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Abstract
The outbreak of COVID-19 led to a record-breaking race to develop a vaccine.

However, the limited vaccine capacity creates another massive challenge: how to

distribute vaccines to mitigate the near-end impact of the pandemic? In the United

States in particular, the new Biden administration is launching mass vaccination

sites across the country, raising the obvious question of where to locate these clinics

to maximize the effectiveness of the vaccination campaign. This paper tackles this

question with a novel data-driven approach to optimize COVID-19 vaccine distribu-

tion. We first augment a state-of-the-art epidemiological model, called DELPHI, to

capture the effects of vaccinations and the variability in mortality rates across age

groups. We then integrate this predictive model into a prescriptive model to opti-

mize the location of vaccination sites and subsequent vaccine allocation. The model

is formulated as a bilinear, nonconvex optimization model. To solve it, we propose

a coordinate descent algorithm that iterates between optimizing vaccine distribu-

tion and simulating the dynamics of the pandemic. As compared to benchmarks

based on demographic and epidemiological information, the proposed optimization

approach increases the effectiveness of the vaccination campaign by an estimated

20%, saving an extra 4000 extra lives in the United States over a 3-month period.

The proposed solution achieves critical fairness objectives—by reducing the death

toll of the pandemic in several states without hurting others—and is highly robust to

uncertainties and forecast errors—by achieving similar benefits under a vast range

of perturbations.
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1 INTRODUCTION

The outbreak of the COVID-19 pandemic has started a

global race to develop vaccines, fueled by extensive invest-

ments, governmental support, and scientific breakthroughs.

Thanks to these unprecedented efforts, the scientific commu-

nity delivered the good news that the whole world was eagerly

awaiting. By Summer 2020, several vaccines had been devel-

oped. By the end of 2020, several vaccines got approved for

emergency use and hundreds more were going under develop-

ment and testing. Whereas vaccine development used to take

years and even decades, these results rank, with no doubt,

among the greatest scientific achievements (Graham, 2020;

Lurie et al., 2020).

Unfortunately, discovering and developing a vaccine for

COVID-19 was just the beginning—it will now take months

to produce, distribute, and deliver vaccines at scale. The

world has quickly come to the realization that vaccines can-

not be made available immediately to everyone, and policy

makers need to make tough decisions to pilot vaccine distri-

bution. A global consensus has naturally emerged to prioritize

to healthcare workers, other front line workers, and vul-

nerable populations such as older people and people with

comorbidities (see, e.g., National Academies of Sciences,
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Engineering, and Medicine, 2020). Within these general prin-

ciples, each jurisdiction is designing more detailed eligibility

guidelines to distribute vaccines effectively and equitably

within a population, based on demographic, clinical and geo-

graphic factors. However, a question remains open: how to

plan vaccine distribution across populations, that is, how to

allocate a limited vaccine supply across communities, across

provinces, and even across countries?

In the United States, this question gained prominence in the

midst of a presidential transition. In particular, the new Biden

administration relies on higher extents of federal coordination

in vaccine distribution, as opposed to a more decentralized

approach at the state level. In one of its first major decisions,

the administration started opening mass vaccination sites,

with many more planned over the next few weeks.1 This envi-

ronment raises the critical question of where to locate these

vaccination sites. Obviously, these decisions need to adhere

to a number of political and fairness considerations—most

notably, there must be at least one site per state. Yet, there

remains flexibility to use mass vaccination sites as a strategic

lever to effectively combat the pandemic.

This paper addresses this question with a novel data-driven

approach, combining epidemiological modeling and pre-

scriptive analytics, to optimize the location of vaccination

sites and the subsequent allocation of vaccines. To this

end, we leverage a recent compartmental epidemiological

model called DELPHI (Differential Equations Lead to Pre-

dictions of Hospitalizations and Infections), which extends

Susceptible-Exposed-Infected-Recovered (SEIR) models to

capture critical drivers of the COVID-19 pandemic: (i)

under-detection due to limited testing, (ii) governmental

and societal response, and (iii) declining mortality rates (Li

et al., 2020). The DELPHI model has been fitted from histor-

ical data at the country level, at the state level in the United

States, and at the province level in a few other countries. The

DELPHI forecasts have been incorporated into the ensemble

forecast from the U.S. Center for Disease Control (2020a) and

have been utilized in selecting the Phase III trial locations

for the Johnson and Johnson COVID-19 vaccine. Historically,

the DELPHI model has featured excellent predictive perfor-

mance, matching the number of detected cases and deaths

with high accuracy across the various waves of the pandemic.

In this paper, we integrate the (predictive) DELPHI model

into a (prescriptive) optimization model for vaccine allo-

cation. We first propose an extension of DELPHI, referred

to as DELPHI–V, to capture the effects of vaccinations on

the dynamics of the pandemic. The DELPHI–V model also

disaggregates the dynamics of the pandemic at the subpop-

ulation level to reflect disparities in mortality rates across

age groups, which are critical drivers of vaccination strate-

gies. We then formulate an optimization model, referred to as

DELPHI–V–OPT, which optimizes the vaccine distribution

1www.nbcnews.com/politics/white-house/federal-government-opening-first-

mass-covid-19-vaccination-sites-california-n1256611

strategy (e.g., the deployment of mass vaccination sites at

the strategic level, and the subsequent allocation of vaccines

at the tactical level) to minimize the death toll of the pan-

demic. Our focus on mass vaccination centers does not hinder

the role that smaller vaccination sites (e.g., pharmacies) have

been playing throughout the country to vaccinate the popu-

lation. Ideally, our modeling approach would consider these

various sites jointly. However, given the lack of publicly avail-

able information on the vaccines administered in smaller sites

and the lack of coordination between the various vaccination

sites, we leave this integration for future research.

From a technical standpoint, the DELPHI–V–OPT model

relies on time discretization to embed the system of ordinary

differential equations governing the DELPHI–V dynamics

into an optimization model. The model is formulated as a

bilinear (nonconvex) optimization model, due to the SEIR

dynamics at the core of DELPHI–V in which the number of

new cases is driven by the number of susceptible and infected

people. To solve it efficiently in realistic large-scale settings,

we propose a coordinate descent algorithm. Starting from a

baseline solution, the algorithm iterates, until convergence,

between optimizing the vaccine distribution strategy (for

given dynamics of the pandemic) and simulating the dynam-

ics of the pandemic (for a given vaccine distribution strategy).

We implement the proposed model and algorithm using

real-world data in the United States from the New York

Times (2020), the U.S. Census Bureau (2020), and the U.S.

Center for Disease Control (2021). We leverage the param-

eter estimates from the DELPHI model in each U.S. state.

One challenge, however, is that DELPHI estimates mortality

rates in each state in each time period, while the U.S. Cen-

ter for Disease Control (2021) reports mortality rates in each

age bracket. To develop realistic and consistent estimates for

mortality rates in each state, each age group and each time

period, we formulate another bilinear optimization model that

interpolates these two pieces of information, while ensuring

consistency with broader demographic information.

Results suggest that the locations of vaccination sites can

have a massive impact on the effectiveness of the vaccina-

tion campaign. As compared to several benchmarks based

on demographic information (e.g., city and state popula-

tion) and epidemiological information (e.g., case counts), our

optimization approach increases the number of lives saved

by the vaccines by 20%, or 4000 lives over a three-month

period in the United States. These results underscore the

necessity to consider both demographics and epidemiologi-

cal dynamics when determining the locations of vaccination

sites and subsequent vaccine allocation, which is achieved by

the combination of our DELPHI–V epidemiological model

and our optimization framework. In addition, the optimization

approach can ensure equity between states and across vacci-

nation sites, thus alleviating the death toll of the pandemic

in some states without hurting others. Finally, these bene-

fits are highly robust to misspecifications and fluctuations in

the DELPHI parameters. Practically speaking, even though
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tactical decisions (e.g., vaccine allocation) need to be revised

continuously in response to the latest information available

throughout the vaccination campaign, strategic decisions (i.e.,

the location of vaccination sites) are highly robust to noise

and uncertainty.

In summary, this paper makes three contributions. From

a modeling standpoint, it formulates a novel optimization

model for vaccine allocation, DELPHI–V–OPT, that inte-

grates a state-of-the-art epidemiological model into an opti-

mization model that supports vaccine distribution strategies,

in order to mitigate the impact of the pandemic. From a

computational standpoint, it develops a scalable coordinate

descent algorithm, which converges effectively and in short

runtimes. From a practical standpoint, it demonstrates that

optimizing the locations of mass vaccination sites can curb the

death toll of COVID-19 by a sizeable amount, thus highlight-

ing the critical role of vaccine distribution besides vaccine

design and vaccine production in combating the pandemic.

Obviously, vaccine distribution involves broad political, eco-

nomic and social considerations, which lie beyond the scope

of this paper; yet, this paper can play a critical role to sup-

port ongoing mass vaccination efforts in order to mitigate the

impact of the pandemic on public health.

2 LITERATURE REVIEW

Many pharmaceutical companies and academic institutions

have explored different technologies toward a SARS-CoV-2

vaccine (Florindo et al., 2020; Shin et al., 2020). These span

(i) inactivated or live-attenuated virus vaccines, which induce

an immune response from weakened or killed pathogens (used

by the Wuhan Institute of Biological Products, for instance);

(ii) viral vector vaccines, which exploit nonreplicating ade-

noviruses to deliver an antigenic element (used by Johnson

and Johnson, for instance); (iii) subunit vaccines, which use

a minimal structural component of a pathogen such as a pro-

tein (used by Clover Biopharmaceuticals, for instance); (iv)

nucleic acid vaccines, which deliver DNA or mRNA of viral

proteins (used by Pfizer and Moderna, for instance).

