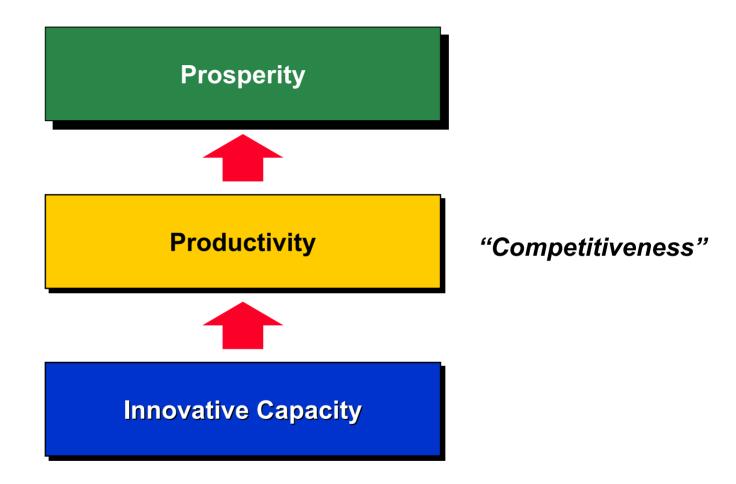
# Can Japan Compete? New Findings from the Global Competitiveness Report 2002

Professor Michael E. Porter Institute for Strategy and Competitiveness Harvard Business School

> HBS Japan Research Office Tokyo, Japan. December 4, 2002

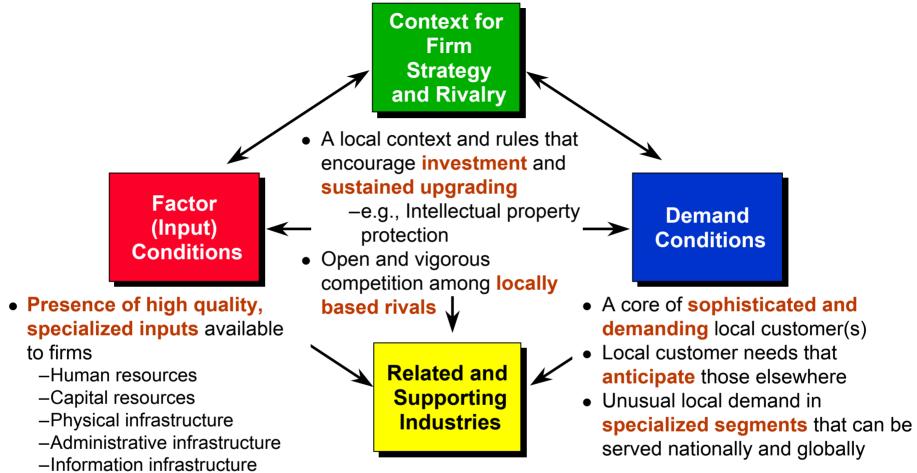
This presentation draws on ideas from Professor Porter's articles and books, in particular, <u>The Competitive Advantage of Nations</u> (The Free Press, 1990), "Building the Microeconomic Foundations of Competitiveness," in <u>The Global Competitiveness Report 2002/03</u>, (World Economic Forum, 2002), "Clusters and the New Competitive Agenda for Companies and Governments" in <u>On Competition</u> (Harvard Business School Press, 1998), and the *Clusters of Innovation Initiative* (<a href="https://www.compete.org">www.compete.org</a>), a joint effort of the Council on Competitiveness, Monitor Group, and Professor Porter and ongoing research at the Institute for Strategy and Competitiveness. Additional information may be found at the website of the Institute for Strategy and Competitiveness, <a href="https://www.isc.hbs.edu">www.isc.hbs.edu</a>

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means - electronic, mechanical, photocopying, recording, or otherwise - without the permission of Michael E. Porter.


