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Even if algorithms make better predictions than humans on average, humans may sometimes have private information

which an algorithm does not have access to that can improve performance. How can we help humans effectively use

and adjust recommendations made by algorithms in such situations? When deciding whether and how to override an

algorithm’s recommendations, we hypothesize that people are biased towards following a naı̈ve advice weighting (NAW)

heuristic: they take a weighted average between their own prediction and the algorithm’s, with a constant weight across

prediction instances, regardless of whether they have valuable private information. This leads to humans over-adhering

to the algorithm’s predictions when their private information is valuable and under-adhering when it is not. In an online

experiment where participants are tasked with making demand predictions for 20 products while having access to an

algorithm’s predictions, we confirm this bias towards NAW and find that it leads to a 20-61% increase in prediction error.

In a second experiment, we find that feature transparency – even when the underlying algorithm is a black box – helps

users more effectively discriminate how to deviate from algorithms, resulting in a 25% reduction in prediction error. We

make further improvements in a third experiment via an intervention designed to get users to move away from advice

weighting heuristics altogether and instead use only their private information to inform deviations, leading to a 34%

reduction in prediction error.
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1. Introduction
Organizations are seeking to incorporate data-driven algorithms into their decision making pro-

cesses. PricewaterhouseCoopers (2022) reports that 86% of executives consider AI algorithms a

“mainstream technology,” with 74% believing these algorithms would add value to their companies

by, for example, improving operations, marketing, and HR decisions. However, despite the promise

of algorithms and their widespread adoption, implementations are not always successful. In fact,

only 10% of companies that adopted advanced algorithms like AI report seeing significant finan-

cial gains, according to Ransbotham et al. (2020). When algorithms show significant promise in
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simulations and on historical data, but have disappointing performance once implemented, blame

is commonly aimed at the humans that use the algorithms. This blame is sometimes warranted:

people often have the power to override algorithm recommendations, and there are many examples

of such overrides degrading performance (see §2.1).

Based on such disappointing examples, it can be tempting to take the perspective that humans

are a barrier to achieving the benefits of algorithms: If algorithm aversion causes people to over-

ride superior algorithms, then shouldn’t the goal be to get people to trust algorithms more, or even

remove them from the process altogether? Indeed, finding ways to increase people’s adherence to

and trust in algorithms has been the focus of substantial research (see §2.3). While this response

may be appropriate in some cases, in this paper we take a different and more collaborative perspec-

tive. Namely, we start with the premise that humans are not merely barriers, but that humans and

algorithms have relative strengths and weaknesses. Even when algorithms are superior to humans

on average, theoretically, their collaboration should be able to outperform either on their own. In

such a setting where this is possible, we seek to better understand: What is it about human overrid-

ing behavior that causes them to miss this opportunity? How can we design the interaction between

humans and algorithms such that their collaboration is more successful?

To investigate these questions, we focus on prediction tasks (e.g., forecasting demand) where

human decision makers are given recommendations in the form of predictions from an algorithm,

which they are freely able to override to make a final prediction. We consider key relative strengths

of humans and algorithms. Prediction algorithms advance in accuracy and sophistication every

year, so we simplify their strength by assuming an algorithm uses its available information opti-

mally. Relative to algorithms, humans are noisy and more limited in information processing power,

so what advantages do humans have? One of their most important relative strengths is that humans

sometimes have access to private information: any information with predictive value that the algo-

rithm does not take into account. There are many examples: A fashion retail manager may know

from social media that a product is trending, but such information may not be used by the com-

pany’s forecasting algorithm (Cui et al. 2018); a doctor may know a patient’s surgery is unusually

complicated based on how it looks, even if such information is not in the hospital’s information

system (Ibrahim et al. 2021, Kim and Song 2022); HR managers making hiring decisions interview

candidates, though a scoring algorithm may be based only on test scores and resumes (Hoffman

et al. 2018). Of course, having valuable private information does not necessarily mean humans will
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make override decisions that improve upon the algorithm’s performance. But, eliminating humans

from the process precludes being able to take advantage of such private information.

Focusing our attention on these relative strengths allows us to approach our research questions

in the context of an information aggregation problem, which allows us to leverage existing decision

analysis and judgment and decision making literature to better theorize how and why overriding

behaviors tend to be biased. To develop our theory, we construct a mathematical model that defines

the information setting, algorithm’s predictions, and best prediction benchmark. We then examine

the impact of certain behavioral assumptions about how people make final predictions after seeing

an algorithm’s recommendation. We theorize that due to cognitive limitations, people are biased

towards following a predictable heuristic we call naı̈ve advice weighting (NAW). A person who

follows NAW arrives at a final prediction by taking a constant weighted average between what the

algorithm recommends and what their own prediction would have been without the algorithm. We

show mathematically that NAW is suboptimal because it is overly constant: it causes people to

over-adhere to the algorithm when they have highly valuable private information and under-adhere

to the algorithm when they do not. Moreover, it is suboptimal because the best prediction may not

even lie between the algorithm’s recommendation and the person’s own initial prediction.

Next, we conduct a controlled online experiment that seeks to test the over- and under-adherence

pattern predicted by our theory. In Study 1, following training and feedback about the algorithm’s

and their own performances independently, participants make demand predictions for 20 products

with the algorithm’s recommendations. The only difference between experimental conditions is

that some participants always have high-impact (very valuable) private information, some always

have low-impact private information, and some face a mixed set of the two instances. We find that

participants who always have low-impact private information generally adhere to the algorithm,

while those who always have high-impact private information generally do not. However, consis-

tent with NAW, participants seeing a mixed set adhere to the algorithm to about the same degree

across high- and low-impact private information instances, resulting in the predicted over- and

under-adherence pattern. This leads to a 20 - 61% increase in prediction error relative to the non-

mixed conditions. In summary, participants in the mixed set condition failed to use their private

information to collaborate effectively with the algorithm because they couldn’t differentiate when

their private information was valuable.

Based on these results, we design and test a type of algorithm transparency aimed at mitigating

the underlying driver of bias. Specifically, we hypothesize that feature transparency – explicit
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training on the variables that the algorithm takes into account – helps participants address the core

problems of NAW by making it easier for them to identify what their private information is, when it

warrants a substantial deviation from the algorithm, and in which direction. In Study 2, we compare

feature transparency to no transparency. Using the same mixed set condition from Study 1, Study

2 shows that feature transparency indeed helps people detect when they should adhere more or less

to the algorithm, resulting in a 25% reduction in prediction error over no transparency. Study 2 also

provides evidence that feature transparency helps people deviate from the algorithm in the correct

direction more often, even when the correct direction is opposite to that of their initial prediction.

We leverage this insight in Study 3 to design an intervention aimed at increasing the effectiveness

of feature transparency by nudging people away from advice weighting strategies altogether, thus

making it more likely that they adjust the algorithm’s predictions solely using their key relative

strength: their private information. We find that this intervention is highly effective, leading to an

additional 21% reduction in prediction error over feature transparency alone.

We summarize our main contributions as follows:

1. We define and examine new theory that describes algorithm overriding behavior when people

have private information. We propose that people are biased towards a naı̈ve advice weighting

heuristic, and analyze how it degrades human-algorithm collaborative performance.

2. We provide experimental evidence supporting how, consistent with NAW, a predictable over-

and under-adherence pattern emerges depending on the value of people’s private information.

We illustrate that the cost of these biases can be significant.

3. We design and experimentally test feature transparency as an implementable mitigation

approach that can help people better identify and use their private information. We achieve

further improvements by nudging humans away from advice weighting heuristics and instead

towards using only their private information to adjust algorithmic recommendations.

2. Literature Review
2.1. Algorithm Overriding

Do human overrides to algorithm predictions help or hurt in practice? Field evidence from a variety

of business contexts provides several examples of overriding degrading performance: doctor over-

rides of task-scheduling algorithms decreased productivity (Ibanez et al. 2018), retail store man-

ager overrides of price markdown algorithms decreased revenue (Caro and Saez de Tejada Cuenca

2022), and auto-part manager overrides of SKU phase-out algorithms decreased profits (Kesavan

and Kushwaha 2020). Laboratory experiments provide further examples (e.g., see Snyder et al.
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2022, Lehmann et al. 2022). Of course, human overrides don’t always degrade performance. For

example in Fildes et al. (2009), forecaster overrides improved accuracy on average in 3 out of 4

supply chain companies investigated. Moreover, even in settings where human overrides degrade

performance on average, they may improve performance on predictable subsets of situations.

For example, in Kesavan and Kushwaha (2020), although overrides hurt profits on average, they

improve profits for growth-stage products. Similarly, for demand forecasters in Khosrowabadi et al.

(2022), algorithm overrides didn’t improve accuracy on average, but did help for expensive and

non-fresh products. In general, these field studies point to the importance of understanding how

people make override decisions so that we can help humans override in such a way that consistently

yields improvement over the algorithm alone.

Relatedly, there is diverse research that suggests a variety of possible psychological factors con-

tributing to why people override algorithms. For example, even if an algorithm performs well,

people may be averse to feeling like they don’t understand how its process works (Yeomans et al.

2019). They might feel like the task is too subjective for an algorithm (Castelo et al. 2019). People

may be more tolerant of their own mistakes relative to an algorithm’s (Dietvorst et al. 2015). They

may also perceive an algorithm as too simple or too complex (Lehmann et al. 2022). In contrast

to this body of work on psychological reasons for overriding, we focus on a setting with a purely

rational reason for overriding: people may have access to private information that the algorithm

does not use.

2.2. Aggregation Strategies

How should one aggregate an algorithm’s predictions with a human who has private information?

Such a prescriptive question belongs to a broader area of research on judgment aggregation strate-

gies, which has addressed this question primarily in the context of aggregating multiple human

judgments. A main finding is that simple averaging strategies work surprisingly well (e.g., Clemen

1989, Blattberg and Hoch 1990, Surowiecki 2005). However, substantial improvements over sim-

ple averaging can be achieved when people have shared information. Recent research has devel-

oped strategies for combining judges’ predictions to address this shared information problem, for

example by asking an additional question that can help an algorithm infer the amount of shared

information (e.g., Palley and Soll 2019). Other strategies include strategic identification of experts

and upweighting their predictions (e.g., Soule et al. 2023). Our work similarly seeks to under-

stand and address the shared information problem. However, unlike most of the above papers, it

addresses the problem between an algorithm and a human. A closely-related exception is Ibrahim
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et al. (2021), who study how to address the shared information problem between humans and

algorithms in a different setting than ours, where the algorithm has final decision authority.

In a review paper, Arvan et al. (2019) outline two paradigms of how human and algorithm

forecasts can be combined to produce superior forecasts. In one paradigm, an algorithm makes the

final forecast after receiving a human’s prediction as an input. Several papers study how best to

elicit forecasts from humans and how to use them as inputs to algorithms (e.g., Ball and Ghysels

2018, Flicker 2018, Ibrahim and Kim 2019, Ibrahim et al. 2021, Brau et al. 2023). An alternate

paradigm, which we study, is when a human makes the final forecast (e.g., Luong et al. (2020),

though their focus is on binary – rather than continuous – prediction tasks). Such a human-oversight

policy is extremely common in practice and is even required across many settings for both legal

and ethical reasons (Green 2022).

This second paradigm is related to a broader stream of literature on how people make final deci-

sions when they receive a recommended prediction from an external advisor. A common model

used to study this question is a Judge-Advisor System (JAS), which can be applied to human advi-

sors (e.g., Bonaccio and Dalal 2006, Soll et al. 2021) and algorithmic advisors (Logg et al. 2019,

Lehmann et al. 2022). In JAS, a human judge first forms their initial prediction, then they receive

a prediction from an advisor, and then they make a final prediction. The Weight on Advice (WOA)

metric refers to where the final prediction lies on the interval between the initial prediction and

the advice; a WOA of 0 represents ignoring the advice, while a WOA of 1 represents completely

taking the advice. Many papers report on various factors that impact WOA, but all typically report

very high rates (often over 95%) of what we call “advice weighting” behavior, where people’s

final predictions are a weighted average of their initial prediction and the advice (e.g., Soll and

Larrick (2009), Gino and Moore (2007), Logg et al. (2019)). We examine how people take the

advice of an algorithm and also report WOA measurements. However, unlike most papers in this

stream of work, we examine settings in which the participant has objective and measurable reasons

to deviate from the algorithm’s advice that may vary across instances. Moreover, we examine how

participants can improve their performance by deviating from an advice weighting approach.