From an operational standpoint, a vast literature studies

vaccine supply chains (see Duijzer et al., 2018; Lemmens

et al., 2016). A first area involves optimizing vaccine com-

position (Bandi & Bertsimas, 2020; Cho, 2010; Kornish &

Keeney, 2008; Wu et al., 2005). A second area focuses on

vaccine production to manage supply-side and demand-side

uncertainty and mitigate incentive misalignments between

manufacturers and end users (Arifoğlu et al., 2012; Chick

et al., 2008; Federgruen & Yang, 2009). Next, vaccine allo-

cation optimizes the management of a vaccine stockpile

(Mamani et al., 2013; Sun et al., 2009). Last, vaccine delivery

optimizes inventory, distribution and dispensing operations

(Aaby et al., 2006; Dai et al., 2016; Jacobson, Sewell, &

Proano, 2006). Most of this research focuses on predictable

and repeatable epidemics, such as seasonal influenza. For less

predictable epidemics, such as pandemic influenza, advance

planning interventions include stockpiling (Jacobson, Sewell,

Proano, & Jokela, 2006) and anticipatory vaccination (Ari-

naminpathy et al., 2012). Unfortunately, these approaches are

not readily applicable to a new disease such as COVID-19.

Our paper deals with centralized vaccine allocation within

a population. Early studies established the importance of par-

titioning the population into risk classes (e.g., age groups)

to reflect the impact of an epidemic (Elveback et al., 1976;

Longini Jr et al., 1978; Watson, 1972). Emanuel and

Wertheimer (2006) propose a life-cycle model that prioritizes

the most valuable subpopulations. Within a region, results

suggest prioritizing at-risk populations (Chowell et al., 2009;

Patel et al., 2005) or active agents who can spread the disease

fastest, such as school children (Basta et al., 2009; Dushoff

et al., 2007; Lee et al., 2012; Matrajt et al., 2013; Medlock &

Galvani, 2009). Across regions, results suggest that vaccines

should be allocated to the most infected regions and to those

affected the latest by the epidemic (Araz et al., 2012; Keeling

& Shattock, 2012).

Methodologically, most studies integrate SEIR or simi-

lar epidemiological models into simple optimization rou-

tines based on scenario analysis, enumeration, simula-

tion, or simple heuristics (Teytelman & Larson, 2013;

Uribe-Sánchez et al., 2011). Tanner et al. (2008) propose a

chance-constrained optimization approach to ensure that the

post-vaccination reproduction number is lower than one with

high probability. Yarmand et al. (2014) formulate a two-stage

stochastic programming model to first plan vaccine alloca-

tion and then distribute additional doses where the epidemic

has not been contained. They model the dynamics of disease

propagation by means of a stochastic SEIR model, and define

scenarios using Monte Carlo simulation. In contrast, this

paper directly embeds SEIR dynamics into an optimization

model to support vaccine distribution.

Finally, this paper contributes to the fast-growing field

of vaccine distribution in the midst of the COVID-19 pan-

demic. Recent and ongoing research spans vaccine produc-

tion (Khamsi, 2020), equity in vaccine distribution (Bae

et al., 2020; Muriel & Bauchner, 2021), and public acceptance

(Coustasse et al., 2021; Dror et al., 2020). In terms of vaccine

distribution, Rastegar et al. (2021) propose a mixed-integer

formulation to support influenza vaccine distribution during

the COVID-19 pandemic. Matrajt et al. (2020) study which

populations to prioritize in a mass vaccination campaign,

trading off vaccinating high-risk (older) age-groups versus

high-transmission (younger) age-groups in a given location.

In contrast, this paper optimizes the distribution of vaccines

across locations. This relates to Grauer et al. (2020), who

study the spatiotemporal distribution of vaccines, using an

SEIR model to test various strategies based on demographic

and epidemiological factors.

This paper expands this recent body of work in three major

ways. First, we optimize vaccine allocation across regions and

risk classes (e.g., age groups), based on data-driven estimates
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of infection and mortality rates. Second, we leverage a recent

SEIR-inspired epidemiological model that captures dynamics

specific to the COVID-19 pandemic, such as under-detection,

governmental response, and declining mortality rates. Third,

we propose a formal optimization approach and a coordinate

descent algorithm to explicitly optimize vaccine distribution

strategies, as opposed to relying on enumeration, simulation

or simplified heuristics.

3 MODEL FORMULATION

Our model optimizes vaccine distribution strategy. In the U.S.

context, this primarily involves the location of mass vacci-

nation sites. However, optimizing these decisions requires to

account for subsequent vaccine allocation across the popula-

tion, in order to further optimize and evaluate the effects of

the vaccination campaign. Therefore, we refer to as vaccine
distribution strategy the set of three decisions: (i) the location

of mass vaccination sites, (ii) the allocation of vaccines across

vaccination sites, and (iii) the allocation of vaccines within

each subpopulation.

We capture the dynamics of the pandemic by means of an

epidemiological model, called DELPHI, which forecasts the

number of detected cases, hospitalizations and deaths in each

U.S. state (Li et al., 2020).2 We review it briefly, and aug-

ment it to capture the effects of vaccinations—we refer to this

model as DELPHI–V. We then embed the DELPHI–V model

into a mathematical programming model to optimize vaccine

allocation, referred to as DELPHI–V–OPT.

3.1 DELPHI: Forecasting the dynamics of the
COVID-19 pandemic

DELPHI is a compartmental epidemiological model, which

extends the widely used SEIR model to account for speci-

ficities of the COVID-19 pandemic. The model is governed

by a system of ordinary differential equations (ODEs) across

11 states: susceptible (S), exposed (E), infectious (I), unde-

tected cases who will recover (UR) or die (UD), hospital-

ized cases who will recover (HR) or die (HD), quarantined

cases who will recover (QR) or die (QD), recovered (R), and

dead (D).

DELPHI differs from most other COVID-19 forecasting

models (see, e.g., Kissler et al., 2020, Perkins & Espana, 2020,

Rodriguez et al., 2020) by capturing three key elements of the

pandemic:

• Under-detection: Many cases remain undetected due

to limited testing, asymptomatic carriers, and detection

errors. Ignoring them would underestimate the scale of the

pandemic. The DELPHI model captures them through the

UR and UD states.

2DELPHI is also applied to each country and to other provinces, but this

paper focuses on U.S. states.

• Governmental and societal response: Social distancing

policies limit the spread of the virus. Ignoring them would

overestimate the scale of the pandemic. However, if restric-

tions are lifted prematurely, a resurgence may occur. We

define a governmental and societal response function 𝛾(t),
which modulates the infection rate and is parameterized as

follows:

𝛾(t) = 1+ 2

𝜋
arctan

(
−(t − tint)

𝜔

)
+c exp

(
−
(t − tjump)2

2𝜎2

)
. (1)

This parameterization defines four phases (Figure 1). In

Phase I, most activities continue normally. In Phase II, the

infection rate declines sharply as policies get implemented.

The parameters tint and 𝜔 can be interpreted as the start time

and strength of this response. In Phase III, the decline reaches

saturation. The epidemic then experiences a resurgence of

magnitude c in Phase IV, due to relaxations in governmen-

tal and social restrictions. This is counteracted at time tjump,

when restrictions are re-implemented, with 𝜎 controlling the

duration of this second wave.

• Declining mortality rates: The mortality rate of COVID-19

has been declining through the pandemic, due to a bet-

ter detection of mild cases, enhanced care for COVID-19

patients, and other factors. We model the mortality rate as

a monotonically decreasing function of time:

m(t) = (m0 − mmin)
(

1 + 2

𝜋
arctan(−rmt)

)
+ mmin, (2)

where m0 is the initial mortality rate, mmin is the minimum

mortality rate and rm is a decay rate.

Ultimately, DELPHI involves 16 parameters that define the

transition rates between the 11 states. We calibrate seven

of them from a database on clinical outcomes (Bertsimas

et al., 2020). Using nonlinear optimization, we estimate the

other nine parameters from historical data on the number of

cases and deaths in each region. We refer to Li et al. (2020)

for details.

Since its inception in March 2020, DELPHI has been exten-

sively tested and validated against real-world data. Figure 2

reports the historical performance of the model in the United

States, during the first wave in the Spring of 2020 and the

second wave in the Fall of 2020. As the figure shows, the

model has been predicting the magnitude of the pandemic

with high accuracy up to 1 month in advance; for instance, as

early as April 3, 2020, the model was predicting 1.2–1.4 mil-

lion cases in the United States by early May, a prediction that

became quite accurate a month later (Figure 2a). Obviously,

subsequent forecasts, by leveraging more up-to-date infor-

mation, were able to refine these estimates. As a result, the

DELPHI model was incorporated into the ensemble forecast

from the U.S. Center for Disease Control (2020a). During the

second wave of the pandemic, DELPHI continued to exhibit

strong predictive performance, with a mean average percent-

age error among the lowest of the CDC ensemble forecast

(Figure 2b).
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FIGURE 1 Governmental and societal response function 𝛾(t) (𝜔 = 5, tint = 10, c = 1, tjump = 25, and 𝜎 = 2)

FIGURE 2 Historical performance of the DELPHI predictions in the United States

3.2 Predictive DELPHI–V: Capturing the effects
of vaccination

We now augment the DELPHI model to capture two key

aspects of vaccinations:

1. Disparate impacts of the disease across risk classes.

Age is one of the primary drivers of mortal-

ity (Goyal et al., 2020; Petrilli et al., 2020; Wj

et al., 2020). The U.S. Center for Disease Con-

trol (2020b) reports that the mortality rate among

Americans aged 70 and over is two orders of mag-

nitude greater than for those aged 30 and under. We

partition the population into risk classes, defined as

homogeneous groups with comparable health char-

acteristics. We consider age-based risk classes in

our experiments, but other categorizations could be

used (e.g., based on comorbidities). Accordingly,

we replicate the 11 model states for each risk class.

2. Impact of vaccinations on the dynamics of the
pandemic. A fraction of vaccinated people will

be immune to the disease (based on the vac-

cine’s effectiveness). Clinical trials suggest that

early-approved vaccines prevent mortality but not

necessarily infections. Therefore, we assume con-

servatively that all vaccinated people can still trans-

mit the disease. We relax this assumption later on, to

show the robustness of our results when a fraction of

vaccinated people become fully immune to the dis-

ease. We create four new model states: susceptible

and vaccinated (S′), exposed and vaccinated (E′),

infected and vaccinated (I′), and immune (M).