#### What is Competitiveness?

- Competitiveness is determined by the productivity with which a nation uses its human, capital, and natural resources. Productivity sets a nations standard of living (wages, returns on capital, returns on natural resources)
  - Productivity depends both on the value of products and services (e.g. uniqueness, quality) as well as the efficiency with which they are produced.
  - It is not what industries a nation competes in that matters for prosperity, but how firms compete in those industries
  - Productivity in a nation is a reflection of what both domestic and foreign firms choose to do in that location. The location of ownership is secondary for national prosperity.
  - The productivity of "local" industries is of fundamental importance to competitiveness, not just that of traded industries
  - Devaluation does not make a country more "competitive"




- Nations compete in offering the most productive environment for business
- The public and private sectors play different but interrelated roles in creating a productive economy

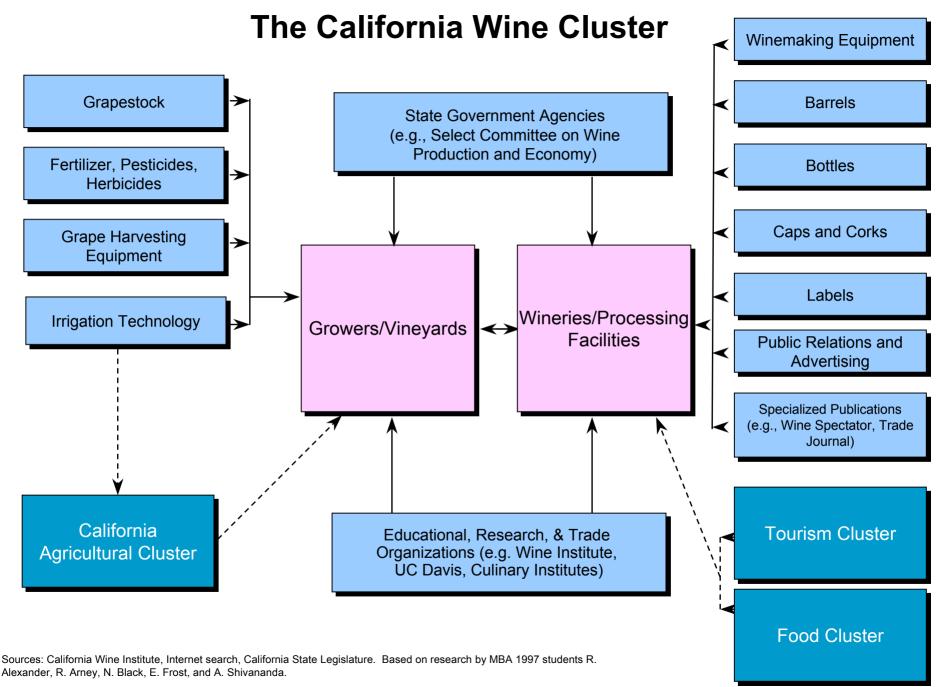
#### **Innovation and Prosperity**



- Innovation is more than just scientific discovery
- There are no low-tech industries, only low-tech firms

### **Productivity and the Business Environment**




- Access to capable, locally based suppliers and firms in related fields
- Presence of clusters instead of isolated industries



-Scientific and technological

infrastructure

-Natural resources



### Institutions for Collaboration <u>Selected Institutions for Collaboration, San Diego</u>

#### General

- San Diego Chamber of Commerce
- San Diego MIT Enterprise Forum
- Corporate Director's Forum
- San Diego Dialogue
- Service Corps of Retired Executives, San Diego
- San Diego Regional Economic Development Corporation
- Center for Applied Competitive Technologies
- San Diego World Trade Center
- UCSD Alumni
- San Diego Regional Technology Alliance
- San Diego Science and Technology Council
- Office of Trade and Business Development

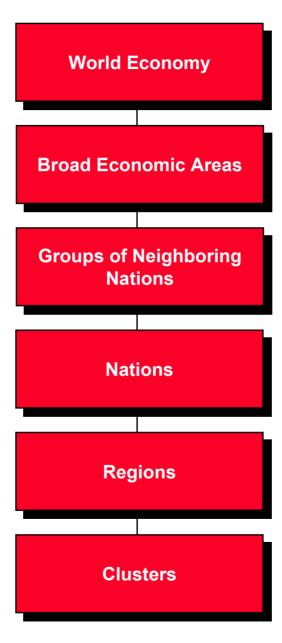
#### **Cluster-Specific**

- Linkabit Alumni
- Hybritech Alumni
- Scripps Research Institute Alumni
- BIOCOMM
- UCSD Connect

Source: Clusters of Innovation project (www.compete.org)