Beyond the aggregation strategies detailed above, numerous other strategies for integrating

human and algorithm predictions have been proposed for different settings. For example, some

strategies use algorithms to provide actionable tips (Bastani et al. 2022). Others use humans only

to select which algorithm to use from a set of models (Petropoulos et al. 2018). Other strategies
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include delegating instances to either a human or algorithm (Fügener et al. 2022), having algo-

rithms and humans work sequentially across instances (Beer et al. 2022), and having algorithms

suggest predictions for humans to choose from (Rios et al. 2022).

2.3. Algorithm Transparency

How do you design algorithms to mitigate end-user biases? Though there are a variety of strategies,

our paper focuses on providing algorithm transparency. There are several types of transparency. For

example, transparency can refer to post-hoc explanations for why a specific prediction was made

(Lipton 2017). In contrast, the type of transparency we consider is an ex ante form of algorithm

transparency, where aspects of the model are described to the user. Comprehensive ex ante trans-

parency could allow people to theoretically fully simulate the algorithm’s predictions (Lage et al.

2019). One can also provide transparency into certain components, such as how the model was

trained (Anik and Bunt 2021, Gebru et al. 2021). These types of component transparency have been

advocated and implemented by industry leaders like Google and IBM (Hind et al. 2020, Gebru

et al. 2021, Mitchell et al. 2019), and are the types we consider in our Study 2. However, unlike

the above papers, we make precise predictions about how private information interacts with human

cognitive biases to make different types of transparency help or hurt in predictable circumstances.

Commonly, algorithm transparency is provided in an attempt to increase end-user trust, which

can be subjectively measured (e.g., Likert scale as in Cadario et al. 2021) or observed (e.g.,

algorithm use rate as in Yin et al. 2019). Nevertheless, there is not uniform evidence that algo-

rithm transparency increases trust. Effects vary by algorithm or user characteristics: Lehmann

et al. (2022) find that whether comprehensive transparency increases trust depends on the per-

ceived complexity of the model, and Bolton et al. (2022) show that recommendation uncertainty

transparency has heterogeneous effects depending on users’ levels of numeracy. Also, increased

trust does not always lead to better outcomes, as people may suffer from information overload

(Poursabzi-Sangdeh et al. 2021) or overly trust the algorithm when they shouldn’t (Lakkaraju and

Bastani 2020). We contribute to these papers by identifying a type of transparency that increases

trust when the algorithm should be superior and decreases trust otherwise.

3. Theory Development
3.1. Model Setting, Definitions, and Assumptions

Consider a setting where outcome Yi is a function of public feature vector Xpub
i , private feature

vector Xpriv
i , and mean-zero random noise ϵi for each instance i= 1,2, ..., n, i.e.,

Yi = factual(X
pub
i ,Xpriv

i )+ ϵi . (1)
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We assume {(Xpub
i ,Xpriv

i , ϵi)}i=1,..,n are independent and identically distributed. (However, Xpub
i

and Xpriv
i can be dependent.)

The human decision-maker is tasked with predicting outcome Yi given a realization of the feature

vector (xpub
i ,xpriv

i ). We model human j’s prediction without seeing an algorithm, which we call

their initial prediction, for instance i as:

Ŷ init
ij = finit,j(X

pub
i ,Xpriv

i )+ ηij . (2)

Here, finit,j may differ from factual, reflecting the idea that humans may use feature information

in a systematically incorrect manner. Also, ηij is a zero-mean, random variable, reflecting the idea

that even given identical information, humans may be noisy (e.g., Su 2008, Kahneman et al. 2022).

We consider the situation where the decision-maker has access to an algorithm that they can use

to help predict Yi. The algorithm uses only public features as inputs. Its prediction is:

Ŷ alg
i = falg(X

pub
i ) . (3)

Finally, we can define the best prediction benchmark as:

Y ∗
i = factual(X

pub
i ,Xpriv

i ). (4)

The gap between the best prediction benchmark Y ∗
i and the algorithm’s prediction Ŷ alg

i represents

the potential improvement that the human could theoretically make over the algorithm’s prediction,

which could come from either (i) the use of private features Xpriv
i for which the algorithm does not

have access, and/or (ii) better use of public features Xpub
i . For ease of exposition and in line with

our experiments, we assume that the algorithm optimally uses Xpub
i when making its predictions,

and thus any improvement that the human can make over the algorithm’s prediction is due to their

use of Xpriv
i . With this in mind, we define the impact of private features as follows:

Definition 1. The impact of private features for feature vector (Xpub
i ,Xpriv

i ) is

Vi ≜ Y ∗
i − Ŷ alg

i = factual(X
pub
i ,Xpriv

i )− falg(X
pub
i ).

Since realization vi can be positive or negative, we will use the squared impact of private features

(Vi)
2 as a measure of the impact in an absolute sense. The following two assumptions are sufficient,

but not always necessary for our results.

Assumption 1. The human’s initial prediction and the algorithm’s forecasts are unbiased, i.e.,

E[Ŷ init
i −Yi] =E[Ŷ alg

i −Yi] = 0.
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Note that the expectation is over random variables Xpub
i ,Xpriv

i , ηij, and ϵi. It does not imply

that the human and algorithm are unbiased for every instance i; rather, it implies that the human

and algorithm will not be systematically too high or low over a large number of instances.

Assumption 2. The human’s initial prediction error Ŷ init
i − Yi and the algorithm’s prediction

error Ŷ alg
i −Yi are independent.

Assumption 2 states that the human’s initial prediction accuracy does not provide information

about the algorithm’s accuracy, and vice versa.

3.2. Behavioral Model of Advice Weighting

How do humans with access to an algorithm’s prediction make a final prediction? Following the

advice weighting literature (see §2.2), we hypothesize that humans tend to take a weighted average

of their initial prediction and the algorithm’s prediction to make a final prediction:

Ŷ final
ij = λijŶ

alg
i +(1−λij)Ŷ

init
ij , (5)

where λij ∈ [0,1] is the weight that human j places on the algorithm’s prediction. For brevity, we

omit subscript j when the context is clear. A larger (smaller) value of λi means that the human

places more (less) weight on the algorithm’s prediction.

One can see that the human’s final prediction accuracy depends, in part, on how they choose the

value of λi. We believe humans tend to be biased towards naı̈ve advice weighting (NAW), which

we define as placing the same weight on the algorithm’s prediction, regardless of feature vector

(xpub
i ,xpriv

i ), i.e. λi = λ for each instance i. Naı̈ve advice weighting is suboptimal for two reasons:

• First, differential weights are not applied across instances with different impacts of pri-

vate features. We examine this driver of suboptimality in §3.3. To do so, we contrast naı̈ve

advice weighting with sophisticated advice weighting – where differential weights are applied

depending on feature vector (xpub
i ,xpriv

i ).

• Second, advice weighting in general – even the best possible sophisticated advice weighting

strategy – is suboptimal when Y ∗
i cannot be characterized as a convex combination of Ŷ init

i

and Ŷ alg
i . We examine this driver of suboptimality in §3.4.

Our results will guide our experimental designs and hypotheses which we preview in §3.5.

3.3. Naı̈ve Advice Weighting is Suboptimal Because the Weights are Overly Constant

We now show that a sophisticated advice weighting strategy that implements non-constant weights

can outperform even the best possible naı̈ve advice weighting strategy, found by solving

NAW : min
λ∈[0,1]

E
[(
Yi − (λŶ alg

i +(1−λ)Ŷ init
i )

)2]
. (6)
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NAW finds the constant weight on algorithm that minimizes the expected squared error of the

final prediction, Ŷ final
i . Practically, it could be approximated by solving for the λ that minimizes

the sum of squared errors over a large historical dataset of realizations ŷi, ŷ
alg
i , ŷiniti . The follow

proposition characterizes the optimal weight on the algorithm’s predictions under NAW.

Proposition 1. Under naı̈ve advice weighting, the optimal weight-on-algorithm λNAW is

λNAW =
E[(Yi − Ŷ init

i )2]

E[(Yi − Ŷ init
i )2] +E[(Yi − Ŷ alg

i )2]
.

The optimal weight on algorithm under NAW is intuitively appealing: it puts more weight on

the algorithm if it has smaller expected squared errors relative to the human’s initial forecasts.

Empirical evidence also suggests that humans generally weight advice in a similar manner: they

increase their weight on advice as the advisor’s accuracy increases (Harvey and Fischer 1997,

Yaniv and Kleinberger 2000, Sniezek and Van Swol 2001, Sah et al. 2013, Soll et al. 2021).

Although intuitively appealing, naı̈ve advice weighting is suboptimal in part because the weight

is constant, but the algorithm’s accuracy is not. Intuitively, the human could use (xpub
i ,xpriv

i ) to

predict when the algorithm will be more or less accurate and put more weight on the algorithm

when they expect it to be more accurate. To formalize this intuition, we define a sophisticated

advice weighter as one who first categorizes feature vectors into groups with different average

impacts of private features, and then calculates a different weight on algorithm for each group. (We

consider only 2 groups, but the analyses could be extended to more.) Let S denote the domain of

(Xpub
i ,Xpriv

i ). A sophisticated advice weighter can partition S into sets SL,SH such that

E[(Vi)
2|(Xpub

i ,Xpriv
i )∈ SL]<E[(Vi)

2|(Xpub
i ,Xpriv

i )∈ SH ].

Thus, SL has a lower expected squared impact of private features, while SH has a higher expected

squared impact of private features. Given such partitions, a sophisticated advice weighter then

solves the following problem to determine the optimal weights, λSAW
L and λSAW

H , in each partition:

SAW : min
λL,λH∈[0,1]

∑
k=L,H

E
[(
Yi−(λkŶ

alg
i +(1−λk)Ŷ

init
i )

)2|(Xpub
i ,Xpriv

i )∈ Sk

]
P((Xpub

i ,Xpriv
i )∈ Sk).

(7)

Proposition 2. Under sophisticated advice weighting, the optimal weights λSAW
L and λSAW

H satisfy

λSAW
H < λNAW < λSAW

L . Furthermore, OPT SAW ≤OPTNAW , where OPT SAW and OPTNAW

represent the optimal squared errors of SAW and NAW , respectively.
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The first part of Proposition 2 shows that the sophisticated advice weighter adheres more to

the algorithm in the partition where the expected squared impact of private features is low and

adheres less where it is high. Moreover, the naı̈ve advice weighter’s optimal weight falls between

the sophisticated advice weighter’s optimal weights for the two sets. The second part of Proposition

2 states that the naı̈ve advice weighter’s failure to differentiate amongst instances where there is

less versus more impact of private features degrades its performance. Putting the two parts together,

we conclude that the naı̈ve advice weighter under-weights the algorithm when the impact of private

features is small, and over-weights the algorithm when the impact of private features is large.

3.4. Naı̈ve Advice Weighting is Suboptimal Because the Best Prediction is Often Outside the
Advice-Weighting Region

In addition to being suboptimal due to overly-constant weights, naı̈ve advice weighting – like any

advice weighting strategy – is suboptimal because the best prediction may not be in the advice-

weighting region. We define the advice-weighting region as the interval between the algorithm’s

prediction and the human’s initial prediction, which corresponds to λi ∈ [0,1]. When the best

prediction benchmark, y∗i , does not lie within the advice-weighting region, no choice of λi ∈ [0,1]

can achieve the best prediction benchmark.

In what follows, we explore how often the best prediction falls in the advice-weighting region.

Definition 2. Prediction Ẑi is median-unbiased if P[Ẑi >Y ∗
i ] = P[Ẑi <Y ∗

i ].

Proposition 3. Let Ŷ init
i and/or Ŷ alg

i be median-unbiased and assume P[Ŷ init
i = Y ∗

i ] = P[Ŷ alg
i =

Y ∗
i ] = 0. Then, Y ∗

i is within the advice-weighting region with probability 1/2, i.e.,

P
(
min{Ŷ alg

i , Ŷ init
i } ≤ Y ∗

i ≤max{Ŷ alg
i , Ŷ init

i }
)
=

1

2
.

The median-unbiased and zero-probability of perfect predictions assumptions are required to

obtain a result of precisely 1/2. Figure 1 illustrates the general intuition behind the proof. For the

best prediction to be inside the advice-weighting region, ŷalg and ŷinit must lie on opposite sides

of y∗. If Ŷ init and Ŷ alg are equally likely to err high versus low (and assuming the two errors are

independent from Assumption 2), then it is equally likely for them to err on opposite sides as it is

for them to err on the same side. Thus, Proposition 3 demonstrates that often it is impossible for

humans to achieve the best prediction via any advice weighting strategy.