Figure 3 shows a simplified flow diagram of the

DELPHI–V model, with two risk classes (indexed by k = 1, 2

and indicated via subscripts). For expositional purposes, we

omit dependencies on the region, since the DELPHI–V model

is fitted in each region independently. In the remainder of this

paper, we also ignore the recovery states, since they do not

impact the death-minimization optimization model. Accord-

ingly, we denote the states of undetected, hospitalized and

quarantined people who will die from the disease by U, H and

Q (as opposed to UD, HD and QD).

For simplicity, we make three assumptions. First, the effects

of vaccines are instantaneous (relaxing this assumption,

although straightforward, would merely induce a time lag
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FIGURE 3 Simplified flow diagram of the DELPHI–V model

into the system, without significantly impacting the vaccine

distribution strategy). Second, the vaccine has no effect when

it fails to immunize the patient (i.e., no partial benefit and

no side effect). Third, we consider single-dose vaccines. In

reality, vaccines can require a single dose or two doses.

Double-dose vaccines could be modeled by adding another

state of one-dosed patients between Sk and S′ (similar to

the construction in Mak et al. (2021)). This modeling exten-

sion would raise new questions surrounding the likelihood

of one-dosed patients to contract, transmit and die from the

disease—all of which involve significant uncertainties in the

absence of relevant data. In addition, given the heterogeneity

of vaccines currently available, this extended model exten-

sion would end up determining which states get which type
of vaccines. These decisions, however, are mainly driven by

supply chain considerations rather than epidemiological con-

siderations. Therefore, we focus on single-dose vaccines in

this paper, and lead the integration of double-dose vaccines

for future research.

Given these assumptions, the model captures the effects of

vaccinations as follows. Let Vk(t) denote the population mass

from risk class k ∈  that gets vaccinated at time t ∈  ,

and let 𝛽 ∈ (0, 1] denote the vaccine’s effectiveness. A mass

𝛽Vk(t) of people transitions from the susceptible state Sk to

the state S′, and the remaining mass (1 − 𝛽)Vk(t) remains

in the susceptible state. People in the S′ state can become

exposed and infected, but then become immune to the disease

(as opposed to having a positive probability of dying from it).

Note that infections are driven by the total mass of infected

people, across all risk classes and vaccinated people. All other

transitions shown in Figure 3 are consistent with the DELPHI

model.

The DELPHI–V model is governed by the following ODE

system:

dSk

dt
=−𝛽Vk(t) − 𝛼𝛾(t)(Sk(t)−𝛽Vk(t))

( K∑
l=1

Il(t)+ I′(t)

)
(3)

dS′

dt
= +𝛽

K∑
𝜅=1

V𝜅(t) − 𝛼𝛾(t)

(
S′(t) + 𝛽

K∑
𝜅=1

V𝜅(t)

)

×

( K∑
l=1

Il(t) + I′(t)

)
(4)

dEk

dt
= 𝛼𝛾(t)(Sk(t) − 𝛽Vk(t))

( K∑
l=1

Il(t) + IV (t)

)
− rIEk(t) (5)

dE′

dt
= 𝛼𝛾(t)

(
S′(t) + 𝛽

K∑
𝜅=1

V𝜅(t)

)( K∑
l=1

Il(t) + I′(t)

)
− rIE′(t)

(6)

dIk

dt
= rIEk(t) − rdIk(t) (7)

dI′
dt

= rIE′(t) − rdI′(t) (8)

dUk

dt
= rU

k (t)Ik(t) − rDUk(t) (9)

dHk

dt
= rH

k (t)Ik(t) − rDHk(t) (10)

dQk

dt
= rQ

k (t)Ik(t) − rDQk(t) (11)

dDk

dt
= rD(Uk(t) + Hk(t) + Qk(t)) (12)

dM
dt

= rdI′(t), (13)

where 𝛼 is the nominal infection rate; 𝛾(t) ∶ R+ → R+ is the

governmental and societal response function (Figure 1); rI , rd,

rD, are the progression rate, the detection rate, and the death

rate; rU
k (t), rH

k (t), and rQ
k (t) capture the detection, hospitaliza-

tion and death rates, accounting for the probabilities of detec-

tion and hospitalization and the mortality rate (Equation (2)).

Their dependency on t and k reflect disparities over time and

across risk classes.As noted earlier, the dynamics of exposure

and infection depend on the total number of infected people

(across risk classes and vaccinated/nonvaccinated people), as

opposed to the number of infected people in a given risk class.

DELPHI–V captures these interdependencies—indicated by

the red rectangle in Figure 3 and the terms
∑K

l=1Il(t) + I′(t) in

Equations (3)–(5).

Given initial conditions, the ODE equations uniquely deter-

mine the evolution of this system over time—for a given

vaccine allocation reflected in the variable V. Next, we opti-

mize the vaccine distribution strategy to minimize the overall

impact of the pandemic—estimated by DELPHI–V.

3.3 Prescriptive DELPHI–V–OPT: Optimizing
the vaccine distribution strategy

The DELPHI–V–OPT model takes as inputs epidemiological

information (estimated from the DELPHI–V model), infor-

mation on the vaccine (including vaccine effectiveness and

vaccine budget), and demographic information in the United

States (e.g., major cities, distance across counties, popula-

tion per county). It optimizes the vaccine distribution strategy,

including the location of mass vaccination sites and the subse-

quent allocation of vaccines. It is formulated as a tri-objective
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BERTSIMAS ET AL. 185

model, to minimize (i) the death toll of the pandemic, (ii) the

number of exposed people in the termination period, and (iii)

the distance between vaccination sites and population centers.

The main public health objective is obviously death mini-

mization, so the first objective component is heavily priori-

tized. However, just considering the number of deaths could

result in a waste of vaccines near the end of the planning hori-

zon, as individuals infected in the final periods would not have

time to flow to the death state in the epidemiological model.

Therefore, the second component of the objective minimizes

the number of infections. The last component minimizes geo-

graphic disparities. In addition, the model incorporates other

equity consideration by means of fairness constraints.

We proceed by time discretization to formulate the opti-

mization model and retain tractability. This reduces to solving

the system of ODE equations given in Equations (3)–(13) by a

forward difference scheme. We denote byΔt the discretization

unit (e.g., 1 day).

Formally, we define the following sets, input parameters,

and decision variables.

Sets

 = set of population centers in the United States

(e.g., counties), {1, … ,L}
 = set of regions in the United States

(e.g., 50 states plus the District of Columbia),
{1, … ,m}

 = set of candidate vaccination sites, {1, … , n}
j = subset of candidate vaccination sites located in state

j ∈ 

l = subset of candidate vaccination sites located

in the same state as county l ∈ 

 = set of risk classes in the population (e.g., age groups),
{1, … ,K}

 = set of discretized time periods (e.g., days), {1, … ,T}

Parameters

Popl = total population in center l ∈ 

Δli = distance from population center l ∈ 

to candidate vaccination site i ∈ 

N = number of vaccination sites to be

deployed across the country

Bt = number of vaccines available at time t ∈ 

𝛽 = effectiveness of vaccines

rI = progression rate of the disease (DELPHI parameter)
rd = detection rate of the disease (DELPHI parameter)
rD = death rate of the disease (DELPHI parameter)
rU

jkt = transition rate from I to U, capturing mortality rate

in region j ∈  at time t ∈  for risk class

k ∈  (DELPHI parameter)

rH
jkt = transition rate from I to H, capturing mortality

rate in region j ∈  at time t ∈  for risk class

k ∈  (DELPHI parameter)
rQ

jkt = transition rate from I to Q, capturing mortality

rate in region j ∈  at time t ∈  for risk class

k ∈  (DELPHI parameter)
rH

jkt = transition rate from I to H, capturing mortality rate

𝛼j = nominal infection rate in region j ∈ 

(DELPHI parameter)
𝛾jt = governmental and societal response in region j

∈  at time t ∈  (DELPHI parameter)

Note that the parameters rU , rH , and rQ are defined for each

region, risk class and time period, reflecting underlying vari-

ations in mortality rates. In contrast, the parameters rI , rd,

and rD are treated as uniform characteristics of the disease.

In reality, these parameters may vary across risk classes; for

instance, the serological estimates from the U.S. Center for

Disease Control (2020a) suggest different prevalence of the

disease across age groups. We test this hypothesis in our

experiments, to verify the robustness of our results to the

uniform infection rate assumption.

We also assume a single vaccine effectiveness value 𝛽.

In theory, vaccine effectiveness might also vary across risk

classes. More importantly, there are now several vaccines

available, each with different clinical characteristics. Ide-

ally, we could introduce an additional set to capture vaccine

heterogeneity, and let the vaccine effectiveness vary across

vaccine types. This approach however, may be somewhat

impractical in practice, as it may be difficult to strategically

allocate different vaccines to different populations based on

vaccine effectiveness. For equity, we therefore assume con-

servatively that the mix of vaccines remains identical across

vaccination sites. Under this restriction, the mix of vac-

cines can be reduced to a representative vaccine with average

effectiveness.

Primary decision variables

xi =

{
1 if vaccination site i ∈  is selected

0 otherwise

Cit ∶ number of vaccines distributed to site

i ∈  at time t ∈ 

Wli =
⎧⎪⎨⎪⎩

1 if population center l ∈  is assigned

to vaccination site i ∈ 

0 otherwise

Sjkt ∶ number of eligible people to region j ∈ 

in risk class k ∈  at time t ∈ 

Vjkt ∶ number of vaccines allocated to region j ∈ 

in risk class k ∈  at time t ∈ 

To track the impact of vaccine allocation on the result-

ing dynamics of the pandemic, we create indirect variables,
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186 BERTSIMAS ET AL.

corresponding to all the states in the DELPHI–V model

shown in Figure 3.