### Patents by Organization <a href="Commonwealth of Massachusetts">Commonwealth of Massachusetts</a>

|    | Organization                            | Patents Issued from 1995 to 1998 |
|----|-----------------------------------------|----------------------------------|
| 1  | DIGITAL EQUIPMENT CORPORATION           | 382                              |
| 2  | MASSACHUSETTS INSTITUTE OF TECHNOLOGY   | 369                              |
| 3  |                                         |                                  |
| 4  | POLAROID CORPORATION                    | 220                              |
| 5  | MASSACHUSETTS GENERAL HOSPITAL          | 138                              |
|    | ANALOG DEVICES, INC.                    | 136                              |
| 6  | HARVARD COLLEGE, PRESIDENT AND FELLOWS  | 105                              |
| 7  | GENETICS INSTITUTE, INC.                | 82                               |
| 8  | EMC CORPORATION                         | 82                               |
| 9  | GENERAL ELECTRIC COMPANY                | 79                               |
| 10 | MOTOROLA, INC.                          | 79                               |
| 11 | QUANTUM CORP. (CA)                      | 79                               |
| 12 | BOSTON SCIENTIFIC CORPORATION           | 77                               |
| 13 | HEWLETT-PACKARD COMPANY                 | 69                               |
| 14 | CHARLES STARK DRAPER LABORATORY, INC.   | 66                               |
| 15 | SAINT GOBAIN/NORTON IND. CERAMICS CORP. | 65                               |
| 16 | RAYTHEON COMPANY                        | 64                               |
| 17 | BOSTON UNIVERSITY                       | 63                               |
| 18 | BRIGHAM AND WOMEN'S HOSPITAL            | 62                               |
| 19 | DANA-FARBER CANCER INSTITUTE, INC.      | 60                               |
| 20 | TEXAS INSTRUMENTS, INCORPORATED         | 59                               |
| 21 | GILLETTE COMPANY                        | 57                               |
| 22 | SHIPLEY COMPANY INC.                    | 52                               |
| 23 | UNITED STATES OF AMERICA, AIR FORCE     | 52                               |
| 24 | LISCO, INC.                             | 50                               |
| 25 | HYBRIDON, INC.                          | 48                               |


Note: Shading indicates universities, research institutions, and other government agencies

Source: Cluster Mapping Project, Institute for Strategy and Competitiveness, Harvard Business School

HBS Japan Research Center 12-04-02 CK

7

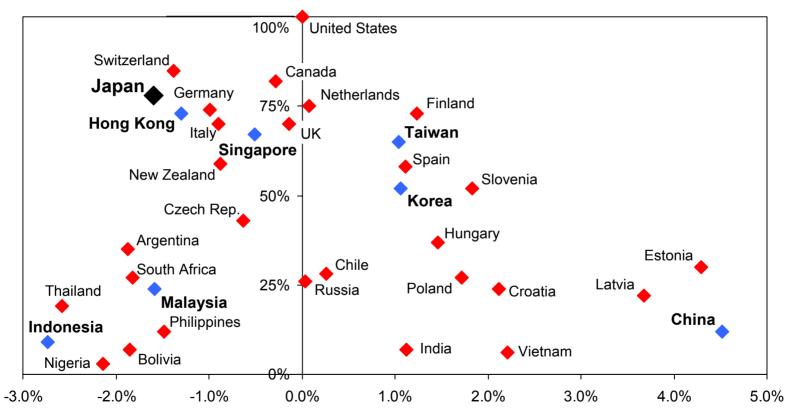
### **Geographic Influences on Competitiveness**



### **Shifting Responsibilities for Economic Development**

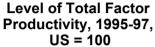
#### **Old Model**

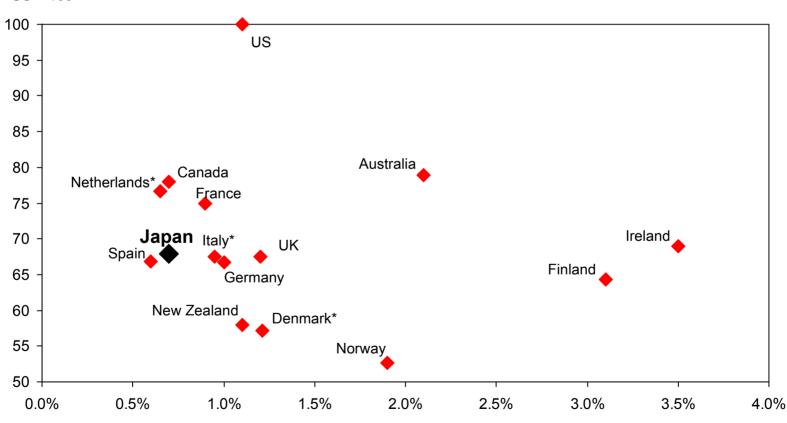
 Government drives economic development through policy decisions and incentives




