Electronic copy available at: https://ssrn.com/abstract=3692868Electronic copy available at: https://ssrn.com/abstract=3692868


	Cover_Letter_Template
	SSRN-id3692868