The vaccine distribution problem, referred to as (), is then

formulated in Equations (14)–(39).

min

M∑
j=1

K∑
k=1

(DjkT + HjkT + QjkT) + 𝜆E

M∑
j=1

K∑
k=1

EjkT

+ 𝜆D

L∑
l=1

n∑
i=1

PoplΔliWli (14)

s.t.

n∑
i=1

xi = N (15)

∑
i∈j

xi ≥ 1, ∀j ∈  (16)

Wli ≤ xi,∀l ∈ , i ∈  (17)

∑
i∈l

Wli = 1,∀l ∈  (18)

n∑
i=1

Cit ≤ Bt,∀t ∈  (19)

Cit ≤ Btxi,∀i ∈  , t ∈  (20)

K∑
k=1

Vjkt ≤
∑
i∈j

Cit,∀j ∈ , t ∈  (21)

Sj,k,t+1 ≤ Sjkt − (1 − 𝛽)Vjkt − (Sjkt − Sj,k,t+1),
∀j ∈ , k ∈ , t ∈  (22)

Vjkt ≤ Sjkt,∀j ∈ , k ∈ , t ∈  (23)

|Ci,t+1 − Cit| ≤ 𝜃SCit,∀i ∈  , t ∈  (24)

∑
l∈j

Popl∑m
j′=1

∑
l∈j′

Popl
N − ΘL

≤
∑
i∈j

xi ≤

∑
l∈j

Popl∑m
j′=1

∑
l∈j′

Popl
N + ΘL,∀j ∈  (25)

Bt

N(1 + 𝜃V )
xi ≤ Cit ≤

Bt

N
(1 + 𝜃V )xi,∀i ∈  , t ∈  (26)

∑
i∈j

Cit ≤

( ∑
l∈j

Popl∑m
j′=1

∑
l∈j′

Popl
+ 𝜃P

)
Bt,∀j ∈ , t ∈ 

(27)

Sj,k,t+1 ≥ Sjkt − 𝛽Vjkt − 𝛼j𝛾jt(Sjkt − 𝛽Vjkt)

( K∑
𝜅=1

Ij𝜅t + I′jt

)
Δt,

∀j ∈ , k ∈ , t ∈  (28)

S′
j,t+1

≥ S′
jt + 𝛽

K∑
𝜅=1

Vj𝜅t − 𝛼j𝛾jt

(
S′

jt + 𝛽

K∑
𝜅=1

Vj𝜅t

)
( K∑

𝜅=1

Ij𝜅t + I′jt

)
Δt,∀j ∈ , t ∈  (29)

Ej,k,t+1 ≥ Ejkt +

(
𝛼j𝛾jt(Sjkt − 𝛽Vjkt)

( K∑
𝜅=1

Ij𝜅t + I′jt

)
− rIEjkt

)
Δt,

∀j ∈ , k ∈ , t ∈  (30)

E′
j,t+1

≥ E′
jt +

(
𝛼j𝛾jt

(
S′

jt + 𝛽

K∑
𝜅=1

Vj𝜅t

)( K∑
𝜅=1

Ij𝜅t + I′jt

)
− rIE′

jt

)
Δt,

∀j ∈ , t ∈  (31)

Ij,k,t+1 ≥ Ijkt + (rIEjkt − rdIjkt)Δt,∀j ∈ , k ∈ , t ∈ 

(32)

I′j,t+1
≥ I′jt + (rIE′

jt − rdI′jt)Δt,∀j ∈ , t ∈  (33)

Uj,k,t+1 ≥ Ujkt + (rU
jktIjkt − rDUjkt)Δt,

∀j ∈ , k ∈ , t ∈  (34)

Hj,k,t+1 ≥ Hjkt + (rH
jktIjkt − rDHjkt)Δt,

∀j ∈ , k ∈ , t ∈  (35)

Qj,k,t+1 ≥ Qjkt + (rQ
jktIjkt − rDQjkt)Δt,

∀j ∈ , k ∈ , t ∈  (36)

Dj,k,t+1 = Djkt + rD(Ujkt + Hjkt + Qjkt)Δt,
∀j ∈ , k ∈ , t ∈  (37)

Mj,t+1 = Mjkt + rdI′jt,∀j ∈ , t ∈  (38)

x,W binary, C,V,S,S′,S,E,E′, I, I′,U,H,Q,D,M ≥ 0.
(39)

Equation (14) formalizes the three objectives of the model.

The first term corresponds to our primary objective of mini-

mizing the number of deaths over the planning horizon, across

all regions and risk classes. This number includes people in

the absorbing state D, as well as the transient states H and

Q (we ignore undetected deaths). The next terms minimize,

as lower-priority objectives, the number of exposed people

at the end of the horizon and the distance to the vaccination

sites. The hyperparameters 𝜆E and 𝜆D are set to small values

to prioritize the death-minimization objective.

Next, the constraints capture practical considerations sur-

rounding vaccine distribution:
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BERTSIMAS ET AL. 187

• Number of vaccination sites: We impose a total budget

of N vaccination sites (Equation (15)). For obvious rea-

sons, there needs to be at least one site in every state

(Equation (16)). We consider N = 100 in our experiments,

which leaves flexibility to strategically deploy 49 sites.

• Assignment: Equation (17) ensures that people get assigned

to vaccination sites that have been selected. Equation (18)

assigns each population center to exactly one site, in the

same state. These assignment constraints are used to com-

pute the distance term in the objective function.

• Inter-regional vaccine capacity: Due to restrictions in vac-

cine manufacturing and distribution networks, a limited

number of vaccines can be allocated in each time period.

Equation (19) ensures that the total number of vaccines

allocated lies within the available budget in each period.

• Consistency: Equation (20) ensures that vaccines only

get distributed to selected sites. Similarly, Equation (21)

ensures that the number of people vaccinated in each state

(across risk classes) does not exceed the number of vac-

cines allocated that state. This constraint involves two

assumptions. A first, conservative assumption is that peo-

ple can only get vaccinated in the state that they live in,

which is required in practice for traceability purposes.

Another, optimistic assumption is that the vaccine alloca-

tion constraint applies to each state, as opposed to each

vaccination site. In other words, the model assumes vac-

cines can be reallocated between vaccination sites within

a state, thus maintaining a degree of freedom in intra-state

vaccine distribution.

• Eligibility: We prevent people from being vaccinated

twice: a patient who has been vaccinated but remains sus-

ceptible cannot be vaccinated again. Equation (22) defines

the number eligible people as the previous number of eli-

gible people minus the number of people for whom the

vaccine was effective and the number of people who got

exposed to the disease. Equation (22) then ensures that

the number of vaccinated people lies below the number of

eligible people.

• Smoothness: Large fluctuations in the number of vac-

cines allocated to each region from day to day would

likely cause problems from a supply chain management

perspective—both to deliver and to administer the vac-

cines. Equation (24) ensures that such fluctuations remain

minimal. The hyperparameter 𝜃S controls the trade-off

between efficiency and smoothness.

• Fairness: To be politically and socially viable, vaccine dis-

tribution must not neglect any region, even if it is not a

virus “hot spot.” This also enhances the robustness of the

solution, given that inter-regional transmission can occur

in practice. Equation (25) promotes inter-state fairness at

the strategic level, by ensuring that the fraction of vacci-

nation sites in each state does not deviate too much from

its population share. Equation (26) promotes inter-site fair-

ness, by ensuring that vaccine distribution across sites does

not deviate too much from uniform distribution. Finally,

Equation (27) promotes inter-state fairness at the tacti-

cal level, by ensuring that no state receives a fraction

of vaccines that exceeds its population share by a wide

margin. The hyperparameters ΘL, 𝜃V , and 𝜃P control the

trade-off between efficiency and fairness. As the results

will show, even tight fairness constraints leave critical

flexibility when locating vaccination sites and allocating

vaccines.

• DELPHI–V dynamics: Equations (28)–(38) capture the

dynamics of the DELPHI–V model in a discretized time

space (Equations (3)–(13)).

• Domain of definition: Equation (39) defines the domain of

each variable.

3.4 Model structure

Problem () is a nonlinear program, due to the bilinear terms

in Equations (28)–(31), which reflect the fact that the num-

ber of new infections result from the interactions between

susceptible and infected populations—a key characteristic of

all SEIR-based compartmental models. These bilinear terms

result in nonconvex constraints, thus in a highly challenging

optimization model.

The latest Gurobi 9.0 release includes a solver for non-

convex quadratic problems (Gurobi Optimization, 2020).

Yet, general-purpose technologies are limited to small-scale

instances. In our setting, Problem () includes 2m(K + 1)T
nonconvex constraints each involving 2(K+1) bilinear terms,

for a total of 4mT(K + 1)2 bilinear terms. A realistically-sized

problem with M = 51 (50 U.S. states plus Washington, DC),

K = 6 (6 age groups) and T = 90 (a 3 month planning hori-

zon with daily discretization) would result in nearly 900 000

bilinear terms. Problem () remains intractable with existing

commercial solvers, motivating the development of a tailored

algorithm.

4 SOLUTION ALGORITHM

We propose an iterative coordinate descent algorithm to solve

Problem () in short computational times—consistent with

practical requirements. We describe the algorithm in this

section. We also present three baselines replicating reason-

able strategies that could be implemented in the absence of

our data-driven optimization model. These baselines are used

for two purposes: (i) to provide an initial feasible solution in

the coordinate descent algorithm, and (ii) as benchmarks to

evaluate the benefits of the data-driven optimization approach

proposed in this paper.

4.1 Algorithm design

Our algorithm relies on two key observations: (i) aside from

Equations (28)–(31), the objective function and all other

constraints in () are linear, and (ii) given a fixed vaccine
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188 BERTSIMAS ET AL.

Algorithm 1. Coordinate descent algorithm for DELPHI–V–OPT (Problem ())

input : Prescriptive DELPHI–V–OPT data; termination tolerance 𝜀

Initialization: i ← 0, x(i) ← 0, ,C(i) ← 0, ,W(i) ← 0, ,Vi ← 0, Ii ← 0, Zi ← ∞
i ← i + 1(
x(i),C(i),W(i),V(i), I(i),Z(i)) ← GenerateFeasibleSolution

while ||Z(i) − Z(i−1)|| ∕Z(i−1) > 𝜀′ do
i ← i + 1

Run Simulate
(
x(i−1),C(i−1),W(i−1),V(i−1)). Update Î(i) ← Î, where Î is the output of

Simulate
(
x(i−1),C(i−1),W(i−1),V(i−1)).