#### **New Model**

 Economic development is a collaborative process involving government at multiple levels, companies, teaching and research institutions, and institutions for collaboration

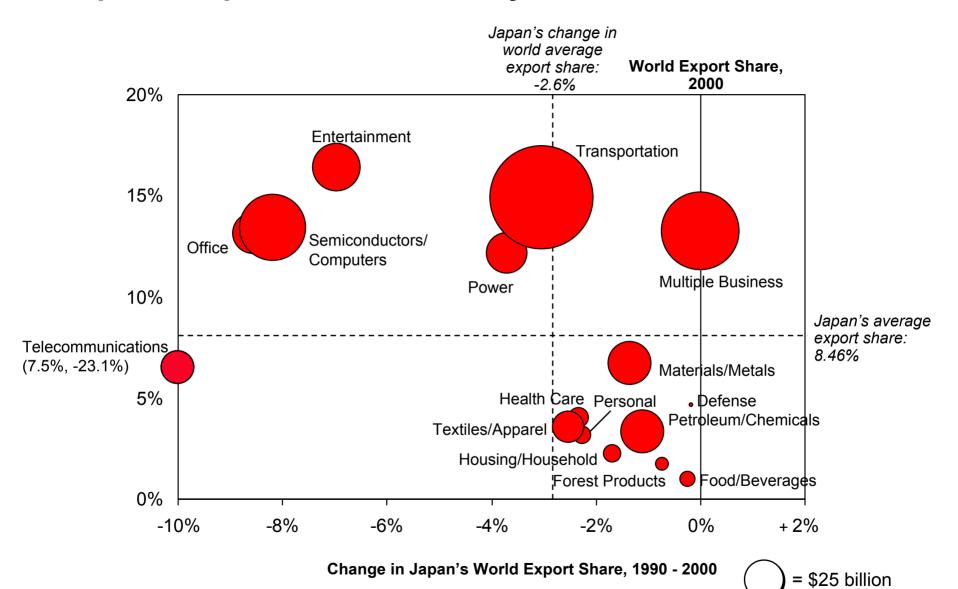

#### **Comparative Economic Performance, Selected Countries**






CAGR of GDP per Capita Relative to the US, 1995-2001

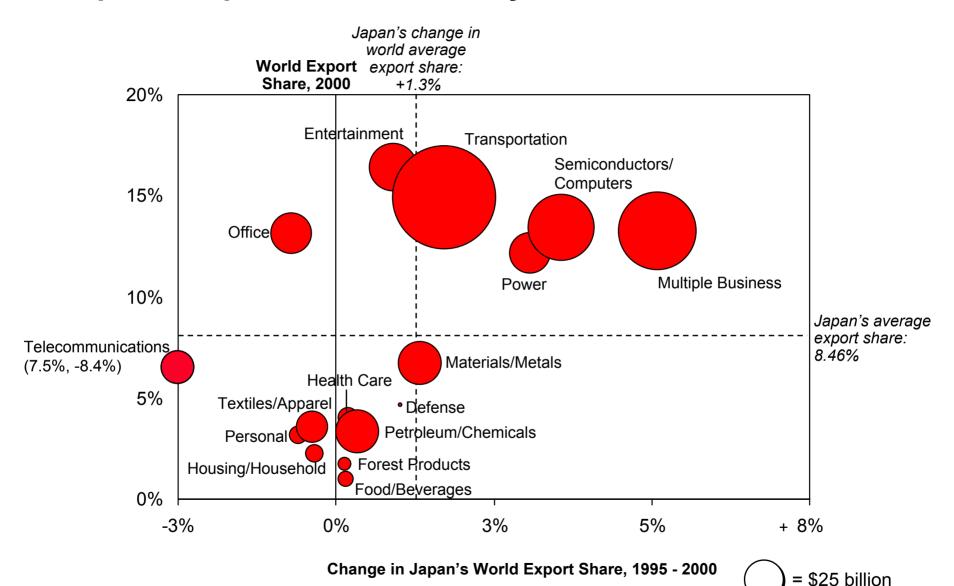
### Total Factor Productivity Performance Selected OECD Countries