3.5. Hypotheses & Preview of Experiments

Our first study, presented in §4, is designed to test the key intuition developed from Propositions

1 and 2. To do this, we use three conditions in which participants experience (i) only instances
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Figure 1 Depiction of when the advice-weighting (AW) region contains y∗.

with a low impact of private features (analogous to SL), (ii) only instances with a high impact

of private features (analogous to SH), and (iii) a mixture of instances that contain both low and

high impact of private features (analogous to S). In practice, the third condition – where humans

occasionally have access to valuable private features – is most common, and we aim to empirically

study whether participants in this condition are biased towards naı̈ve advice weighting, and ulti-

mately whether this leads to degradation in prediction accuracy. We give all participants access to

historical instances consisting of (xpub
k ,xpriv

k ), ŷalgk , and yk, and then we elicit ŷiniti and ŷfinali for a

series of new instances; this allows us to estimate participants’ weight on the algorithm.

Hypothesis 1. Relative to humans who experience instances of only high impact private features

or only low impact private features, humans who experience a mix of both cases place a lower

weight on the algorithm when the impact of private features is low, and place a higher weight on

the algorithm when the impact of private features is high.

Hypothesis 2. Relative to humans who experience instances of only high impact private features

or only low impact private features, humans who experience a mix of both cases have worse final

prediction accuracy for both cases.

If humans are indeed unable to sufficiently distinguish between instances with low and high

impact of private features, we hypothesize that one way to mitigate the overly-constant weights

problem of naı̈ve advice weighting would ideally be to tell decision makers which of the informa-

tion available to them is public vs. private. We study the impact of a practical intervention: provid-

ing feature transparency – telling humans which features the algorithm does take into account, i.e.,

which features are public. We believe that feature transparency will mitigate naı̈ve advice weight-

ing behavior by helping humans recognize when they have impactful private features that warrant

a substantial deviation from the algorithm, leading to the following two hypotheses that we test in

a second study presented in §5.
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Hypothesis 3. Feature transparency increases humans’ weight on algorithm when the impact of

private features is low, but decreases it when the impact of private features is high.

Hypothesis 4. Feature transparency improves human’s final prediction accuracy both when the

impact of private features is low and when it is high.

Finally, Proposition 3 suggests that humans often need to deviate from the entire class of advice

weighting strategies altogether to achieve the best performance. We hypothesize that if – instead

of advice weighting – humans anchor on the algorithm’s prediction and make an adjustment to

specifically account for only their private features, they may increase their likelihood of going

outside the advice-weighting region in a way that improves performance. We test this hypothesis

in a third study presented in §6.

Hypothesis 5. Nudging humans to follow a strategy in which they anchor on the algorithm and

adjust based on their private features improves their final prediction accuracy.

4. Study 1: Uncovering a Naı̈ve Advice Weighting Bias
Study 1 tests Hypotheses 1 and 2 in a controlled online experiment1.

4.1. Design

4.1.1. Participant Experience Participants are tasked with predicting demand for new products.

Each new product i is characterized by two features – “Feature A” and “Feature B” – where Feature

A corresponds to xpub
i and Feature B corresponds to xpriv

i . The outcome, Yi, is the actual demand

for product i. After predicting demand for several products using only xpub
i and xpriv

i , participants

are then additionally given an algorithm’s demand prediction, ŷalgi , which they can choose if/how

to use when making their demand predictions for the remaining products. Notably, participants are

not explicitly given falg(·) or told that the algorithm only uses xpub
i to make its demand predictions.

The following sequence of steps provides more details about the participant’s experience; select

screenshots are included in Appendix E.

1. Instructions & Comprehension Checks. Participants are introduced to the demand prediction

task and objective of minimizing absolute prediction error, and are tested for comprehension.

2. Historical Data Review. Participants view historical data for 20 products, with the option to

continue to view more historical data for as many products as they wish. For each product i,

they observe xpub
i , xpriv

i , and realized (actual) demand yi.

1 We pre-registered our sample size, treatment conditions, data exclusion criteria, and planned analyses (see https://
aspredicted.org/CN9_KTK). All statistical tests reported in the results are pre-registered unless otherwise indicated.

https://aspredicted.org/CN9_KTK
https://aspredicted.org/CN9_KTK
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3. Demand Predictions without Algorithm. Sequentially for each of i = 1, ...,20 new products

not seen in Step 2, participants are given xpub
i and xpriv

i and are asked for their demand predic-

tion, ŷiniti . After predicting demand for product i, the participant is given the actual demand,

yi, and their absolute prediction error, |ŷiniti − yi|.
4. Algorithm Introduction. Participants are informed that an algorithm has been developed to

help them predict demand. To give participants experience with the algorithm, they are shown

a summary table consisting of the following data for each of the 20 products from Step 3:

xpub
i , xpriv

i , yi, ŷ
alg
i , and both the algorithm’s and their absolute prediction errors, |ŷalgi − yi|

and |ŷiniti − yi|.
5. Demand Predictions with Algorithm. Sequentially for each of i= 1, ...,20 new products not

seen in Steps 2 or 3, participants are first given only xpub
i and xpriv

i and are asked for their

demand prediction, ŷiniti . Then the participant is given the algorithm’s demand prediction, ŷalgi ,

and asked for their final demand prediction, ŷfinali . Finally, they are told the actual demand, yi,

as well as both the algorithm’s and their absolute prediction errors, |ŷalgi − yi| and |ŷiniti − yi|.
Participants’ demand predictions in Step 3 (ŷiniti ) and Step 5 (ŷfinali ) were incentivized for accu-

racy: participants received a base compensation of $7 for completing the experiment (as in Study

2 and 3) plus an additional bonus of $7 – $0.15 × (Root Mean Squared Error). A majority of

our analyses focuses on Step 5, where participants have access to an algorithm to make their final

demand predictions.

4.1.2. Behind the Scenes: Data Generation For product i, actual demand is generated as

Yi = 131+1.6Xpub
i +0.75Xpriv

i + ϵi, (8)

where ϵi is drawn from a normal distribution with mean 0 and standard deviation 4, Xpub
i is drawn

from a discrete uniform distribution with support {20, 80}, and Xpriv
i is drawn from zero-mean

distributions that differ across our three conditions, which will be described in §4.1.3; for all three

conditions, Xpub
i and Xpriv

i are independent.

The algorithm’s demand prediction is generated as

Ŷ alg
i = 131+1.6Xpub

i . (9)

From Definition 1, the impact of private feature is Vi ≜ Y ∗
i − Ŷ alg

i = 0.75Xpriv
i .

Participants are not explicitly given equations (8) and (9), nor are told how ϵi, X
pub
i , and Xpriv

i

are generated. That said, because participants have unlimited access to historical data in Step 2, a

participant could theoretically recover (8) and achieve the best prediction benchmark.
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4.1.3. Conditions Participants are randomly assigned to one of the following three conditions,

where the only difference across conditions is the distribution used to generate Xpriv
i , or equiv-

alently, the impact of private feature, Vi. With slight abuse of language, we use “low” (“high”)

impact of private feature to describe products with small (large) |vi|.

1. Always Low Impact of Private Feature (Always Low |vi|). The values of Xpriv
i are drawn from

a discrete uniform distribution with support {-10, 10}. The impact of private feature is low

relative to the other conditions, with |vi| ∈ [0,7.5]; this leads to relatively strong algorithm

performance.

2. Always High Impact of Private Feature (Always High |vi|). The values of Xpriv
i are drawn

from a discrete uniform distribution with support {-150, -50}
⋃

{50, 150}. The impact of

private feature is high relative to the other conditions, with |vi| ∈ [37.5,112.5]; this leads to

relatively poor algorithm performance.

3. Mixed Impact of Private Feature (Mixed |vi|). Each value of Xpriv
i is drawn from a discrete

uniform distribution with support {-10, 10} with probability 0.5, and from a discrete uniform

distribution with support {-150, -50}
⋃

{50, 150} with probability 0.5. In expectation, this

leads to half of the products being identical to products in the first condition where the impact

of private feature is low, and the other half of the products being identical to products in the

second condition where the impact of private feature is high.

It is helpful to cast our experimental design as a 2 × 2 mixed design (see Table 1). The first

dimension is the impact of private feature, which is either low or high. The second dimension is

the participant’s exposure set: whether the participant is exposed to a mixture of products with low

and high impact of private feature (“mixed” exposure set) or is exposed to only a single impact of

private feature – either always low or always high (“single” exposure set).

Table 1 How our three conditions achieve a 2× 2 mixed design.

Exposure Set

Mixed Single

Impact of Private Feature
Low Mixed |vi| Always Low |vi|

High Mixed |vi| Always High |vi|

We are most interested in studying participants’ predictions in the Mixed |vi| condition, as this is

reflective of practice where humans occasionally have access to valuable private features. We use

participants in the other two conditions to represent benchmarks for sophisticated advice weighters
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– humans who make final predictions based on impact of private features – since, by construction,

all of their predictions are based on a single exposure set; note that these benchmarks are valid

regardless of the sophistication of participants in these two conditions, since for a single exposure

set, naı̈ve and sophisticated advice weighting behaviors are approximately equivalent. By compar-

ing across the columns in Table 1, we can identify whether humans experiencing a mixed exposure

set can sufficiently distinguish instances with low and high impact of private features – i.e., behave

as sophisticated advice weighters – vs. have a bias towards naı̈ve advice weighting.

4.1.4. Dependent Variables We use median weight on algorithm (MedWOA) as our dependent

variable for Hypothesis 1. We first define participant j’s weight on algorithm for product i =

1, ...,20 in Step 5 as

WOAij =min
(
max

( ŷfinalij − ŷinitij

ŷalgi − ŷinitij

,0
)
,1
)
. (10)

We note that WOAij is an estimate for λij defined for advice weighting behavior in (5), i.e., the

weight that the participant places on the algorithm’s prediction. Following the advice weighting lit-

erature, we note that WOAij is a winsorized value between zero and one, and we exclude WOAij

if ŷalgi = ŷinitij . Subsequently, we define

MedWOAL
j = median(WOAij ∀i s.t. xpriv

i ∈ {−10,10}); (11)

MedWOAH
j = median(WOAij ∀i s.t. xpriv

i ∈ {−150,−50}∪ {50,150}). (12)

MedWOAL
j (MedWOAH

j ) can be interpreted as participant j’s median value of WOAij for all

products with low (high) impact of private feature. We note that only participants in the Mixed |vi|

condition will have values for both MedWOAL
j and MedWOAH

j , since participants in the other

conditions only experience products in a single exposure set.

We use root median squared error (RMedSE) as our dependent variable for Hypothesis 2. For

each participant j and considering products i= 1, ...,20 in Step 5, we define

RMedSEL
j =

√
median([ŷfinalij − yi]2 ∀i s.t. xpriv

i ∈ {−10,10}); (13)

RMedSEH
j =

√
median([ŷfinalij − yi]2 ∀i s.t. xpriv

i ∈ {−150,−50}∪ {50,150}). (14)

These RMedSE metrics are measures of the participant’s prediction accuracy.
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4.2. Results

Our analyses include data from 359 participants from Mechanical Turk who successfully passed

two initial comprehension checks and completed the full study2. By randomly assigning partic-

ipants across conditions, we had 119 participants in the Always Low |vi| condition, 121 in the

Always High |vi| condition, and 119 in the Mixed |vi| condition. The mean time to complete the

study was 31.55 minutes, and the mean bonus payment was $1.75.

4.2.1. Weight on Algorithm Results Figure 2 summarizes the results on participants’ median

weight on algorithm. Recall that participants in the Always Low |vi| and Always High |vi| con-

ditions represent benchmarks for sophisticated advice weighters – humans who make predictions

based on impact of private features – since, by construction, all of their predictions are for a single

exposure set. As expected, these participants place more weight on the algorithm when they are

only exposed to products with a low impact of private feature compared to when they are only

exposed to products with a high impact of private feature, since the algorithm performs consider-

ably better for products with a low impact of private feature (t(237.92) =−12.723, p < 0.0001).

Figure 2 Median weight on algorithm results are averaged (mean) by exposure set, separately for low and

high impact of private feature; standard error bars are shown.

Our primary interest is studying behavior of participants in the Mixed |vi| condition. As detailed

in Hypothesis 1, we hypothesize that participants in this condition would be unable to sufficiently

2 534 MTurkers attempted the study, each with a 99%+ approval rating and 1000+ approvals. Among the 359 participants, 208 were
male, 256 had a Bachelor’s or advanced degree, 315 were White, and 185 had a yearly household income of $50,000 or more.
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distinguish between instances with low and high impact of private features and would instead be

biased towards naı̈ve advice weighting. We perform two, one-sided t-tests comparing mean values

of MedWOA across each row in Table 1. For convenience, let CL, CH , and CM be the set of partici-

pants assigned to the Always Low |vi|, Always High |vi|, and Mixed |vi| conditions, respectively.