Run Optimize
(

Î(i)
)

. Update
(
x(i),C(i),W(i),V(i)) ← (x,C,W,V), where (x,C,W,V) is the output of

Optimize
(

Î(i)
)

. Update the objective function:

Z(i) ←
M∑

j=1

K∑
k=1

(
DjkT + HjkT + QjkT

)
+ 𝜆E

M∑
j=1

K∑
k=1

EjkT + 𝜆D

L∑
l=1

n∑
i=1

PoplΔliWli

end
output: Vaccine distribution strategy

(
x(i),C(i),W(i),V(i))

distribution strategy, the discretized DELPHI–V model can

be solved efficiently. Therefore, we proceed by coordinate

descent, alternating between two modules: one that opti-

mizes the vaccination distribution strategy given the infection

dynamics, and one that simulates the bilinear dynamics of

the pandemic for a given vaccination distribution strategy.

The optimization part reduces to a linear program, which

can be solved very efficiently. Using the resultant vaccine

distribution, the simulation part re-estimates the infected pop-

ulation under bilinear dynamics, using a forward discretiza-

tion scheme. Specifically, the two modules are defined as

follows:

1. Simulate: Based on a vaccine allocation solution V,

we compute the DELPHI–V dynamics from t =
0 to t = T (Section 3.2) by solving the ODE

system (Equations (3)–(13)) using a forward dif-

ference scheme in a discretized time space. This

terminates in (MKT) operations. We denote the

total infected population (across all risk classes and

vaccinated people) in region j at time t ∈  by

Îjt =
∑K

k=1Ijkt + I′jt. We refer to this procedure as

Simulate(x,C,W,V).
2. Optimize: Given the infectious population esti-

mates Î, we can approximate Equation (28)–(31) by

the following linear constraints. The problem can

then be efficiently solved as a linear programming

model. We refer to this module as Optimize(̂I).

Sj,k,t+1 ≥ Sjkt − 𝛽Vjkt − 𝛼j𝛾jt(Sjkt − 𝛽Vjkt )̂IjtΔt,
∀j ∈ , k ∈ , t ∈ 

S′
j,t+1

≥ S′
jt + 𝛽

K∑
𝜅=1

Vj𝜅t − 𝛼j𝛾jt

(
S′

jt + 𝛽

K∑
𝜅=1

Vj𝜅t

)
ÎjtΔt,

∀j ∈ , t ∈ 

Ej,k,t+1 ≥ Ejkt + (𝛼j𝛾jt(Sjkt − 𝛽Vjkt )̂Ijt − rIEjkt)Δt,
∀j ∈ , k ∈ , t ∈ 

E′
j,t+1

≥ E′
jt +

(
𝛼j𝛾jt

(
S′

jt + 𝛽

K∑
𝜅=1

Vj𝜅t

)
Îjt − rIE′

jt

)
Δt,

∀j ∈ , t ∈ 

We iterate between the Simulate and Optimize mod-

ules, until convergence. Specifically, the algorithm terminates

when the variation in the objective function value remains

minimal from one iteration to the next. The pseudocode sum-

marizing this approach is presented in Algorithm 1. We turn

next to the generation of an initial feasible solution.

4.2 Baselines

We propose three simple and interpretable baselines for gen-

erating a feasible solution to (). By design, these baselines

are heuristics that solely rely on the inputs of the optimization

models, as opposed to requiring the full model and algorithm

developed in this paper.

4.2.1 Top-cities baseline

This approach prioritizes cities based on population. Specifi-

cally, it deploys vaccination sites in the most populous cities,

while accounting for the constraint that each state must have

at least one center (Equation (16)). Subsequently, it allocates

an equal fraction of the daily vaccine budget to each vacci-

nation site: we fix the variables x and C, run the model to

optimize vaccine allocation within each state, and estimate

the resulting number of deaths. This baseline corresponds

to a city-level approach based on demographic information

alone.
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BERTSIMAS ET AL. 189

4.2.2 Population-based baseline

Under this approach, the number of vaccination sites deployed

in each state is based on the state’s population share. This is

formulated as follows, where yj is a decision variable denoting

the number of vaccination sites in state j.

min

m∑
j=1

||||||
∑

l∈j
Popl∑m

j′=1

∑
l∈j′

Popl
N − yj

|||||| ,
s.t.

m∑
j=1

yj = 100, yj ≥ 1,∀j ∈ , y integer.

We then solve DELPHI–V–OPT, while fixing the aggregate

number of vaccination sites per state, i.e.,
∑

i∈j
xi = yj,

and assuming equal allocation of vaccines across vaccination

sites, i.e., Cit = 1

N
Bt, ∀t ∈  . The model allocates vac-

cines within each state and estimates the number of deaths.

This baseline corresponds to a state-level approach based on

demographic information alone.

4.2.3 Case-based baseline

Under this approach, the number of vaccination sites deployed

in each state is based on the number of COVID-19 cases at

the beginning of the planning horizon. This is formulated as

follows, where yj is a decision variable denoting the number

of vaccination sites in state j and Casesj denotes the case count

in state j.

min

m∑
j=1

||||| Casesj∑m
j′=1Casesj′

N − yj

||||| ,
s.t.

m∑
j=1

yj = 100, yj ≥ 1,∀j ∈ , y integer.

We then proceed as with the population-based baseline, by

fixing the number of vaccination sites per state, assum-

ing equal vaccine allocation across sites, and re-solving the

model. This baseline corresponds to a state-level approach

based on epidemiological information alone.

By design, these baselines satisfy all constraints of Problem

(), and thus provide valid initializations into our coordinate

descent algorithm. They also provide sensible and equitable

benchmarks based on readily-available demographic infor-

mation (e.g., census data) and epidemiological information

(e.g., case counts), hence easily implementable. Comparisons

between our optimized solution and these benchmarks thus

estimate the benefits of vaccine distribution optimization.

5 EXPERIMENTAL SETUP

We implement the proposed model and algorithm in the

United States. We select N = 100 vaccination sites out of

the 500 most populous cities in the United States as candi-

date locations (set  ) We define the set  as 51 “states”

(the 50 states plus the District of Columbia) and the set

 as the 3006 counties. We define six risk classes based

on six relatively coarse age groups: 0–9 years, 10–49 years,

50–59 years, 60–69 years, 70–79 years, and 80 years and

above. These simplified risk classes facilitate the practical

implementation of the solution while capturing broad trends

in mortality rates. We define the time horizon  as the

three-month period from February to April 2021, consis-

tently with the ongoing planning horizon of the U.S. federal

government.

5.1 Data sources

We calibrate the model using multiple data sources (Figure 4).

First, we estimate the parameters of the DELPHI model (with-

out vaccinations) independently for each state, using histori-

cal data on cases and deaths from the New York Times (2020).

We obtain a granular population breakdown by age for each

state from the U.S. Census Bureau (2020). We then run DEL-

PHI (still, without vaccinations) to derive the initial suscepti-

ble, exposed and infected populations (on January 30, 2021),

which we distribute among the risk classes proportionally to

their size.

The next input is an estimate of the mortality rate per

region, risk class and time period. We make use of the data

from the U.S. Center for Disease Control (2021), which report

the total number of confirmed COVID-19 cases, hospital-

izations and deaths by age group in the United States until

the end of January 2021. In contrast, the DELPHI model fits

a time-dependent mortality rate within each region. To the

best of our knowledge, there exists no other data source for

nationwide cases and deaths by age group. This leaves a dis-

crepancy between the time-independent estimates at the risk

class level from the CDC, and the time-varying estimates at

the region-level from DELPHI. To reconcile these data, we

employ an optimization procedure that interpolates the mor-

tality rate per region, risk class and time period. We present

this approach in the next section.

5.2 Mortality rate estimation

Our procedure to estimate mortality rates starts from two sets

of inputs:

• DELPHI predictions: Let X̂jt denote the estimated number

of new detected cases in region j ∈  and time period

t ∈  . Let D̂d
j,t+𝜏j

denote the number of deaths, where 𝜏j

is the median death time after detection in region j. These

quantities are aggregated across risk classes.

• CDC data: Let XCDC
k and DCDC

k denote the number of cases

and deaths for risk class k ∈ . These quantities are

aggregated across regions and time periods.

We define the reference mortality rate mjk of risk class k ∈
 based in region j as follows:

mjk =
DCDC

k

XCDC
k

⎛⎜⎜⎝
∑T

t=1D̂d
j,t+𝜏j∑T

t=1X̂t

⎞⎟⎟⎠
(∑K

l=1XCDC
l∑K

l=1DCDC
l

)
(40)
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190 BERTSIMAS ET AL.

FIGURE 4 Simulation environment: Raw data (blue), processed data (red), models (black) and outputs (green)

By design, this expression preserves the ratio of mortality

rates between different risk classes from the CDC data, while

correcting the mean reference mortality rate in each region

across the planning horizon to be in line with the DELPHI

projections.

We then estimate the mortality rate for each region j ∈ ,

risk class k ∈ , and time period t ∈  , denoted by mjkt. We

also introduce additional decision variables Xjkt and Dj,k,t+𝜏j ,

reflecting the number of detected cases and the number of

future deaths in region j assigned to risk class k ∈  and time

period t ∈  . Given that the fitting procedure is done sepa-

rately in each region j ∈ , we decouple the problem at the

region level—thereby considerably reducing the size of each

problem instance. Specifically, we formulate the optimization

problem given in Equations (41)–(48).

for all j ∈  ∶

min

T∑
t=1

K∑
k=1

[(mjkt − mjk

mjk

)2

+ 𝜆M

|||||Xjkt − pjkX̂jt

pjkX̂jt

|||||
]

(41)

s.t.