**Total Factor Productivity Growth, 1990-98** 

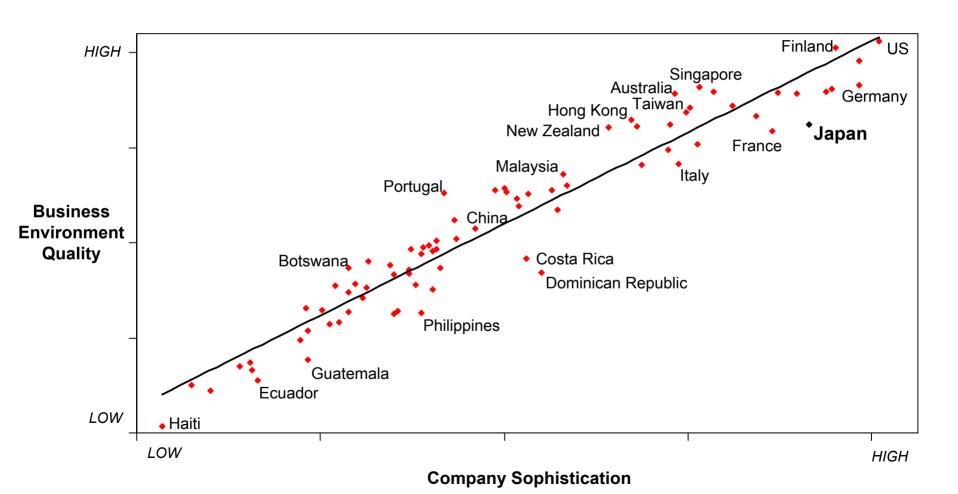
<sup>\*</sup> Data for 1995 - 1998 Source: IMF, 2001


#### Japan's Export Performance By Broad Sector, 1990-2000



export volume in

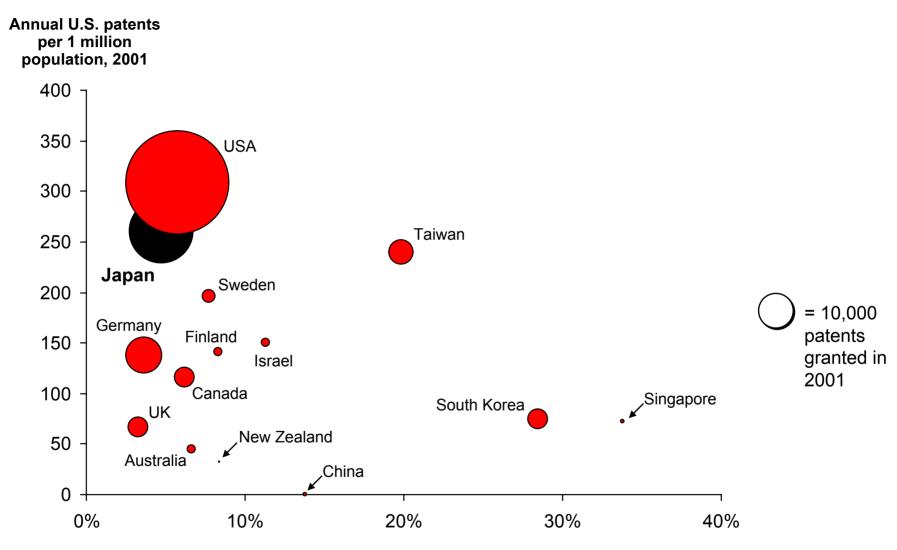
2000


#### Japan's Export Performance By Broad Sector, 1995-2000



export volume in

2000


# Business Environment Quality Relative to Company Sophistication Global Competitiveness Report 2002



### Absolute Patenting Output by Asian Countries and the U.S. Patents Filed in the U.S.

|               | Number of Patents, 2001 | Patents per 1<br>Million Population | Annual Growth<br>Rate of Patents,<br>1990-2001 |
|---------------|-------------------------|-------------------------------------|------------------------------------------------|
| United States | 87,610                  | 308.07                              | 5.7%                                           |
| Japan         | 32,924                  | 259.80                              | 4.7%                                           |
| Taiwan        | 5,371                   | 240.10                              | 19.9%                                          |
| South Korea   | 3,538                   | 74.20                               | 28.5%                                          |
| Singapore     | 296                     | 72.20                               | 33.8%                                          |
| China         | 195                     | 0.15                                | 13.8%                                          |