For the first part of Hypothesis 1, we test whether∑
j∈CM MedWOAL

j

|CM |
≤

∑
j∈CL MedWOAL

j

|CL|
, (15)

i.e., considering only products with a low impact of private feature, whether participants exposed

to a mixed exposure set place less weight on the algorithm than participants exposed to a single

exposure set. As shown in the left two bars in Figure 2, for low impact of private feature products,

participants in the Mixed |vi| condition had a significantly smaller mean MedWOAL compared to

participants in the Always Low |vi| condition (t(230.83) =−6.332, p < 0.0001).

For the second part of Hypothesis 1, we test whether∑
j∈CM MedWOAH

j

|CM |
≥

∑
j∈CH MedWOAH

j

|CH |
, (16)

i.e., considering only products with a high impact of private feature, whether participants exposed

to a mixed exposure set place more weight on the algorithm than participants exposed to a single

exposure set. As shown in the right two bars in Figure 2, for high impact of private feature products,

participants in the Mixed |vi| condition had a significantly larger mean MedWOAH compared to

participants in the Always High |vi| condition (t(227.53) = 4.723, p < 0.0001).

In addition to conducting t-tests that study behavior on products with low and high impact of

private features separately, we can also test how the difference in average MedWOA between

products with low and high impact of private features compares across participants who experience

a mixed vs. single exposure set. A bias towards naı̈ve advice weighting should result in a smaller

difference in average MedWOA for participants experiencing a mixed exposure set, i.e.,∑
j∈CM MedWOAL

j

|CM |
−

∑
j∈CM MedWOAH

j

|CM |
≤

∑
j∈CL MedWOAL

j

|CL|
−

∑
j∈CH MedWOAH

j

|CH |
.

(17)

When we regress the MedWOA for each participant on impact of private feature interacted with

exposure set, clustering standard errors by participant, we indeed find a significant positive coef-

ficient on the interaction term (β = 0.494, p < 0.0001). In other words, the difference in average

MedWOA between products with low vs. high impact of private feature is larger when participants
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experience a single exposure set than a mixed exposure set; see Appendix B.1 for the full regres-

sion table. In fact, we find that for participants who experience a mixed exposure set, their average

MedWOA is not significantly different for products with a low vs. high impact of private feature

(t(235.44) =−0.459, p= 0.342).

Our results confirm Hypothesis 1 by showing that participants who experience a mixed expo-

sure set under-weight the algorithm when the impact of private feature is low and over-weight the

algorithm when the impact of private feature is high, compared to participants who experience

a single exposure set (representing hypothetical sophisticated advice weighters who fully differ-

entiate between the sets). These findings illustrate that humans are biased towards naı̈ve advice

weighting, insufficiently distinguishing when they should place more/less weight on the algorithm

as a function of the impact of private features.

4.2.2. Prediction Error Results We next present results showing the impact of the naı̈ve advice

weighting bias on prediction error; Figure 3 summarizes results on participants’ root median

squared error (RMedSE). As one would expect, participants in the Always High |vi| condition have

larger prediction error compared to participants in the Always Low |vi| condition, since the algo-

rithm provides considerably less value when the impact of private feature is high (t(238.00) =

5.743, p < 0.0001). Similarly, participants in the Mixed |vi| condition have larger prediction error

on products with high impact of private feature compared to their prediction error on products with

low impact of private feature (t(235.66) = 4.733, p < 0.0001).

Our primary interest is studying the prediction error of participants in the Mixed |vi| condition

to understand how their bias towards naı̈ve advice weighting impacts their prediction error. As

detailed in Hypothesis 2, we hypothesize that these participants will perform worse compared to

sophisticated advice weighter benchmarks for both subsets of products with low and high impact

of private feature. We perform two, one-sided t-tests comparing mean values of RMedSE across

each row in Table 1.

First considering only products with a low impact of private feature, we test whether participants

who experience a mixed exposure set have larger prediction error than participants who experience

a single exposure set; specifically, we test whether∑
j∈CM RMedSEL

j

|CM |
≥

∑
j∈CL RMedSEL

j

|CL|
. (18)

As shown in the left two bars in Figure 3, participants in the Mixed |vi| condition had a significantly

larger mean RMedSEL vs. those in the Always Low |vi| condition (t(229.08) = 1.940, p= 0.0268).
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Figure 3 Root median squared error results are averaged (mean) by exposure set, separately for low and

high impact of private feature; standard error bars are shown. Additionally, the mean RMedSE is reported for

the algorithm and the best prediction benchmark.

Next considering only products with a high impact of private feature, we test whether partic-

ipants who experience a mixed exposure set have larger prediction error than participants who

experience a single exposure set; specifically, we test whether∑
j∈CM RMedSEH

j

|CM |
≥

∑
j∈CH RMedSEH

j

|CH |
. (19)

As shown in the right side of Figure 3, participants in the Mixed |vi| condition had a significantly

larger RMedSEH vs. those in the Always High |vi| condition (t(233.67) = 1.761, p= 0.0398).

Together, our results confirm Hypothesis 2 by showing that participants who experience a mixed

exposure set perform worse for both subsets of products with low impact and high impact of

private features, compared to sophisticated advice weighter benchmarks. This illustrates that a bias

towards naı̈ve advice weighting has a negative impact on prediction accuracy across the board.

4.3. Additional Analyses and Discussion

We report several supplementary analyses in Appendix B. These include (1) replicating results at

the task-level, (2) observing minimal learning effects over time, (3) verifying robustness to unwind-

sorized WOA, (4) studying drivers of WOA, (5) conducting mediation analysis, (6) describing the

performance of participants’ demand predictions without the algorithm (in Step 3) to show how

it compares to the algorithm, (7) examining participants’ initial predictions that precede seeing
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the algorithm (in Step 5) to show that their accuracy is not significantly different from predictions

without the algorithm (in Step 3), and (8) reporting task completion time statistics.

Study 1 provides evidence supporting a bias towards naı̈ve advice weighting as opposed to

sophisticated advice weighting behavior: people take an overly-constant weighted average of

the algorithm’s predictions with their initial predictions. As outlined in the theory presented in

§3.3, our empirical results confirm that this bias leads to predictable patterns of over- and under-

adherence to the algorithm and degrades performance when people face a mixed exposure set.

Although this study was designed to test the theory presented in §3.3, recall from §3.4 that the

naı̈ve advice weighting strategy is suboptimal not only because the weight on advice is overly

constant, but also the best prediction benchmark (Y ∗
i ) may not even be in the advice-weighting

region (see, e.g., Figure 1). Similar to what Proposition 3 predicted, we find that in Study 1, the

best prediction benchmark falls within participants’ advice-weighting regions in 55% of instances.

In contrast, participants’ actual final predictions ŷfinali fall within their advice-weighting regions

in 82% of instances across all treatment conditions; comparing these two numbers illustrates that

people are advice weighting significantly more than they should be.

5. Study 2: The Impact of Transparency on Naı̈ve Advice Weighting
What can system designers do to mitigate naı̈ve advice weighting behavior? Study 1 demonstrates

that extensive algorithm performance feedback is not enough for people to figure out when their

private information warrants a large or small deviation from the algorithm. How can system design-

ers help people with bounded cognitive ability with this issue? Of course, by its very nature, system

designers often do not know peoples’ private information. However, as detailed in Hypotheses 3

and 4, providing feature transparency (training humans about which features the algorithm does

take into account) may help mitigate naı̈ve advice weighting behavior by improving their ability to

recognize when they have impactful private features, leading to improved performance accuracy

for both products with low and high impact of private features. In practice, if system designers

were aware of private features, communicating this information would likely be even more helpful.

We contrast this insight-inspired feature transparency intervention with another unrelated train-

ing data transparency intervention, in which we describe in more detail how much data the algo-

rithm uses in its training process. Similar types of transparency have been shown to increase overall

trust in algorithms (e.g., see Anik and Bunt 2021 and Balayn et al. 2022). However, we hypothesize

that it will not be effective in mitigating naı̈ve advice weighting because it is not designed to help
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participants effectively discriminate between situations where they should vs. should not adhere

to the algorithm. We include this training data transparency manipulation as an additional control

condition to disentangle the effect of providing people with knowledge of public information from

the effect of providing people with more knowledge of the algorithm in general, which may also

cause them to more carefully use the algorithm’s forecasts.

5.1. Design

The participant experience, data generation, and dependent variables are identical to the Mixed |vi|

condition in Study 1, except for the additions outlined in the three treatment conditions defined

below.3 Notably, these conditions only differ by information shared when introducing the algo-

rithm; thus, both the algorithm and best prediction benchmark each have identical performance

across all conditions.

1. No Transparency. This condition is identical to the Mixed |vi| condition in Study 1.

2. Feature Transparency. We add the following language when introducing the algorithm in Step

4: “The company has informed you that the algorithm uses only Feature A to make its demand

predictions”4.

3. Training Data Transparency. We add the following language when introducing the algorithm

in Step 4: “The company has informed you that the algorithm was trained on a dataset of

9,834 products”.

In both the Feature Transparency and Training Data Transparency conditions, we add a compre-

hension check question verifying that participants understood the transparency description. We also

remind participants of the transparency description when predicting demand with the algorithm for

each of the 20 products in Step 5; screenshots are included in Appendix F. For convenience, we

define CNT , CFT , and CTDT to be the set of participants assigned to the No Transparency, Feature

Transparency, and Training Data Transparency conditions, respectively.

5.2. Results

Our analyses include data from 521 Prolific participants who passed the comprehension check

criteria by answering at least three of five questions correctly on their first try5. By randomly

3 We pre-registered our sample size, treatment conditions, data exclusion criteria, and planned analyses (see https://
aspredicted.org/6KL_L8F). All statistical tests reported in the results are pre-registered unless otherwise indicated.
4 Recall that Feature A corresponds to xpub

i in our model.
5 525 workers were recruited to complete the study, each with a 99%+ approval rating, 25+ previous submissions, and English listed
as a fluent language. Among the 521 participants, 229 were male, 307 had a Bachelor’s or advanced degree, 412 were White, and
291 had a yearly household income of $50,000 or more.

https://aspredicted.org/6KL_L8F
https://aspredicted.org/6KL_L8F
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assigning participants across conditions, we had 172 participants in the No Transparency condition,

171 in the Feature Transparency condition, and 178 in the Training Data Transparency condition.

The mean study completion time was 30.80 minutes, and the mean bonus payment was $1.54.

5.2.1. Weight on Algorithm Results Figure 4 summarizes the results on participants’ median

weight on algorithm (MedWOA). We are most interested in how the difference in average

MedWOA between products with low and high impact of private features compares across par-

ticipants who are provided feature transparency vs. no transparency. If feature transparency indeed

mitigates the bias towards naı̈ve advice weighting, we should see a larger difference in average

MedWOA for participants provided feature transparency, i.e.,∑
j∈CFT

MedWOAL
j

|CFT |
−

∑
j∈CFT

MedWOAH
j

|CFT |
≥

∑
j∈CNT

MedWOAL
j

|CNT |
−

∑
j∈CNT

MedWOAH
j

|CNT |
.

(20)

When we regress the MedWOA for each participant on impact of private feature interacted with

transparency type, clustering standard errors by participant, we indeed find a significant coeffi-

cient on the interaction term (β = 0.173, p < 0.0001), supporting Hypothesis 3. Similarly, we find

that feature transparency mitigates naı̈ve advice weighting behavior more than training data trans-

parency; namely, we repeat the same analysis as above replacing no transparency with training data

transparency (β = 0.178, p < 0.0001). Finally (as an ex post test), we find that training data trans-

parency does not significantly mitigate naı̈ve advice weighting behavior (β =−0.005, p= 0.871).

Results are detailed in Table 2.

Our results confirm Hypothesis 3 by showing that feature transparency mitigates naı̈ve advice

weighting behavior by helping humans recognize when they have impactful private features that

warrant a substantial deviation from the algorithm. Further, we show that a different kind of trans-

parency – training data transparency – is not effective in mitigating naı̈ve advice weighting behav-

ior because it is not designed to help participants effectively discriminate between situations where

they should vs. should not adhere to the algorithm.

5.2.2. Prediction Error Results We next present results showing the impact of transparency type

on prediction error; Figure 5 summarizes results on participants’ root median squared error. As

expected, within each condition, participants have larger prediction error on products with high

impact of private feature vs. low impact, since the algorithm provides considerably less value when

the impact of private feature is high.
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Figure 4 Median weight on algorithm results are averaged (mean) by transparency type, separately for low

and high impact of private feature; standard error bars are shown.