K∑
k=1

Dj,k,t+𝜏j = D̂j,t+𝜏j ,∀t ∈  (42)

K∑
k=1

Xjkt = X̂jt,∀t ∈  (43)

mjkt ⋅ Xjkt = Dj,k,t+𝜏j ,∀k ∈ ,∀t ∈  , (44)

mjkt ≥ mj,k,t+1,∀k ∈ ,∀t ∈  (45)

mjkt ≥ mjlt,∀k, l ∈  ∶ mk ≥ ml, (46)

mjkt ≤ 1,∀k ∈ ,∀t ∈  (47)

m,C,D ≥ 0. (48)

The first term in Equation (41) minimizes the squared relative

error between the mortality rate estimates and their reference

values (Equation (40)). The second term is a regularization

penalty that minimizes deviations between the proportion of

detected cases and the proportion pjk of the population, in

each risk class. The parameter 𝜆M trades off these two objec-

tives (we use 𝜆M = 0.1 in our experiments). Equations (42)

and (43) ensure consistency with the DELPHI predictions.

Equation (44) defines the mortality rate as the ratio between

the number of deaths and cases. Equations (45) and (46)

ensure that mortality rates are decreasing over time and mono-

tonic with risk classes. Finally, Equations (47) and (48) define

the domain of the variables.

Note that the problem is nonlinear due to the bilinear

term in Equation (44). Yet, thanks to the decoupling at the

region level, we can solve the problem using the quadratic

solver in Gurobi 9.0 (Gurobi Optimization, 2020), which

addresses nonconvexities using branching and cutting planes

algorithms. In practice, a solution within a 1% optimality gap

is generally obtained within minutes.
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BERTSIMAS ET AL. 191

Table 1 Calibrated monthly mortality rates, averaged by risk class and over all states

Month 0–9 10–49 50–59 60–69 70–79 80+

February 0.008% 0.119% 0.882% 2.271% 6.101% 15.027%

March 0.007% 0.116% 0.859% 2.212% 5.942% 14.636%

April 0.007% 0.114% 0.844% 2.171% 5.832% 14.365%

The output of this algorithm is an estimate of the mortality

rate at the level of each state and each risk class, in each time

period. We report aggregated statistics in Table 1.

5.3 Implementation details

Our DELPHI–V–OPT model relies on a forward difference

scheme to simulate the dynamics of the pandemic, for any

vaccine allocation. If the discretization is too coarse, the

algorithm will introduce truncation errors. If, however, the

discretization is too granular, computational times will be pro-

hibitively long. After extensive experimentations, we found

Δt = 1 day to yield the best compromise. It is also practical

choice as it yields a day-by-day plan.

The coordinate descent scheme terminates when the change

in the objective function value lies below a pre-determined

threshold. We set the termination tolerance to 𝜀 = 0.1%.

Regarding DELPHI–V–OPT, we vary the hyperparameters

𝜆E, 𝜆V , 𝜃S, ΘL, 𝜃V , and 𝜃P to balance efficiency with practical

and fairness considerations, and perform sensitivity analyses

on these parameters. We consider a baseline vaccine effec-

tiveness of 90% (in line with the values from the first vaccine

approvals) and a baseline budget of 1 million vaccines per

day (which can be viewed as 1 million single-dose vaccines,

2 million double-dose vaccines or a combination thereof).

Given the strong underlying uncertainty, we perform sensitiv-

ity analyses to demonstrate the robustness of the benefits of

our optimization outputs to vaccine effectiveness and vaccine

budget.

All optimization models are implemented in Gurobi 9.0,

with 2.3 GHz processor and four cores. We use a barrier

method to solve each linear program, with a barrier conver-

gence tolerance of 10−6.

6 EXPERIMENTAL RESULTS

We now present results obtained with the modeling and algo-

rithmic framework developed in this paper. Our main focus

is on the location of the 100 vaccination sites—decisions

that have to be made immediately—as opposed to vaccine

allocation—decisions that can be revisited continuously over

time as more information becomes available. We first eval-

uate the benefits of the optimized solution against baseline

approaches, and then establish the robustness of these bene-

fits.

6.1 Benefits of optimizing the vaccine distribution
strategy

Figure 5 shows the heatmap of vaccination sites across all

51 states (the exact list of proposed locations is reported in

the Appendix). Recall that, by design, the optimized solution

deploys at least one vaccination site per state (Equation (16)).

In addition, one of the fairness constraints (Equation (25)

anchors the number of vaccination sites per state to its popula-

tion share. Other than that, the vaccination sites are deployed

strategically to curb the spread of the pandemic. As a result,

the optimized number of vaccination sites varies significantly

per state, as a function of underlying demographic and epi-

demiological factors. For instance, the four largest states

by population (California, Texas, Florida and New York)

receive the most vaccination sites (6–10 each). In contrast, the

smaller states receive only one vaccination site. Ultimately,

the heatmap suggests that the optimized solution targets large

population centers and some of the hot spots of the pandemic,

while ensuring equity nationwide.

Then, could we have achieved a similar solution with some

of our benchmarks (Section 4.2), which determine the loca-

tions of the vaccination sites based on demographic and

epidemiological data but do not make use of our epidemio-

logical and optimization models? To investigate this question,

we evaluate the dynamics of the pandemic under each of the

three baselines. When it comes to the optimization, we derive

three solutions: (i) an “optimized locations” solution, which

optimizes the site locations decisions freely (without fairness

constraints) but then allocates vaccines uniformly across the

100 selected vaccination sites; (ii) a “fully optimized” solu-

tion, which optimizes the site locations decisions and vaccine

allocation decisions freely (without fairness constraints); and

(iii) a “proposed” solution, which optimizes the site locations

decisions and vaccine allocation decisions with fairness con-

straints. For each solution, Table 2 reports the number of lives

saved by the vaccination campaign, as compared to a solution

without vaccinations.

Let us start with the main observation: the optimized solu-

tions provides significant benefits, as compared to all bench-

marks. Comparing the “optimized locations” solution to the

top-cities benchmark, we find that optimizing locations alone

can save around 4500 lives over the three-month period under

consideration, enhancing the impact of the vaccination cam-

paign by 24%. Moving to the “fully optimized” solution, we

note that jointly optimizing locations and vaccine allocation

achieves further benefits, by saving an extra 2000 lives and

increasing the benefits over the benchmark to 35%. These
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192 BERTSIMAS ET AL.

FIGURE 5 Number of centers per state in the proposed solution

Table 2 Comparison of optimized solutions and benchmarks

Method Solution Site locations Vaccine distribution Saved lives

Benchmarks Top-cities Most populous cities Uniform across centers 19 045 (base)

Population Pro-rata population Uniform across centers 19 709 (+3.5%)

Cases Pro-rata active cases Uniform across centers 21 037 (+10.5%)

Optimization Locations Optimized: minimizes deaths Uniform across centers 23 622 (+24.0%)

Full Optimized: minimizes deaths Optimized: minimizes deaths 25 615 (+34.5%)

Proposed Optimized: minimizes deaths Optimized: minimizes deaths 23 000 (+20.8%)

Fair: interstate equity Fair: intercenter equity

results underscore the potential of the proposed optimization

approach, which leverages available vaccines strategically to

target the regions that need them most. Another observation

is that determining the locations of vaccination sites does not

achieve all potential benefits of the vaccination campaign,

underscoring the role of downstream vaccine allocation as an

extra lever to combat the pandemic.

A downside of these two solutions (“locations optimized”

and “fully optimized”), however, is that they can result

in very inequitable outcomes between states and between

vaccination sites. The last (“proposed”) solution circum-

vents this challenge by imposing all fairness constraints

(Equations (25)–(27)), and choosing tight values for the cor-

responding hyperparameters ΘL, 𝜃V , and 𝜃P. As such, the

proposed solution ensures fairness across various dimensions

(site locations, vaccine allocation across states, and vaccine

allocation across sites). Remarkably, even when constrain-

ing the optimization as such, the resulting proposed solution

still results in 20% benefits, as compared to the top-cities

benchmark—saving 4000 deaths over the three-month

horizon.

In comparison, the benchmarks cannot reach the same

impact of vaccinations. The top-cities and population-based

benchmarks achieve similar outcomes, with 19 000–20 000

lives saved as compared to a no-vaccination baseline. The

case-based baseline performs better, by saving 21 000 lives

(10% more than the top-cities baseline). Yet, these num-

bers remain significantly lower than those achieved with our

solution. The top-cities and population-based baselines, by

relying on demographic information exclusively, fail account

for disparities in the severity of the across the country. The

case-based baseline captures the status of the pandemic, but

not its dynamics, thus treating similarly a state where the

pandemic is already waning and a state where it is rising

fast—although vaccinations have a stronger impact in the

latter state than the former.

These results underscore the main takeaways from this

paper: optimization provides significant benefits, as com-

pared to simple benchmarks based on readily-available infor-

mation at the outset of the vaccination campaign. Instead, the

optimized approaches design vaccine distribution strategies

based on both demographics and epidemiological dynamics.

The edge of optimization can be significant, by saving an

extra 20% of lives with the same vaccine capacity. Stated

differently, under the proposed optimization approach, each

vaccine is effectively “worth” 1.2 vaccines.

A natural question to ask is whether optimization induces

strong geographic disparities, by merely shifting the benefits
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BERTSIMAS ET AL. 193

(A) (B)

Vaccines allocation Lives saved

FIGURE 6 Vaccine allocation (vs. population share) and lives saved (vs. population-based baseline) per state

of the vaccines from one state to another. To explore this

question, Figure 6 plots the number of vaccines distributed

to each state, as compared to its population share (Figure 6a)

and the number of lives saved, as compared to the top-cities

benchmark (Figure 6b).

Recall that the optimization imposes fairness constraints in

vaccine allocation (Equations (25)–(27)); yet, the remaining

flexibility can be used strategically to target the populations

where vaccines can have the strongest impact. In fact, as

Figure 6a shows, vaccines do not get distributed propor-

tionally to each state’s population. For instance, states like

Texas, Florida and New York receive a higher share of vac-

cines, whereas states like California, Pennsylvania and Illinois

receive a lower share. This is expected, given the signif-

icantly higher number of lives saved under the optimized

(“proposed”) solution as compared to the population-based

benchmark (Table 2).