### **International Patenting Output**



Compound annual growth rate of US-registered patents, 1990 - 2001

### National Business Environment Japan Relative Position 2002

#### **Competitive Advantages** Relative to GDP per Capita Country Ranking Local Availability of Process Machinery **Local Supplier Quantity** Railroad Infrastructure Quality **Extent of Locally Based Competitors** Extent of Product and Process Collaboration 3 **Decentralization of Corporate Activity** Extent of Bureaucratic Red Tape 3 3 **Local Supplier Quality** Local Availability of Specialized Research and Training Services Cooperation in Labor-Employer 5 Relations

| Competitive Disadvantages Relative to GDP per Capita |  |  |  |
|------------------------------------------------------|--|--|--|
| anking                                               |  |  |  |
| 80                                                   |  |  |  |
| 68                                                   |  |  |  |
| 64                                                   |  |  |  |
| 56                                                   |  |  |  |
| 51                                                   |  |  |  |
| 45                                                   |  |  |  |
| 44                                                   |  |  |  |
| 38                                                   |  |  |  |
| 36                                                   |  |  |  |
| 33                                                   |  |  |  |
| 32                                                   |  |  |  |
|                                                      |  |  |  |

Note: Rank by countries; overall Japan ranks 11 out of 80 countries (17 on National Business Environment, 10 on GDP pc 2001)

Source: Global Competitiveness Report 2002

# National Business Environment Japan Relative Position 2002 (continued)

| Competitive Disadvantages<br>Relative to GDP per Capita |       |  |  |
|---------------------------------------------------------|-------|--|--|
| Country Ra                                              | nking |  |  |
| Laws Relating to Information<br>Technology              | 30    |  |  |
| Judicial Independence                                   | 27    |  |  |
| Favoritism in Decisions of Government Officials         | 27    |  |  |
| Effectiveness of Anti-Trust Policy                      | 27    |  |  |
| Quality of Public Schools                               | 27    |  |  |
| Quality of Math and Science Education                   | 27    |  |  |
| University/Industry Research Collaboration              | 24    |  |  |
| Costs of Other Firms' Illegal/Unfair Activities         | 23    |  |  |
| Police Protection of Businesses                         | 22    |  |  |
| Tariff Liberalization                                   | 22    |  |  |

Note: Rank by countries; overall Japan ranks 11 out of 80 countries (17 on National Business Environment, 10 on GDP pc 2001)

Source: Global Competitiveness Report 2002

# GCR Innovative Capacity Index 2002 Rankings

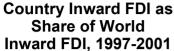
| Rank                                                                                | Innovative<br>Capacity Index                                                                                                                    | Scientists & Engineers Index | Innovation<br>Policy Index | Cluster<br>Environment<br>Index | Linkages<br>Index      | Company<br>Innovation<br>Index |
|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|---------------------------------|------------------------|--------------------------------|
| 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16 | United States United Kingdom Finland Germany Japan Switzerland Sweden Taiwan Canada Singapore Netherlands Denmark France Austria Israel Belgium | Engineers                    |                            | Environment                     |                        | Innovation                     |
| 17<br>18<br>19                                                                      | Australia<br>Iceland<br>Norway                                                                                                                  | Austria<br>New Zealand       | Korea<br>Denmark           | France<br>Ireland               | Australia<br>Hong Kong | Canada<br>Iceland              |
| 20                                                                                  | Ireland                                                                                                                                         | Korea                        | Norway                     | Portugal                        | Italy                  | Ireland                        |