Table 2 Regression Analyses of MedWOA by Impact of Private Feature and Transparency Type

Dependent Variable: MedWOA
Model: Feature vs. No Transp Feature vs. Training Data Training Data vs. No Transp

Variables
(Intercept) 0.2786∗∗∗ 0.3038∗∗∗ 0.2786∗∗∗

(0.0234) (0.0249) (0.0234)
Low |vi| 0.0953∗∗∗ 0.0902∗∗∗ 0.0953∗∗∗

(0.0205) (0.0231) (0.0205)
Feature Transparency -0.0967∗∗∗ -0.1219∗∗∗

(0.0319) (0.0330)
Low |vi| × Feature Transparency 0.1727∗∗∗ 0.1778∗∗∗

(0.0352) (0.0368)
Training Data Transparency 0.0252

(0.0342)
Low |vi| × Training Data Transparency -0.0050

(0.0309)

Fit statistics
Observations 686 698 700
R2 0.09028 0.08604 0.02153
Adjusted R2 0.08627 0.08209 0.01732

Clustered (Participant) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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Figure 5 Root median squared error results are averaged (mean) by transparency type, separately for low

and high impact of private feature; standard error bars are shown. Additionally, the mean RMedSE is reported

for the algorithm and the best prediction benchmark.

Our primary interest is studying how the prediction error of participants who are provided fea-

ture transparency compares to participants given no transparency. As detailed in Hypothesis 4, we

hypothesize that feature transparency will lead to smaller prediction error for both subsets of prod-

ucts with low and high impact of private feature. We first consider only products with a low impact

of private feature, and we use a one-sided t-test to test whether participants provided with feature

transparency have smaller prediction error than participants provided with no transparency:∑
j∈CFT

RMedSEL
j

|CFT |
≤

∑
j∈CNT

RMedSEL
j

|CNT |
. (21)

As shown in Figure 5, participants in the Feature Transparency condition had a significantly

smaller mean RMedSE compared to participants in the No Transparency condition for products

with low impact of private feature (t(340.99) = 2.718, p= 0.0035).

We next repeat this analysis on products with a high impact of private feature; we test whether∑
j∈CFT

RMedSEH
j

|CFT |
≤

∑
j∈CNT

RMedSEH
j

|CNT |
. (22)

As shown in Figure 5, participants in the Feature Transparency condition had a significantly

smaller RMedSE compared to participants in the No Transparency condition for products with

high impact of private feature (t(339.98) = 3.536, p= 0.0002). When considering overall RMedSE
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across products with both low and high impact of private feature, we also find that participants in

the Feature Transparency condition had a significantly smaller RMedSE compared to participants

in the No Transparency condition (t(334.38) = 4.112, p < 0.0001).

Similarly, we can compare prediction errors across participants who are provided feature trans-

parency vs. training data transparency. We find that participants in the Feature Transparency con-

dition had a smaller mean RMedSE compared to participants in the Training Data Transparency

condition for products with low impact of private feature (t(303.85) = 1.331, p= 0.0921), as well

as for products with high impact of private feature (t(342.58) = 3.186, p = 0.0008); considering

overall RMedSE, we find that feature transparency leads to significant improvements (t(283.66) =

2.550, p = 0.0057). As expected, training data transparency is less effective in mitigating naı̈ve

advice weighting behavior because it is not designed to help participants effectively discriminate

between situations where they should vs. should not adhere to the algorithm.

Together, our results confirm Hypothesis 4 by showing that participants who are provided feature

transparency perform better for both subsets of products with low impact and high impact of private

features, compared to participants given no transparency or training data transparency.

5.3. Additional Analyses and Discussion

We report several supplementary analyses in Appendix C.

Text Analysis of Free-Response Question We included an open-ended question at the end of the

study asking participants to explain their decision-making process. Ex post text analysis indicates

that Feature Transparency causes people to be 32% less likely to mention “averaging” but 31%

more likely to mention “adjusting.” Moreover, regression analysis reveals that people who mention

“adjusting” had an 18% lower prediction error and suffered significantly less from naı̈ve advice

weighting than participants who mention “averaging”.

Supplementary DV We can directly examine participants’ adjustment errors by defining a new

absolute percent adjustment error (APAE) dependent variable (i.e., how far away a participant’s

adjustment from the algorithm’s recommendation is from the optimal adjustment). It is zero when

the adjustment is optimal and becomes more positive as the adjustment is further from optimal.

Consistent with the patterns with RMedSE, we find that participants’ median APAE are significantly

lower in Feature Transparency than in No Transparency or Training Data Transparency.

Time There are no significant differences between treatment conditions in the average time for

initial predictions nor final predictions.
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In summary, Study 2 shows that providing feature transparency – training humans on what infor-

mation the algorithm does use – helps to mitigate naı̈ve advice weighting behavior more effectively

than other types of algorithm transparency (e.g., training data transparency) that uniformly increase

humans’ adherence to the algorithm both when they should and should not do so. That said, sim-

ilar to Study 1, the best prediction benchmark fell outside the advice-weighting region 52% of

the time, yet participants’ final predictions fell within their advice-weighting regions in 92% of

instances under No Transparency, 93% of instances under Training Data Transparency, and 86%

of instances under Feature Transparency. This suggests that our Feature Transparency intervention

only modestly helps humans move away from advice weighting strategies; rather, the benefit of

the intervention seems to primarily be driven by helping humans move away from applying overly

constant weights.

6. Study 3: Improving Feature Transparency

Due to our findings in Study 2, we are motivated to improve upon feature transparency by helping

humans move away from advice weighting strategies. We hypothesize that – in addition to feature

transparency – nudging humans to follow a strategy in which they anchor on the algorithm and

adjust based only on their private features may further improve their use of algorithmic predictions.

Study 3 tests this improved feature transparency intervention in an online experiment.

We additionally use Study 3 to generalize some of our prior results to an experimental setup with

several key differences from Studies 1 and 2. In Study 3, we situate participants in a naturalistic

setting where they make demand forecasts for clothing items using information they have intuition

around (e.g., price and advertising spend). We use a more realistic demand model that cannot

easily be intuited, and we increase the complexity of the structure of the private feature (ad spend),

generating it according to a non-negative random variable with a non-zero mean.

6.1. Design

All participants encounter data generated according to a mixed impact of private feature, with three

treatment conditions that differ by information shared when introducing the algorithm.6

6.1.1. Conditions

1. No Transparency. This is similar to the No Transparency condition in Study 2.

6 We pre-registered our sample size, treatment conditions, data exclusion criteria, and planned analyses (see https://
aspredicted.org/P7T_1WC). All statistical tests reported in the results are pre-registered unless otherwise indicated.

https://aspredicted.org/P7T_1WC
https://aspredicted.org/P7T_1WC
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2. Feature Transparency. This is similar to the Feature Transparency condition in Study 2. Par-

ticipants are informed the algorithm uses only price to make its demand predictions.

3. Adjusting Nudge. Participants are provided with all the information as in the Feature Trans-

parency condition and are additionally nudged towards using a strategy of anchoring on the

algorithm’s predictions and adjusting them using only private features.

6.1.2. Behind the Scenes: Data Generation For clothing item i, actual demand is generated as

Yi =


1250(Xpub

i − 25)−0.3+70+1.2Xpriv
i + ϵi Xpub

i ≤ 99

1250(Xpub
i − 70)−0.3− 45+1.2Xpriv

i + ϵi 99<Xpub
i ≤ 149

1250(Xpub
i − 120)−0.3− 160+1.2Xpriv

i + ϵi 149<Xpub
i

where ϵi is drawn from a normal distribution with mean 0 and standard deviation 5, Xpub
i repre-

sents price and is randomly sampled from {54,59,64,69, ...,194,199} reflecting common prices

for clothing items, and Xpriv
i represents advertising spend and is drawn from a discrete uniform

distribution with support {90, 110} with probability 0.5 and {0, 50}
⋃

{150, 200} with probability

0.5. This demand model mimics a constant elasticity demand function where demand exponen-

tially decreases as price (Xpub
i ) increases, with discontinuities leading to larger drops in demand as

price increases from $99 to $100 and $149 to $150.

The algorithm’s demand prediction is generated by the equation:

Yi =


1250(Xpub

i − 25)−0.3+70+1.2 ∗ 100 Xpub
i ≤ 99

1250(Xpub
i − 70)−0.3− 45+1.2 ∗ 100 99<Xpub

i ≤ 149

1250(Xpub
i − 120)−0.3− 160+1.2 ∗ 100 149<Xpub

i

Note that in the last term, the 100 comes from the fact that E[Xpriv
i ] = 100. Thus, the impact of

private feature is Vi = 1.2(Xpriv
i − 100).

6.1.3. Participant Experience Study 3 follows a similar participant experience as in Study 2 but

with the following key changes in addition to the contextual setting and data generation process.

Select screenshots are included in Appendix G.

In Step 4: Algorithm Introduction, participants in this study are given additional information

about the algorithm and strategies for using it based on their assigned treatment condition. Namely,

all participants are shown a row below the summary table with the average value for each displayed
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column (e.g., average price, average ad spend, etc.). Participants in the Feature Transparency and

Adjusting Nudge conditions are told, “The company has informed you that the algorithm uses only

Price to make its demand forecasts. It doesn’t have access to any other information.” Participants in

the Adjusting Nudge condition are also told, “The algorithm optimally uses the price information,

but you may have extra information beyond price that the algorithm doesn’t have access to. The

algorithm assumes an average value of any extra information when making a forecast; therefore

the algorithm makes great forecasts when your extra information is close to its average value,

but not when your extra information is far from its average value. Therefore, we recommend you

collaborate with the algorithm using the following strategy: Follow the algorithm when your extra

information is close to its average value. Only override the algorithm if your extra information

is far from its average value. If you override, focus on using your extra information to adjust the

algorithm up or down.”

In Step 5: Demand Predictions with Algorithm, unlike in Studies 1 and 2, in Study 3, participants

are not asked for an initial demand prediction ŷiniti . We made this choice in order to try to prevent

people in the Adjusting Nudge condition from anchoring on their initial prediction, and we chose

to make this consistent across all three conditions to ensure that any differences we see across

conditions are not due to the absence of eliciting ŷiniti . For participants in the Adjusting Nudge

condition, before asking for ŷfinali , we ask “Do you have any extra information that is far from its

average value?” If they select “No, I’ll use the algorithm,” then the algorithm’s demand prediction,

ŷalgi , is recorded as their final demand prediction, ŷfinali . If they select “Yes, my extra information

is far from its average value and I’d like to override the algorithm,” then they are asked for their

final demand prediction, ŷfinali . Here, participants are prompted with the strategy to, “Use only

your extra information to adjust the algorithm’s forecast up or down.”

6.2. Results

Our analyses include data from 549 Prolific participants who successfully passed the comprehen-

sion check criteria by answering at least three of four questions correctly on their first try7. By

randomly assigning participants across conditions, we had 183 participants in each condition. The

mean study completion time was 29.39 minutes, and the mean bonus payment was $1.378.

We first present results showing the impact of transparency type on participants’ root median

squared error (Figure 6). Our primary interest is studying how the prediction error of participants

7 600 workers were recruited to complete the study who had not previously completed Study 2, each with a 99%+ approval rating,
25+ previous submissions, and English listed as a fluent language. Among the 549 participants, 275 were male, 321 had a Bachelor’s
or advanced degree, 382 were White, and 342 had a yearly household income of $50,000 or more.
8 Participants received a bonus of $7 – $0.08 × (Root Mean Squared Error) based on their demand predictions in Steps 3 and 5.
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Figure 6 Root median squared error results are averaged (mean) by transparency type; standard error bars

are shown. Additionally, the mean RMedSE is reported for the algorithm and the best prediction benchmark.

who are provided with feature transparency paired with an adjusting nudge compares to partici-

pants given either no transparency or feature transparency alone. Using a one-sided t-test, we find

that participants in the Adjusting Nudge condition had a significantly smaller RMedSE compared to

participants in the No Transparency condition (t(273.60) = 3.850, p < 0.0001). Additionally, using

a one-sided t-test, we find that participants in the Adjusting Nudge condition had a significantly

smaller RMedSE compared to participants in the Feature Transparency condition (t(361.44) =

3.109, p= 0.0010). Together, these results confirm Hypothesis 5, showing that participants who are

provided with the adjusting nudge have lower prediction error compared to participants given no

transparency or feature transparency alone. Furthermore, we replicate our results in Section 5.2.2

across a contextual setting and different data generation process: we find that participants who are

provided with feature transparency have a lower prediction error compared to participants given

no transparency (t(260.90) = 1.936, p= 0.0270). Note that we cannot calculate WOA to replicate

our results in Section 5.2.1 since we do not elicit ŷiniti in Study 3.

To understand how the adjusting nudge drives further improvement in decreasing participants’

prediction error relative to feature transparency alone, we first examine whether participants pro-

vided with the adjusting nudge have a lower prediction error for clothing items with low impact

of private feature.9 Since our nudge explains that adjustments should only be made when the pri-

vate feature is far from its average value, we would expect smaller adjustments – and therefore

9 We define low impact of private feature clothing items as those where xpriv
i (ad spend) is between $90 to $110 (inclusive) while

high impact of private feature clothing items are those where xpriv
i is between $0 to $50 or $150 to $200 (inclusive).