However, Figure 6b shows that these disparities in vac-

cine allocation do not result in sharp disparities in public

health outcomes. Specifically, the optimized solution saves

hundreds of extra lives (as compared to the population-based

benchmark) in seven states with very different epidemiologi-

cal profiles. Texas benefits the most from optimization (with

an additional 1450 lives saved), followed by New York (440),

Florida (380) and Iowa (290). At the same time, the optimized

solution does not increase the death toll in any state by more

than 100. Pennsylvania is the most negatively impacted state,

with an estimated 85 additional deaths—well within the mar-

gin of error of DELPHI–V. Overall, the proposed optimiza-

tion approach can thus distribute vaccine capacities to combat

the pandemic in some critical states without hurting others.

The obvious question then is: how does the proposed

solution compare to the vaccination plan that was applied

in practice? Unfortunately, it is hard to perform a com-

plete apples-to-apples comparison. Indeed, the deployment

of vaccination site was conducted in a more ad hoc fash-

ion in practice than modeled in this paper, based on local

capacity, heterogeneity across “big” and “small” sites, and

so on. Moreover, since this paper was written, the Federal

government has updated its plan, so that the Federal facili-

ties take a supporting role while delegating most authority to

state-driven vaccination efforts. Therefore, the full plan was

not implemented and instead FEMA has opened just 24 facili-

ties in 13 states, as compared to the original 100 planned ones.

We provide details in Table A2 in the Appendix.

Nonetheless, we provide two sources of evidence support-

ing the results from our analysis. First, we observe that FEMA

allocated a higher share to states such as Florida than would

be otherwise allocated on a population pro rata basis. Con-

versely, other states like California where underweighted.

This is consistent with the main recommendations outlined in

the paper. Second, even though our recommendations were

not applied directly to the location of vaccination centers, the

subsequent allocation of vaccines to each state was influenced

by the model’s recommendations. This underscores a second

tactical lever in our model-based recommendation—vaccine

allocation—beyond its main strategic lever—location of vac-

cination sites.

6.2 Sensitivity and robustness

A core challenge in vaccine distribution lies in the significant

uncertainty regarding the dynamics of the pandemic and the

effect of vaccinations. To address this challenge, we assess the

sensitivity and the robustness of the optimized solution when

the structure of the DELPHI–V model and some of its key
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(A) (B)

Vaccine effectiveness Vaccine budget

FIGURE 7 Sensitivity and robustness of results with varying vaccine effectiveness and vaccine budget

parameters are perturbed. For each perturbation, we compare

three solutions:

• the top-cities baseline, evaluated with the new perturbed

model

• the re-optimized solution, optimized and evaluated with

the new perturbed model

• the proposed solution, optimized with the original model

and evaluated with the new perturbed model. Specifically,

we first run the optimization with the initial inputs. We

then introduce perturbations, and re-optimize vaccine allo-

cation decisions (variables C and V), while fixing the

vaccination sites (variable x). Indeed, in practice, vaccina-

tion sites are determined once and for all, whereas vaccine

allocation can be re-adjusted as information becomes avail-

able.

We then compare the number of deaths under these three

solutions, estimated with the perturbed DELPHI–V model.

Comparisons between the top-cities benchmark and the

re-optimized solution estimate the sensitivity of the benefits

of optimization to the perturbations. Comparisons between

the top-cities benchmark and the proposed solution estimate

the robustness of the solution.

We first vary the two main drivers of the vaccination

campaign, that are the vaccine effectiveness (parameter 𝛽)

and the vaccine budget (parameters Bt). Figure 7 reports

the percent-wise increase in saved lives, as compared to

the top-cities benchmark, for both the proposed and the

re-optimized solutions. The main takeaways fall under three

categories. First, the benefits of optimization increase with

vaccine effectiveness. This is expected, as a higher vac-

cine effectiveness increases the impact of all strategies (in

the extreme example where 𝛽 = 0, all strategies have the

same null performance). Second, the benefits of optimiza-

tion decrease with vaccine budget. Indeed, in the extreme

scenario with an infinite vaccine budget, any distribution

strategy can immediately end the pandemic, leaving essen-

tially no space for optimization. As the budget becomes more

scarce, the decisions of who receives a vaccine and when

become increasingly complex, so the optimized strategy has

a positive and significant impact on the spread of the disease.

It is interesting to note that this monotonic relationship would

get inverted in the other regime with a small vaccine budget

(again, all solutions perform identically when the budget gets

to zero). Yet, with the current vaccine capacities, the benefits

of optimization are very strong, saving an extra 15–35% of

lives.

The third takeaway from Figure 7 is the high degree of

robustness of the proposed solution. In all but one experiment,

the proposed solution remains optimal under the perturbed

parameters (indicated by exactly the same benefits obtained

with the proposed solution and the re-optimized solution). In

the last case (with a daily budget of 500 000 vaccines), the

proposed solution is dominated by the re-optimized solution,

but remains within 2% of the new optimum. Obviously, the

new values of vaccine effectiveness and vaccine budgets

impact downstream vaccine allocations and the dynamics

of the pandemic. However, the location of vaccination sites

is highly robust to variations in vaccine effectiveness and

vaccine budgets.

Next, we test the robustness of the proposed solution to the

dynamics of the pandemic. One assumption of DELPHI–V

is that the infection rate (captured by the parameters 𝛼j and

𝛾jt) is identical across age groups. However, serological evi-

dence suggests potential disparities in infections across sub-

populations. To test this, we vary the infection rates with

the risk class k, by adjusting the relative variations based

on the serological estimates from the U.S. Center for Dis-

ease Control (2020a). Another assumption is that vaccines

prevent mortality but not infection and transmission. In prac-

tice, vaccines may still reduce the risk of infection and the

propensity to transmit the disease. To test this, we perturb the

DELPHI–V model by assuming that a fraction 𝛽 of vaccinated

people transition directly to the immune state M (as opposed

to the susceptible and vaccinated state S′).

Figure 8 reports the results from these new perturba-

tions, using the same nomenclature as Figure 7. The main

takeaway is identical, in that the proposed solution remains
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(A) (B)

Age-dependent infection rates No transmission

FIGURE 8 Robustness of results with age-dependent infection rates and no transmission from vaccinated people

(A) (B)

Infection rates Mortality rates

FIGURE 9 Robustness of the benefits of optimization with infection and mortality rates

near-optimal under the two perturbations. In both tests, the

proposed solution results in less than 50 extra deaths than the

re-optimized solution—a very small amount in view of the

20 000 lives saved by the optimization. In other words, the

proposed solution is not only robust to vaccination character-

istics (effectiveness and budget) but also to the dynamics of

the COVID-19 pandemic.

Finally, we vary two key parameters in the DELPHI–V

dynamics: the infection and mortality rates. Although these

parameters are fitted from historical data, there remains con-

siderable uncertainty regarding the dynamics of the pandemic

and people’s behaviors through a period of mass vaccination.

Therefore, we introduce a random perturbation in the infec-

tion or mortality rate, in each state. Specifically, we define 50

perturbation scenarios; in each one, we sample each parame-

ter in each state independently, following a uniform distribu-

tion centered around the nominal value and spanning ±20%.

Therefore, the full range of infection and mortality rates spans

40% of the nominal value—thus capturing instances where

the estimated infection and mortality rates in the DELPHI–V

model are subject to very large errors.

Figure 9 reports the distribution of the benefits of optimiza-

tion under these 50 scenarios, with perturbed infection rates

(Figure 9a) and mortality rates (Figure 9b). We compare here

the proposed solution (obtained with the nominal values of the

infection and mortality rates) and the top-cities benchmark,

both evaluated with the perturbed infection and mortal-

ity rates. As the results show, the benefits of optimization

remains highly significant, and robust to the perturbations.

Recall that the benefits of optimization were estimated at 20%

under the nominal infection and mortality rates (Table 2).

After perturbations, they span 12.5–30% with perturbations

in the infection rates and 17.5%–25% with the perturbed

mortality rates. In other words, even if the DELPHI–V model

makes large errors when estimating the key dynamics of

the pandemic, the proposed optimized vaccination sites still

increase the impact of the vaccination campaign by over 10%.

In fact, the variations can go either way: in over half the simu-

lations, the relative benefits of the optimized solution are even

higher under the perturbed parameters than the nominal ones.

Note, finally, that the infection rate has a more signifi-

cant impact on the relative benefits of optimized vaccine

allocation than the mortality rate. This suggests that the

impact of the pandemic depends mainly on how vaccines can

curb infections at the upstream level—as opposed to mortal-

ity at the downstream level. This, again, illustrates the effects
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196 BERTSIMAS ET AL.

of the nonlinear SEIR dynamics on the spread of the dis-

ease, and how we can leverage an epidemiological model such

as DELPHI–V to allocate resources strategically in order to

combat the pandemic most effectively.

From a practical standpoint, the results from this section

are highly significant. Indeed, the DELPHI–V model, like any

epidemiological model, only provides a rough approximation

of the dynamics of the pandemic and the effects of vaccina-

tions. Yet, the robustness of the solution provides guarantees

that the locations of mass vaccination sites, even optimized

against this approximate model, remain highly robust when

evaluated against alternative dynamics. This is obviously not

to say that we can commit to a full-scale vaccine distribution

strategy that spans the entire vaccination campaign. However,

the “here-and-now” decisions (i.e., the location of vaccina-

tion sites) are likely to remain near-optimal (or even optimal)

in the next phases of the pandemic, ultimately enabling the

vaccination campaign to save an extra 15–35% of lives.

7 CONCLUSION

This paper has presented a new prescriptive approach

to optimize vaccine distribution strategies in response

to the COVID-19 pandemic. The approach starts with

a state-of-the-art epidemiological model called DELPHI,

which augments SEIR models by capturing dynamics spe-

cific to COVID-19 (under-detection, governmental and soci-

etal response, and declining mortality rates). This paper

has first proposed an extension, named DELPHI–V, which

captures the effects of vaccinations and reflects the dis-

aggregated impact of COVID-19 on mortality across risk

classes (e.g., age groups). Then, this paper has embedded

the predictive DELPHI–V model into an optimization model,

termed DELPHI–V–OPT, to support vaccine distribution.