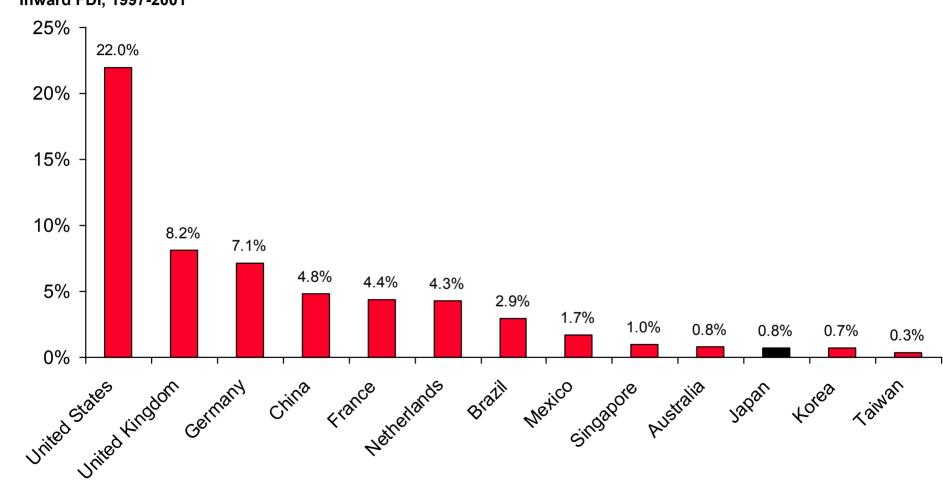
# U.S. Patenting by Top 25 Japanese Universities, Institutes, and Government Agencies

| Rank | Organization                                 | Patents Issued from<br>1997 to 2001 |
|------|----------------------------------------------|-------------------------------------|
| 65   | AGENCY OF INDUSTRIAL SCIENCE & TECHNOLOGY    | 334                                 |
| 257  | INSTITUTE OF PHYSICAL AND CHEMICAL RESEARCH  | 62                                  |
| 335  | JAPAN ATOMIC ENERGY RESEARCH INSTITUTE       | 43                                  |
| 473  | NATIONAL RESEARCH INSTITUTE FOR METALS       | 24                                  |
| 532  | NATIONAL FOOD RESEARCH INSTITUTE             | 20                                  |
| 550  | SUPER SILICON CRYSTAL RESEARCH INSTITUTE     | 19                                  |
| 569  | JAPAN NUCLEAR CYCLE DEVELOPMENT INSTITUTE    | 18                                  |
| 892  | CANCER INSTITUTE                             | 8                                   |
| 892  | HIROSHIMA UNIVERSITY                         | 8                                   |
| 892  | RAILWAY TECHNICAL RESEARCH INSTITUTE         | 8                                   |
| 892  | TOHOKU UNIVERSITY                            | 8                                   |
| 892  | TOKYO UNIVERSITY                             | 8                                   |
| 965  | BIOMOLECULAR ENGINEERING RESEARCH INS.       | 7                                   |
| 965  | INSTITUTE FOR ADVANCED SKIN RESEARCH, INC.   | 7                                   |
| 1054 | FORESTRY AND FOREST PRODUCTS RESEARCH INS.   | 6                                   |
| 1054 | KYUSHU UNIVERSITY                            | 6                                   |
| 1054 | NATIONAL AEROSPACE LABORATORY                | 6                                   |
| 1054 | INSTITUTE OF AGROBIOLOGICAL RESOURCES        | 6                                   |
| 1054 | INS. OF SERICULTURAL AND ENTOMOLOGICAL SCIE. | 6                                   |
| 1054 | INSTITUTE OF ADV. MATERIAL GAS-GENERATOR CO. | 6                                   |
| 1161 | NATIONAL INSTITUTE OF HEALTH                 | 5                                   |
| 1161 | KANSAI RESEARCH INSTITUTE (KRI)              | 5                                   |
| 1161 | INSTITUTE OF SPACE AND ASTRONAUTICAL SCIENCE | 5                                   |
| 1161 | THE KITASATO INSTITUTE                       | 5                                   |
| 1161 | TOKYO INSTITUTE OF TECHNOLOGY                | 5                                   |
| 1161 | INSTITUTE OF TECHNOLOGY PRECISION ELECTRICAL | 5                                   |

Note: Shading indicates universities, research institutions, and other government agencies; rank among Japanese institutions Source: US Patent and Trademark Office (www.uspto.gov). Author's analysis.