Balakrishnan, Ferreira, and Tong: Improving Human-Algorithm Collaboration 31

better predictions – when the impact of private features is low. Using a one-sided t-test, we indeed

find that participants in the Adjusting Nudge condition had a significantly smaller RMedSE on low

impact of private feature clothing items (RMedSE = 9.4) compared to participants in the Feature

Transparency condition (RMedSE = 19.3) (t(293.25) = 6.776, p < 0.0001). The graph of results

split by low and high impact of private features is included in Appendix D.1.

We next examine whether under the adjusting nudge, participants more frequently adjust the

algorithm’s predictions in the correct direction, indicating they are no longer advice weighting and

instead using only private features to adjust the algorithm. We define a participant’s adjustment of

the algorithm’s prediction as being in the correct direction iff the following holds:

(ŷalgi ≥ ŷfinali ∧ ŷalgi ≥ y∗i )∨ (ŷalgi ≤ ŷfinali ∧ ŷalgi ≤ y∗i ).

Participants provided with Feature Transparency have an average rate of making adjustments to

the algorithm in the correct direction of 74.4% (SD = 15.386) while participants provided with

the Adjusting Nudge have an average rate of adjustments in the correct direction of 93.5% (SD=

9.467). A one-sided t-test reveals this difference is significant with participants in the Adjusting

Nudge condition making significantly more frequent adjustments to the algorithm in the correct

direction (t(302.53) =−14.301, p < 0.0001). See Appendix D.2 for more details.

6.3. Discussion

Study 3 confirms our hypothesis that feature transparency can be further improved by educating

humans to use a strategy of anchoring on algorithmic predictions and adjusting based only on their

private features. Our results suggest that our improved intervention – pairing feature transparency

with this adjusting nudge – helps humans overcome both reasons why naı̈ve advice weighting

is suboptimal. Namely, feature transparency primarily helps humans move away from overly-

constant weights, and the adjusting nudge further helps humans move away from advice weighting

heuristics in general.

7. Conclusion
This paper proposes and provides experimental evidence that people’s algorithm overrides are

biased towards naı̈ve advice weighting, taking a constant weighted average of the algorithm’s pre-

diction and their own prediction without the algorithm. This causes people to over-adhere to the

algorithm when they have highly valuable private information and under-adhere to the algorithm

when they do not, as well as frequently adjust the algorithm in the incorrect direction. However,
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providing people with feature transparency and pairing it with education on adjusting algorith-

mic predictions based only on private information can help mitigate their bias towards NAW and

improve predictive performance.

Our results generate insights for managers seeking to design algorithms and how they inter-

face with humans. First, we help identify when human-algorithm collaborative performance is

most hurt by NAW: when humans sometimes have valuable private information. In these settings,

interventions that uniformly increase people’s trust in the algorithm (as many types of algorithm

transparency are designed to do) do not help address the underlying issue. Instead, interventions

such as feature transparency – which are designed to help people discern when they have more or

less valuable private information – are more appropriate. Because there are a plethora of types of

algorithm transparency (see §2.3) each with their own goals in changing how people interact with

the algorithm, it is important for system designers to understand when they are in a situation which

warrants addressing NAW rather than a different fundamental issue (e.g., incentive or trust issues).

Second, by illuminating why feature transparency and education on adjusting strategies helps,

our results provide insights for algorithm developers. We recommend that algorithms are designed

so that (i) features used in the algorithm can be communicated and explained to non-experts, and

(ii) features are chosen in such a way that people correctly recognize when they have private

information that warrants deviation. Such guidelines can help algorithm designers with feature

engineering as well as choosing amongst algorithms of different levels of complexity and amongst

different sets of features that have similar predictive performance (e.g., Xin et al. 2022).

Finally, our results shed light on when system designers should let humans override algorithms

in general. Letting humans perform the final aggregation task subjects the system to human cogni-

tive limitations and noise, which leads some experts to suggest avoiding this setup when possible

(e.g., Kahneman et al. 2022). However, even when the organizational setting does not require a

human to have final decision authority, our results suggest that we should still let humans have over-

ride authority when they have access to information that is unknown to the algorithm but predictive

of the outcome. In these types of settings, letting humans override the algorithm can potentially

add more value through incorporating their private information than harm by exposing the system

to their noise and other biases. Of course, we also recommend that system designers work to iden-

tify, collect, and codify private information if possible. In general, we see research opportunity in

improving our understanding of how to develop systems in which humans and algorithms focus

and hone their relative strengths to enhance their long-run collaborative performance.
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Fügener A, Grahl J, Gupta A, Ketter W (2022) Cognitive challenges in human–artificial intelligence collaboration:

Investigating the path toward productive delegation. Information Systems Research, 33(2):678–696.

Gebru T, Morgenstern J, Vecchione B, Vaughan JW, Wallach H, III HD, Crawford K (2021) Datasheets for datasets.

Communications of the ACM, 64(12):86–92.

Gino F, Moore DA (2007) Effects of task difficulty on use of advice. Journal of Behavioral Decision Making, 20(1):21–

35.

Green B (2022) The flaws of policies requiring human oversight of government algorithms. Computer Law & Security

Review, 45:105681.

Harvey N, Fischer I (1997) Taking advice: Accepting help, improving judgment, and sharing responsibility. Organi-

zational Behavior and Human Decision Processes, 70(2):117–133.

Hind M, Houde S, Martino J, Mojsilovic A, Piorkowski D, Richards J, Varshney KR (2020) Experiences with improv-

ing the transparency of AI models and services. CHI Conference on Human Factors in Computing Systems.

Hoffman M, Kahn LB, Li D (2018) Discretion in hiring. The Quarterly Journal of Economics, 133(2):765–800.

Ibanez MR, Clark JR, Huckman RS, Staats BR (2018) Discretionary task ordering: Queue management in radiological

services. Management Science, 64(9):4389–4407.

Ibrahim R, Kim SH (2019) Is expert input valuable? The case of predicting surgery duration. Seoul Journal of Business,

25(2):1–34.

Ibrahim R, Kim SH, Tong J (2021) Eliciting human judgment for prediction algorithms. Management Science,

67(4):2314–2325.

Kahneman D, Sibony O, Sunstein C (2022) Noise (HarperCollins UK).

Kesavan S, Kushwaha T (2020) Field experiment on the profit implications of merchants’ discretionary power to

override data-driven decision-making tools. Management Science, 66(11):5182–5190.

Khosrowabadi N, Hoberg K, Imdahl C (2022) Evaluating human behaviour in response to AI recommendations for

judgemental forecasting. European Journal of Operational Research, 303(3):1151–1167.

Kim SH, Song H (2022) How digital transformation can improve hospitals’ operational decisions. Harvard Business

Review.

Lage I, Chen E, He J, Narayanan M, Kim B, Gershman SJ, Doshi-Velez F (2019) Human evaluation of models built

for interpretability. AAAI Conference on Human Computation and Crowdsourcing, 7(1):59–67.

Lakkaraju H, Bastani O (2020) ”How do I fool you?”: Manipulating user trust via misleading black box explanations.

AAAI/ACM Conference on AI, Ethics, and Society, 79–85.
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Appendix A: Proofs

Proof of Proposition 1: We can rewrite the objective function as follows:

E
[(
Yi − (λŶ alg

i +(1−λ)Ŷ init
i )

)2]
=E

[(
λ(Yi − Ŷ alg

i )+ (1−λ)(Yi − Ŷ init
i )

)2]
= V ar

[
λ(Yi − Ŷ alg

i )+ (1−λ)(Yi − Ŷ init
i )

]
= λ2V ar

[
(Yi − Ŷ alg

i )
]
+(1−λ)2V ar

[
(Yi − Ŷ init

i )
]

= λ2E
[
(Yi − Ŷ alg

i )2
]
+(1−λ)2E

[
(Yi − Ŷ init

i )2
]
.

The first equality simply distributes Yi into λYi and (1−λ)Yi. The second equality follows from V ar[X] =E[X2]−
E[X]2 and because E[Yi − Ŷ init

i ] = E[Yi − Ŷ alg
i ] = 0 from Assumption 1. The third equality follows from the inde-

pendence in Assumption 2. The final equality again leverages V ar[X] =E[X2]−E[X]2 and Assumption 1.

The first order conditions are

0 = 2λE
[
(Yi − Ŷ alg

i )2
]
+(2λ− 2)E

[
(Yi − Ŷ init

i )2
]

and solving for λ gives λNAW , which is between 0 and 1 because E
[
(Yi − Ŷ alg

i )2
]

and E
[
(Yi − Ŷ init

i )2
]

are both

nonnegative. The second order conditions confirm convexity.

Proof of Proposition 2: The SAW problem is separable into problems SAWL and SAWH , where

SAWL : min
λL∈[0,1]

E
[(
Yi − (λLŶ

alg
i +(1−λL)Ŷ

init
i )

)2|(Xpub
i ,Xpriv

i )∈ SL

]
P((Xpub

i ,Xpriv
i )∈ SL) (23)

SAWH : min
λH∈[0,1]

E
[(
Yi − (λH Ŷ

alg
i +(1−λH)Ŷ

init
i )

)2|(Xpub
i ,Xpriv

i )∈ SH

]
P((Xpub

i ,Xpriv
i )∈ SH). (24)

Now, P((Xpub
i ,Xpriv

i ) ∈ SL) and P((Xpub
i ,Xpriv

i ) ∈ SH) do not depend on λL or λH . Thus, the process for solving

for the optimal weight in each of these problems is the same as that in NAW. Doing so yields

λSAW
L =

E[(Yi − Ŷ init
i )2|(Xpub

i ,Xpriv
i )∈ SL]

E[(Yi − Ŷ init
i )2|(Xpub

i ,Xpriv
i )∈ SL] +E[(Yi − Ŷ alg

i )2|(Xpub
i ,Xpriv

i )∈ SL]

=
E[(Yi − Ŷ init

i )2]

E[(Yi − Ŷ init
i )2] +E[(Yi − Ŷ alg

i )2|(Xpub
i ,Xpriv

i )∈ SL]
.

where the second equality follows from the independence Assumption 2. Similarly,

λSAW
H =

E[(Yi − Ŷ init
i )2]

E[(Yi − Ŷ init
i )2] +E[(Yi − Ŷ alg

i )2|(Xpub
i ,Xpriv

i )∈ SH ]
.
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Now, the definition of the partitions

E[(Vi)
2|(Xpub

i ,Xpriv
i )∈ SL]<E[(Vi)

2|(Xpub
i ,Xpriv

i )∈ SH ]

implies

E[(Yi − Ŷ alg
i )2|(Xpub

i ,Xpriv
i )∈ SL]<E[(Yi − Ŷ alg

i )2|(Xpub
i ,Xpriv

i )∈ SH ].

And, by the law of total expectation, we have

E[(Yi − Ŷ alg
i )2|(Xpub

i ,Xpriv
i )∈ SL]<E[(Yi − Ŷ alg

i )2]<E[(Yi − Ŷ alg
i )2|(Xpub

i ,Xpriv
i )∈ SH ].

Combining this inequality with the expressions for λSAW
L , λSAW

H , λNAW gives λSAW
H < λNAW < λSAW

L . The second

part of the proposition follows from the fact that the NAW solution is feasible to the SAW problem.

Proof of Proposition 3: We can write the probability as follows:

P
(
min{Ŷ alg

i , Ŷ init
i } ≤ Y ∗

i ≤max{Ŷ alg
i , Ŷ init

i }
)

= P
(
Ŷ init
i ≤ Y ∗

i |Y ∗
i < Ŷ alg

i

)
P[Y ∗

i < Ŷ alg
i ] +P

(
Y ∗
i ≤ Ŷ init

i |Ŷ alg
i ≤ Y ∗

i

)
P[Ŷ alg

i ≤ Y ∗
i ].

= P
(
Ŷ init
i ≤ Y ∗

i

)
P[Y ∗

i < Ŷ alg
i ] +P

(
Y ∗
i ≤ Ŷ init

i

)
P[Ŷ alg

i ≤ Y ∗
i ]

=
1

2
.

The first equality follows from the law of total probability. The second equality holds because Ŷ init
i −Y ∗

i and Ŷ alg
i −

Y ∗
i are independent from Assumption 2. The last equality follows from the median-unbiased assumption and the

assumption that P[Ŷ init
i = Y ∗

i ] = P[Ŷ alg
i = Y ∗

i ] = 0.