DELPHI–V–OPT is formulated as a bilinear optimization

model, and solved using a tailored algorithm based on coor-

dinate descent.

We applied the model and algorithm to one of the prior-

ities of the new Biden administration in the United States:

determining the locations of mass vaccination sites across

the country. We formalize the problem by selecting locations

strategically to minimize the death toll of the pandemic, sub-

ject to practical and fairness constraints. Experimental results

using real-world data suggest that the proposed optimiza-

tion approach can yield significant benefits, as compared to

benchmark solutions that locate vaccination sites based on

readily-available demographic and epidemiological informa-

tion. Specifically, the model can increase the effectiveness of

the vaccination campaign by 20%, saving an extra 4000 lives

over a three-month period. Remarkably, the proposed solu-

tion achieves critical fairness objectives—by significantly

reducing the death toll of the pandemic in several states with-

out hurting others—and is highly robust to uncertainties and

forecast errors—by achieving similar benefits under a vast

range of perturbations.

Obviously, the optimization approach developed in this

paper is not without limitations. For instance, our experi-

ments have only partitioned the population according to age

groups, thus ignoring other objectives such as prioritizing

allocations to healthcare workers, other essential workers, or

patients with comorbidities. Moreover, our epidemiological

model does not capture heterogeneity in population mix-

ing across subpopulations (e.g., interactions may be more

intense in urban areas and between young people than in

rural areas and between older populations). Similarly, our

model only captures the first-order effects of vaccinations,

ignoring for instance heterogeneity across multiple vaccine

types and double-dose vaccines. Finally, our methodology

relies on a time discretization approximation and a coordinate

descent approach, which do not yield theoretical guarantees

on solution quality.

Whereas these limitations undoubtedly motivate further

research, this paper lays one of the first data-driven bricks on

the optimal distribution of COVID-19 vaccines at a macro-

scopic level. At a time where vaccine development and

vaccine production are going full speed, the results from this

paper highlight the critical role of vaccine distribution strate-

gies to combat the pandemic. Obviously, it is essential to

make every effort possible to develop new vaccines, enhance

vaccine effectiveness, and produce as many vaccines as possi-

ble. But this paper highlights another lever that can be pulled

to curb the effect of the pandemic: strategically managing

vaccine stockpiles to prevent the spread of the pandemic and

mitigate its impact. As such, this paper can provide critical

decision-making support to governmental agencies as they

are currently planning mass vaccinations around the globe.
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APPENDIX A

Table A1 presents the proposed center allocation; for each

state, we show the number of centers allocated, the number

of vaccines per day, and the cities where the proposed centers

are located.

In Table A2, we outline the realized center allocations

which has so far been implemented by the Federal Emer-

gency Management Agency (FEMA) (Federal Emergency

Management Agency, 2021a, 2021b). In Table A3, we com-

pare the realized center allocation (R) with the proposed

center allocation (Pr). For the latter, we calculate percentages

by taking into account only the 48 centers that were allo-

cated to the 13 states under consideration. We also show the

population-based center allocation (Pop), for which we cal-

culate percentages by taking into account the 54 centers that

were allocated to the 13 states under consideration. The last

column in Table A3 indicates whether (R) and (Pr) agree, that

is, whether the fraction of centers allocated by both to any

given state is greater/equal/less than the population share of

the state.

Similar to Tables A3 and A4 compare the number of vac-

cines per day (v/d, in thousands) allocated to each state in

the realized solution (R) with that in the proposed solution

(Pr) and the population-based baseline solution (Pop). For

(Pop), we take the (Pop) center allocation shown in Table A3

and assume that the vaccines are distributed uniformly across

centers. More specifically, the number of vaccines that each

center gets is equal to the average number of vaccines

allocated to each center in (R), namely, in the realized

solution.

Both tables show that, despite obvious differences given

the rollout plan and a number of practical considerations,

the model-based recommendations are generally in line with

the center and vaccine allocation decisions that were made

in practice. Specifically, the realized and proposed solutions

agree in the majority of cases, both in terms of centers and

in terms of vaccines. These results underscore the role of our

model as a strategic tool to support the deployment of vac-

cination sites as well as a tactical tool to support vaccine

distribution.
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Table A1 Proposed center allocation

State # centers # vaccines/day Selected cities

Alabama 2 14 458 Birmingham, Mobile

Alaska 1 6592 Anchorage

Arizona 2 29 663 Mesa, Scottsdale

Arkansas 1 14 094 Little Rock

California 8 52 734 Bakersfield, Chula Vista, Citrus Heights, Fremont, Fresno

Glendale, Indio, Irvine

Colorado 2 28 289 Centennial, Colorado Springs

Connecticut 1 8699 Waterbury

Delaware 1 6592 Wilmington

District of Columbia 1 6592 Washington

Florida 6 88 989 Boca Raton, Jacksonville, Miami, Orlando, Tallahassee, Tampa

Georgia 2 13 357 Sandy Springs, Warner Robins

Hawaii 1 6592 Honolulu

Idaho 1 6592 Meridian

Illinois 2 13 184 Cicero, Springfield

Indiana 2 20 807 Indianapolis, South Bend

Iowa 2 16 356 Cedar Rapids, Des Moines

Kansas 1 6592 Topeka

Kentucky 1 6592 Louisville

Louisiana 2 29 386 Baton Rouge, Shreveport

Maine 1 6592 Portland

Maryland 1 12 167 Baltimore

Massachusetts 1 11 756 Lowell

Michigan 2 13 184 Farmington Hills, Wyoming

Minnesota 1 6592 Brooklyn Park

Mississippi 1 8991 Jackson

Missouri 2 19 139 Lee’s Summit, O’Fallon

Montana 1 6592 Missoula

Nebraska 1 6592 Omaha

Nevada 2 13 184 Henderson, Sparks

New Hampshire 1 6592 Nashua

New Jersey 2 29 663 Camden, Newark

New Mexico 1 11 670 Rio Rancho

New York 5 70 791 Buffalo, Rochester, Schenectady, Syracuse, Yonkers

North Carolina 2 13 184 Cary, Charlotte

North Dakota 1 6592 Fargo

Ohio 3 19 775 Cincinnati, Cleveland, Columbus

Oklahoma 2 20 835 Broken Arrow, Edmond

Oregon 1 13 395 Portland

Pennsylvania 2 13 184 Pittsburgh, Reading

Rhode Island 1 6592 Pawtucket

South Carolina 1 10 979 Columbia

South Dakota 1 6592 Sioux Falls

Tennessee 3 19 775 Knoxville, Memphis, Nashville

Texas 11 163 146 Austin, Corpus Christi, Dallas, El Paso, Fort Worth, Houston, Lubbock, McAllen,

Midland, San Antonio, Tyler

Utah 1 10 818 West Valley City

Vermont 1 6804 Burlington

Virginia 3 22 841 Alexandria, Newport News, Roanoke

Washington 2 26 447 Kent, Spokane

West Virginia 1 8370 Charleston

Wisconsin 2 13 184 Appleton, Waukesha

Wyoming 1 6592 Cheyenne
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Table A2 Realized center allocation

State # centers # vaccines/day Selected cities

California 2 12 000 Oakland, Los Angeles

Florida 4 12 000 Miami, Tampa, Orlando, Jacksonville

Illinois 1 6000 Chicago

Indiana 1 3000 Gary

Massachusetts 1 5000 Boston

Missouri 1 3000 St. Louis

New Jersey 1 5000 Newark

New York 6 12 000 Brooklyn, Queens, Yonkers, Rochester, Buffalo, Albany

North Carolina 1 3000 Greensboro

Pennsylvania 1 6000 Philadelphia,

Texas 3 12 000 Houston, Dallas, Arlington

Virginia 1 5000 Norfolk

Washington 1 1000 Yakima

Table A3 Comparison between realized and proposed center allocations

Realized Proposed Population

State # % # % # % (R) ⇔ (Pr)

California 2 0.08 8 0.17 12 0.22 1

Florida 4 0.17 6 0.13 6 0.11 1

Illinois 1 0.04 2 0.04 4 0.07 1

Indiana 1 0.04 2 0.04 2 0.04 1

Massachusetts 1 0.04 1 0.02 2 0.04 0

Missouri 1 0.04 2 0.04 1 0.02 1

New Jersey 1 0.04 2 0.04 2 0.04 1

New York 6 0.25 5 0.1 6 0.11 0

North Carolina 1 0.04 2 0.04 3 0.06 1

Pennsylvania 1 0.04 2 0.04 4 0.07 1

Texas 3 0.13 11 0.23 8 0.15 0

Virginia 1 0.04 3 0.06 2 0.04 0

Washington 1 0.04 2 0.04 2 0.04 1

Total 24 0.99 48 0.99 54 1.01 9

Table A4 Comparison between realized and proposed vaccine allocations

Realized Proposed Population

State # % # % # % (R) ⇔ (Pr)

California 12 0.14 53 0.1 42.5 0.22 1

Florida 12 0.14 89 0.16 21.25 0.11 1

Illinois 6 0.07 13 0.02 14.167 0.07 0

Indiana 3 0.04 21 0.04 7.083 0.04 1

Massachusetts 5 0.06 12 0.02 7.083 0.04 0

Missouri 3 0.04 19 0.03 3.542 0.02 1

New Jersey 5 0.06 30 0.05 7.083 0.04 1

New York 12 0.14 71 0.13 21.25 0.11 1

North Carolina 3 0.04 13 0.02 10.625 0.06 1

Pennsylvania 6 0.07 13 0.02 14.167 0.07 0

Texas 12 0.14 163 0.3 28.333 0.15 0

Virginia 5 0.06 23 0.04 7.083 0.04 0

Washington 1 0.01 26 0.05 7.083 0.04 0

Total 85 1.01 546 0.98 191.249 1.01 7
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