HBS Japan Research Center 12-04-02 CK
20

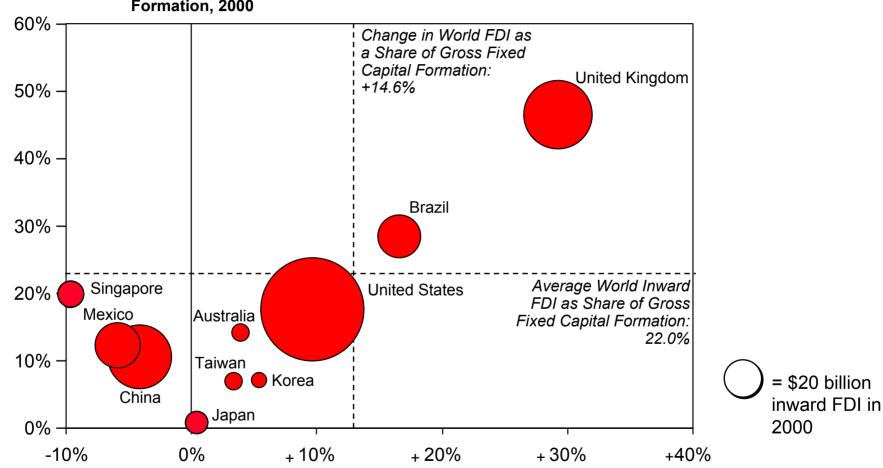

# U.S. Patenting by Top 25 U.S. Universities, Institutes, and Government Agencies


| Rank | Organization                                  | Patents Issued from<br>1997 to 2001 |
|------|-----------------------------------------------|-------------------------------------|
| 14   | UNIVERSITY OF CALIFORNIA, THE REGENTS OF      | 1904                                |
| 16   | UNITED STATES OF AMERICA, NAVY                | 1640                                |
| 37   | UNITED STATES OF AMERICA, ARMY                | 772                                 |
| 50   | UNITED STATES OF AMERICA, HEALTH & HUMAN S.   | 636                                 |
| 55   | MASSACHUSETTS INSTITUTE OF TECHNOLOGY         | 595                                 |
| 76   | UNITED STATES OF AMERICA, NASA                | 469                                 |
| 79   | CALIFORNIA INSTITUTE OF TECHNOLOGY            | 454                                 |
| 82   | UNIVERSITY OF TEXAS                           | 442                                 |
| 87   | UNITED STATES OF AMERICA, AIR FORCE           | 427                                 |
| 94   | STANFORD UNIVERSITY                           | 401                                 |
| 108  | JOHNS HOPKINS UNIVERSITY                      | 363                                 |
| 130  | UNITED STATES OF AMERICA, DEP. OF AGRICULTURE | 309                                 |
| 133  | MASSACHUSETTS GENERAL HOSPITAL CORP.          | 306                                 |
| 138  | UNITED STATES OF AMERICA, DEP. OF ENERGY      | 300                                 |
| 150  | UNIVERSITY OF MICHIGAN                        | 272                                 |
| 152  | UNIVERSITY OF PENNSYLVANIA                    | 263                                 |
| 158  | COLUMBIA UNIVERSITY                           | 252                                 |
| 166  | STATE UNIVERSITY OF NEW YORK                  | 239                                 |
| 173  | MICHIGAN STATE UNIVERSITY                     | 228                                 |
| 173  | UNIVERSITY OF WASHINGTON                      | 228                                 |
| 186  | GAS RESEARCH INSTITUTE                        | 216                                 |
| 188  | THE SCRIPPS RESEARCH INSTITUTE                | 213                                 |
| 196  | UNIVERSITY OF MINNESOTA, THE REGENTS OF       | 201                                 |
| 198  | IOWA STATE UNIVERSITY                         | 195                                 |
| 212  | WASHINGTON UNIVERSITY                         | 183                                 |

Note: Shading indicates universities, research institutions, and other government agencies; rank among U.S. institutions Source: US Patent and Trademark Office (www.uspto.gov). Author's analysis.

HBS Japan Research Center 12-04-02 CK
21

### Share of Global Inward FDI Flows Selected Countries






22

### Inward FDI Flows 1997 - 2000

Inward FDI as Share of Gross Fixed Capital Formation, 2000



Change of Inward FDI as Share of Gross Fixed Capital Formation, 1997 - 2000

23

### New Role of the Private Sector in Economic Development

- A company's competitive advantage is partly the result of the local environment
- Company membership in a cluster offers collective benefits
- Private investment in "public goods" is justified



- Take an active role in upgrading the local infrastructure
- Nurture local suppliers and attract new supplier investments
- Work closely with local educational and research institutions
- Provide government with information and substantive input on regulatory issues and constraints to cluster development



- An important role for trade associations
  - Influence and cost sharing