Appendix B: Experiment 1: Supplementary Analyses

B.1. Experiment 1: Regression Analysis

In order to test whether participants who observe a mixed exposure set more variably weight the algorithm’s rec-

ommended predictions across high vs. low impact of private feature products relative to participants who observe a

single exposure set (Equation 17), we use a regression model. A t-test is not appropriate for this analysis given that

participants in the Mixed Impact of Private Feature treatment condition generate two MedWOA observations each

while participants in the Always Low Impact of Private Feature and Always High Impact of Private Feature conditions

generate one MedWOA observation each, therefore differences in MedWOA by low vs. high impact of private fea-

ture products are within participant for those in the Mixed Impact of Private Feature treatment condition and across

participants in the other two conditions.

To conduct this analysis, we use a fully-interacted regression model with an outcome of MedWOA regressed on a

binary variable indicating the Exposure Set type (0 = Mixed Exposure Set, 1 = Single Exposure Set), interacted with

a binary variable indicating the Impact of Private Features (0 = High Impact, 1 = Low Impact). Then our regression

model is the following where j indexes each participant and k indexes a set of products they observe (Low or High

Impact of Private Feature):

MedWOAk
j = β0 +β1Low Impactkj +β2Single Exposure Setj +β3Low Impactkj ×Single Exposure Setj (25)
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Then β0 =
∑

j∈CM
MedWOAH

j

|CM | , β0 + β1 =
∑

j∈CM
MedWOAL

j

|CM | , β0 + β2 =
∑

j∈CH
MedWOAH

j

|CH | , and β0 + β1 + β2 + β3 =∑
j∈CL

MedWOAL
j

|CL| . Equation 17 then reduces to:

(β0 +β1)− (β0)≤ (β0 +β1 +β2 +β3)− (β0 +β2) (26)

which is equivalent to determining whether β3 ≥ 0. In the below table we see the coefficient in the interaction term

(corresponding to β3) is in fact positive and significant.

Table B.1 The Effect of High vs. Low Impact Private Features and Mixed vs. Single Exposure Sets on

Participants’ Median Weight on Algorithm

Dependent Variable: MedWOA
Model: (1)

Variables
(Intercept) 0.4016∗∗∗

(0.0352)
Low Impact of Private Feature (Low |vi|) 0.0223

(0.0220)
Single Exposure Set -0.2143∗∗∗

(0.0454)
Low |vi| × Single Exposure Set 0.4945∗∗∗

(0.0462)

Fit statistics
Observations 478
R2 0.22156
Adjusted R2 0.21664

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

B.2. Experiment 1: Task Level Analyses

We repeat similar analyses as in 4.2 but conducted at the task level (instead of the participant/product-type level). As

dependent variables we use participants’ windsorized WOA per task to examine algorithmic advice-taking behavior

and final absolute error per task as a measure of prediction error. We add task number fixed effects and cluster all

standard errors by participant. We find very similar results when these analyses are conducted on a task level as on

a participant/product-type level, observing both a bias towards naı̈ve advice weighting and its negative impact on

prediction accuracy. In Table B.2, focusing on the last three columns we find support for Hypothesis 1, observing

that (1) across products with a low impact of private feature, participants exposed to a mixed exposure set place less

weight on the algorithm’s prediction than participants exposed to a single exposure set, (2) across products with a high

impact of private feature, participants exposed to a mixed exposure set place more weight on the algorithm’s prediction

than participants exposed to a single exposure set, and (3) participants exposed to a single exposure set more variably

weight the algorithm’s predictions across products with low vs. high impact of private feature compared to participants

exposed to a mixed exposure set. In Table B.3, focusing on the last two columns we find support for Hypothesis 2,

observing that for products with a low impact of private feature and for products with a high impact of private feature,
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participants who experience a mixed exposure set have larger prediction errors than participants who experience a

single exposure set.

Table B.2 Participants’ Task-Level Weight on Algorithm Results

Dependent Variable: WOA (Winsorized)
Model: Single Expo Set Mixed Expo Set Low |vi| High |vi| All Data

Variables
Low |vi| 0.4172∗∗∗ 0.0258 0.0246

(0.0332) (0.0169) (0.0167)
Single Exposure Set 0.2136∗∗∗ -0.1791∗∗∗ -0.1791∗∗∗

(0.0355) (0.0366) (0.0366)
Low |vi| × Single Exposure Set 0.3926∗∗∗

(0.0371)

Fixed-effects
Task Number Yes Yes Yes Yes Yes

Fit statistics
Observations 4,743 2,364 3,549 3,558 7,107
R2 0.23962 0.01077 0.06691 0.05338 0.16736
Within R2 0.23804 0.00103 0.06284 0.04779 0.16582

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table B.3 Participants’ Task-Level Prediction Error Results

Dependent Variable: Final Absolute Error (|ŷfinal
ij − yi|)

Model: Single Expo Set Mixed Expo Set Low |vi| High |vi|

Variables
Low |vi| -32.41∗∗∗ -28.05∗∗∗

(5.178) (2.868)
Single Exposure Set -12.48∗∗ -7.937

(5.925) (5.405)

Fixed-effects
Task Number Yes Yes Yes Yes

Fit statistics
Observations 4,800 2,380 3,616 3,564
R2 0.09269 0.04946 0.01522 0.00880
Within R2 0.08946 0.04642 0.01228 0.00400

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

B.3. Experiment 1: Learning Over Time

In this ex post analysis, we test whether participants show evidence of learning or fatiguing over time. Examining the

data from Step 5, we first calculate each participant j’s weight on algorithm for each product in task number i giving

us every WOAij . We then aggregate these metrics across all four conditions (exposure set × impact of private feature)
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per task number, giving us the mean WOA for each condition for products 1 through 20. We plot these mean WOA’s

across time in Figure 7. From this plot, we see some evidence of learning. Participants in the Always High Impact of

Private Feature condition appear to be weighting the algorithm’s recommendations less over time, as indicated by the

downward slope of their best fit line. Similarly, participants in the Mixed Impact of Private Feature condition across

High |vi| products also appear to be weighting the algorithm’s recommendations less over time. For conditions with

Low Impact of Private Feature, participants appear to be weighting the algorithm’s recommendation slightly more over

time, as indicated by positive slopes of their best fit lines.

Figure 7 Weight on algorithm results across task number (time). WOA’s are averaged (mean) by exposure

set, separately for low and high impact of private feature; best fit lines per condition are shown.

We complement this visual evidence with regression analyses. For each of the four conditions, we run a separate

regression, looking at the effects of task number on WOA, with participant fixed effects and standard errors clustered

by participant. Regression results are shown below in Table B.4. We observe similar patterns where participants in

both the single exposure set and mixed exposure set conditions learn to weight the algorithm’s recommendations

significantly less over time for the products for which they have high impact of private features. For the products where

they have low impact of private features, participants in both the single and mixed exposure set conditions directionally

appear to learn to weight the algorithm’s advice more across time, however this learning effect is not statistically

significant.
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Table B.4 The effects of task number (time) on WOA per condition.

Dependent Variable: WOA (Windsorized)
Model: Single Expo Set Mixed Expo Set Single Expo Set Mixed Expo Set

Low |vi| Low |vi| High |vi| High |vi|

Variables
Task Number 0.0006 0.0017 -0.0024∗∗ -0.0047∗∗

(0.0015) (0.0019) (0.0011) (0.0019)

Fixed-effects
ResponseId Yes Yes Yes Yes

Fit statistics
Observations 2,327 1,222 2,416 1,142
R2 0.43508 0.51945 0.51007 0.55711
Within R2 0.00016 0.00114 0.00314 0.00966

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Given that participants are learning across both the Always High Impact of Private Features and Mixed Impact of

Private Features conditions, and given that the rate of learning observed is very low, this learning effect is not enough

to fully counteract naı̈ve advice weighting. We analyze this dynamic by repeating the regression shown in Table B.2

in the far right column separately for tasks 1-5, 6-10, 11-15, and 16-20 and observing how the coefficients on the

interaction term change. Results are shown in Table B.5. We observe that in all four columns, the interaction term is

large and significant indicating that participants in the single exposure set conditions are weighting the algorithm’s

recommendations much more variably across low and high impact of private feature products relative to participants

in the mixed exposure set condition. While this effect is smaller across the last five tasks relative to the first five tasks

(the coefficient on the interaction term decreases) it is still large and significant even across tasks 16-20. This indicates

that while participants in the mixed exposure set are more variably weighting the algorithm’s recommendations across

time depending on the impact of private features for each product, they are still biased towards naı̈ve advice weighting,

not placing as variable weights as a compared to what a more sophisticated advice weighter would do.
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Table B.5 The Effect of High vs. Low Impact Private Features and Mixed vs. Single Exposure Sets on

Participants’ Weight on Algorithm in subsets of tasks over time.

Dependent Variable: WOA (Windsorized)
Task Numbers Subset: 1-5 6-10 11-15 16-20

Variables
Low |vi| 0.0016 0.0036 0.0123 0.0805∗∗∗

(0.0338) (0.0331) (0.0315) (0.0300)
Single Exposure Set -0.1984∗∗∗ -0.1768∗∗∗ -0.1642∗∗∗ -0.1771∗∗∗

(0.0422) (0.0429) (0.0422) (0.0428)
Low |vi| × Single Exposure Set 0.3998∗∗∗ 0.4062∗∗∗ 0.4032∗∗∗ 0.3615∗∗∗

(0.0489) (0.0501) (0.0489) (0.0481)

Fixed-effects
Task Number Yes Yes Yes Yes

Fit statistics
Observations 1,774 1,778 1,773 1,782
R2 0.15781 0.16088 0.16637 0.18591
Within R2 0.15579 0.15987 0.16590 0.18521

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

B.4. Experiment 1: Robustness without Windsorizing WOA

In this set of ex post analyses, we verify our results are robust when we do not windsorize WOA between 0 and 1. We

first repeat the analyses in Section 4.2.1 now defining

unwindsorWOAij =
ŷfinal
ij − ŷinit

ij

ŷalg
i − ŷinit

ij

. (27)

We first test Equation (15), this time replacing all WOAij with unwindsorWOAij . Considering only products

with a low impact of private feature, we again find participants exposed to a mixed exposure set place less weight

on the algorithm than participants exposed to a single exposure set (t(226.62) = −6.124, p < 0.0001). We next test

Equation (16), this time replacing all WOAij with unwindsorWOAij . Considering only products with a high impact

of private feature, we again find participants exposed to a mixed exposure set place more weight on the algorithm than

participants exposed to a single exposure set (t(198.44) = 3.076, p= 0.002). Finally we test Equation (17). When we

regress the median unwindsorWOAij for each participant on impact of private feature interacted with exposure set,

clustering standard errors by participant, we continue to find a significant positive coefficient on the interaction term

(β = 0.469, p < 0.0001). We continue to find that for participants who experience a mixed exposure set, their average

Median unwindsorWOAij is not significantly different for products with a low vs. high impact of private feature

(t(214.90) =−0.750, p= 0.454).

We further repeat our task-level analyses as in Appendix B.2, this time using the unwindsorized weight on algorithm

measure unwindsorWOAij . Given that task-level analyses are heavily biased by outlier values of unwindsorWOAij ,

we minimally trim our data to remove observations where unwindsorWOAij is greater than the top 99.5 percentile

value of unwindsorWOAij (7.227) and less than the bottom 0.5 percentile value (-8.333). This leaves us with 7,036

observations out of the original 7,107 tasks for which we have non-null values, preserving 99% of our data.
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We run regressions with unwindsorWOAij as a dependent variable, adding task number fixed effects and clustering

all standard errors by participant. Results are shown in Table B.6. Focusing on the last three columns, we again find

that for products with a low impact of private feature, participants faced with a single exposure set place significantly

more weight on the algorithm than participants faced with a mixed exposure set; for products with a high impact

of private feature, participants faced with a single exposure set place significantly less weight on the algorithm than

participants faced with a mixed exposure set; and across all participants, participants faced with a single exposure set

weight the algorithm much more variably across products with a low vs. high impact of private feature relative to

participants faced with a mixed exposure set.

Table B.6 Task-Level Results using Unwindsorized Weight on Algorithm.

Dependent Variable: Unwindsorized WOA
Model: Single Expo Set Mixed Expo Set Low |vi| High |vi| All Data

Variables
Low |vi| 0.4765∗∗∗ 0.0514∗ 0.0539∗

(0.0443) (0.0283) (0.0281)
Single Exposure Set 0.2603∗∗∗ -0.1624∗∗∗ -0.1625∗∗∗

(0.0422) (0.0552) (0.0553)
Low |vi| × Single Exposure Set 0.4225∗∗∗

(0.0523)

Fixed-effects
Task Number Yes Yes Yes Yes Yes

Fit statistics
Observations 4,696 2,340 3,507 3,529 7,036
R2 0.09420 0.01185 0.04238 0.01305 0.06527
Within R2 0.09164 0.00114 0.03717 0.00773 0.06350

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

B.5. Experiment 1: Drivers of WOA

In this ex post descriptive analysis we examine how various factors might play a role in determining how participants

choose a weight to place on the algorithm’s predictions (λij) across each task. Past research shows that people rely

less on algorithmic predictions after observing the algorithm make errors (Dietvorst et al. 2015), therefore one of the

factors we examine is the algorithm’s lagged forecasting error on the previously observed product (algorithm’s lagged

absolute error). We further test whether there is an interaction effect between treatment condition and lagged algorithm

error. Similarly, as this research highlights that people are more forgiving of their own forecasting errors, we also

control for participants’ lagged forecasting error (participant’s lagged absolute error). Additionally, we also study the

role of participants’ lagged weight on the algorithm, as a high weight on this factor would lend support to naı̈ve advice

weighting behavior given that it implies participants’ weight on the algorithm are relatively constant from task to task.

Finally, we examine the effect of the current impact of private features (|vi|), as a low weight on this factor would

further indicate participants are naı̈ve advice weighting and not changing their weight on the algorithm to align with

their current impact of private features.
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To conduct this analysis, we run several regression models analyzing our data on a task level, focusing on task

numbers 2 through 20 in order to have lagged metrics on what the participant observes on the previous task. Each

regression model uses each participant’s weight on the algorithm for a given task WOAij as a dependent variable.

Additionally, across all models we control for the participant’s experimental condition as well as for the task number.

Standard errors are clustered by participant. Regression results are presented in Table B.7.

Table B.7 Task-Level Factors Determining Participants’ Current Weight on Algorithm.

Dependent Variable: WOA (Windsorized)
Model: (1) (2) (3) (4)

Variables
Always High |vi| 0.2832∗∗∗ 0.2891∗∗∗ 0.1497∗∗∗ 0.1690∗∗∗

(0.0290) (0.0354) (0.0172) (0.0198)
Mixed |vi| 0.1724∗∗∗ 0.1646∗∗∗ 0.0777∗∗∗ 0.0682∗∗∗

(0.0360) (0.0429) (0.0190) (0.0200)
Always Low |vi| 0.3727∗∗∗ 0.3762∗∗∗ 0.1728∗∗∗ 0.1546∗∗∗

(0.0357) (0.0430) (0.0239) (0.0255)
Lagged Algorithm Abs. Error -0.0006∗∗∗ -0.0006∗∗ -0.0006∗∗∗ -0.0006∗∗∗

(0.0002) (0.0003) (0.0002) (0.0002)
Lagged Participant Abs. Error -0.0002 -0.0002 6.14× 10−6 6.73× 10−6

(0.0003) (0.0003) (0.0001) (0.0001)
Task Number -0.0007 -0.0007 −1.74× 10−5 −2.65× 10−5

(0.0008) (0.0008) (0.0005) (0.0005)
Mixed |vi| × Lagged Algorithm Abs. Error 0.0001

(0.0003)
Always Low |vi| × Lagged Algorithm Abs. Error -0.0018

(0.0024)
Lagged WOA (Windsorized) 0.5011∗∗∗ 0.5011∗∗∗

(0.0227) (0.0227)
|vi| -0.0002

(0.0001)

Fit statistics
Observations 6,754 6,754 6,687 6,687
R2 0.17021 0.17031 0.37857 0.37881
Adjusted R2 0.16960 0.16945 0.37801 0.37816

Clustered (ResponseId) standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Consistent with the literature, in column (1) we observe that there is a significant (albeit very small) effect of the

lagged algorithm’s error on participants’ current weight on the algorithm, with a larger algorithm forecasting error

on the previous task leading to participants weighting the algorithm’s predictions less for the current task. Concur-

rently, there is no significant effect of the participant’s own lagged forecasting error on their current weight on the

algorithm. In column (2), we examine whether there is an interaction effect between the algorithm’s lagged error and

treatment condition and find no evidence for this, indicating that participants treat the algorithm’s past forecasting

errors uniformly across treatment conditions when deciding how much to currently weight the algorithm’s predictions.

In column (3), we further examine the effects of participants’ lagged weight on the algorithm and observe that this
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plays a very large and significant role in determining their current weight on the algorithm. This provides evidence

that participants place relatively constant weights on the algorithm from one task to the next. Finally in column (4) we

find no significant evidence that the impact of private features on the current task plays a role in determining partici-

pants’ current weight on the algorithm, indicating that they are ignoring this information and not differentially placing

weights on the algorithm’s predictions depending on this value.

B.6. Experiment 1: Mediation Analyses

In this ex post mediation analysis, we test and find support that the differences in MedWOA mediate the observed

differences in prediction error. We run separate mediation analyses for products with low vs. high impact of private

features and find evidence that for both Low |vi| and High |vi| products, the indirect effect of exposure set on pre-

diction error via MedWOA is statistically significant (p < 0.0001). This analysis provides additional support for the

mechanism that participants perform systematically worse in the Mixed Impact of Private Feature condition because

they suffer from an overly-constant weight-on-algorithm.

Table B.8 Mediation Analysis for Low Impact of Private Feature products

Causal Mediation Analysis of Exposure Set on RMedSE via MedWOA
Estimate 95% CI Lower 95% CI Upper p-value

Average Causal Mediation Effect -13.226∗∗∗ -20.03 -7.31 <2e-16
Average Direct Effect 2.427 -9.23 14.30 0.724
Total Effect -10.799∗∗ -22.11 -0.11 0.047
Proportion Mediated 1.225∗∗ 0.954 595.51 0.047

Sample Size Used: 238

Nonparametric Bootstrap Confidence Intervals with the BCa Method and 5000 simulations
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1

Table B.9 Mediation Analysis for High Impact of Private Feature products

Causal Mediation Analysis of Exposure Set on RMedSE via MedWOA
Estimate 95% CI Lower 95% CI Upper p-value

Average Causal Mediation Effect -7.139∗∗∗ -12.42 -3.42 <2e-16
Average Direct Effect -2.487 -15.23 8.96 0.712
Total Effect -9.625∗ -20.26 1.29 0.072
Proportion Mediated 0.742∗ -2360.58 0.36 0.072

Sample Size Used: 240

Nonparametric Bootstrap Confidence Intervals with the BCa Method and 5000 simulations
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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B.7. Experiment 1: Step 3 Predictions without the Algorithm

To examine whether participants qualitatively self-reported that they noticed the treatment condition they were in, par-

ticipants were asked to evaluate their performance relative to the algorithm’s after Step 4, where participants selected a

number from 1-5. A one-way ANOVA test was performed to compare the effect of the 3 treatment conditions on self-

reported relative performance. The one-way ANOVA revealed that there was a statistically significant difference in

self-reported relative prediction performance between at least two groups (F (2,356) = 71.57, p < 0.0001). The table

below reports the results of participants’ and the algorithm’s actual prediction error (RMedSE) across conditions in

Step 3 (Demand Predictions without Algorithm), finding significant differences in performance between participants

and the algorithm on average in directions that align with participants’ self evaluations.

Table B.10 Participants’ vs. Algorithm’s mean prediction error in Step 3 by Treatment Condition

Participants’ RMedSE Algorithm’s RMedSE Paired t-test
Always Low |vi| M=34.167 (SD=43.471) M=4.317 (SD=1.020) t(118) = 7.506, p < 0.0001

Always High |vi| M=49.639 (SD=41.737) M=75.303 (SD=7.828) t(120) =−6.699, p < 0.0001

Mixed |vi| M=50.491 (SD=50.916) M=27.191 (SD=20.554) t(118) = 4.502, p < 0.0001

B.8. Experiment 1: Initial Predictions (ŷinit
ij ) Without the Algorithm in Step 3 vs. Step 5

One might be concerned that participants do not seriously answer the “initial” prediction questions in Step 5 because

they are unincentivized and precede algorithmic advice. However, performance with these initial predictions in Step

5 are not significantly different from the predictions without the algorithm in Step 3, which are incentivized. In other

words, we do not find evidence that participants treat these “initial” predictions preceding algorithmic advice any

differently than if they were predicting demand without awareness of the algorithm.

Table B.11 Participants’ mean initial prediction error in Step 5 vs. initial prediction error in Step 3

Step 5 Initial RMedSE Step 3 RMedSE Paired t-test
Low |vi| & Single Expo Set M=32.716 (SD=42.318) M=34.157 (SD=43.471) t(118) =−0.741, p= 0.460

High |vi| & Single Expo Set M=47.873 (SD=41.455) M=49.639 (SD=41.737) t(120) =−0.737, p= 0.4623

Low |vi| & Mixed Expo Set M=50.861 (SD=58.780) M=48.503 (SD=52.360) t(118) = 0.913, p= 0.363

High |vi| & Mixed Expo Set M=53.326 (SD=51.057) M=54.528 (SD=56.316) t(118) =−0.361, p= 0.7191

B.9. Experiment 1: Time to Make Predictions Results

We collected data on the time it took each participant to complete each prediction task, including the time taken to

make each initial prediction without the algorithm and the time taken to make each final updated prediction. In general,

participants’ spend longer making initial predictions for High |vi| products versus Low |vi| products. However, given

an impact of private feature (low vs. high), there are no significant differences across exposure set/treatment conditions.
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Table B.12 Participants’ mean prediction time in Step 5 for initial (ŷinit
ij ) and final (ŷfinal

ij ) predictions

Initial Prediction Time (sec) Final Prediction Time (sec)
Low |vi| & Single Expo Set M=11.556 (SD=9.771) M=7.948 (SD=14.151)
High |vi| & Single Expo Set M=15.766 (SD=18.117) M=7.142 (SD=8.059)
Low |vi| & Mixed Expo Set M=11.054 (SD=9.393) M=6.937 (SD=5.712)
High |vi| & Mixed Expo Set M=15.306 (SD=24.300) M=6.912 (SD=5.140)

Timings are averaged per participant and impact of private feature and means are taken across conditions

Table B.13 Unpaired t-test comparisons of Step 5 prediction time

Sample A Sample B Initial prediction time t-test Final prediction time t-test
Low |vi| & Single Expo Set Low |vi| & Mixed Expo Set t(235.63) = 0.404 t(155.46) = 0.723

p= 0.687 p= 0.471

High |vi| & Single Expo Set High |vi| & Mixed Expo Set t(218.17) = 0.166 t(204.25) = 0.264

p= 0.868 p= 0.792

Low |vi| & Single Expo Set High |vi| & Single Expo Set t(185.02) =−2.246 t(186.62) = 0.541

p= 0.0259 p= 0.589

Low |vi| & Mixed Expo Set High |vi| & Mixed Expo Set t(152.49) =−1.780 t(233.42) = 0.0352

p= 0.0770 p= 0.972

Appendix C: Experiment 2: Supplementary Analyses

C.1. Experiment 2: Advice-Weighting Region Analysis

The best prediction benchmark fell within participants’ advice-weighting regions at proportions similar to in Study 1.

Furthermore, the proportion of instances where the best prediction benchmark was within the advice-weighting region

did not significantly vary across treatment conditions, with average proportions of 46.7% under No Transparency as

well as Training Data Transparency, and 47.9% under Feature Transparency. A one-way ANOVA of the proportion of

instances where the best prediction benchmark requires advice weighting showed no statistically significant differences

across treatment conditions (F (2,519) = 0.001, p= 0.979).

Considering only the subset of products for which the best prediction benchmark is outside the advice-weighting

region, participants under Feature Transparency make final predictions outside of the advice-weighting region in a sig-

nificantly higher proportion of instances (20.6%) compared to participants with No Transparency (9.64%) or Training

Data Transparency (9.46%) (two-sided t-tests: t(275.39) = 4.917, p < 0.0001; t(293.79) = 4.864, p < 0.0001). Over

all products, participants’ final predictions fell within their advice-weighting regions in 91.8% of instances under No

Transparency, 92.5% of instances under Training Data Transparency, and 86.4% of instances under Feature Trans-

parency. Two-sided t-tests reveal this proportion is significantly lower under Feature Transparency than under both

No Transparency and Training Data Transparency (t(317.26) = 3.559, p < 0.001; t(336.227) = 3.873, p < 0.001).

C.2. Experiment 2: Demand Prediction Strategy Text Analysis

Participants were asked at the end of the study to optionally answer the following question: “Was there a particular

strategy you used to make your own demand forecasts? Did you have a specific method for using the algorithm’s

forecasts? Feel free to let us know any strategies you may have used.” We chose to examine 3 strategies that were
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commonly repeated across responses. For each of these three strategies, we created a dictionary of word stems cor-

responding to the strategy. If a participant’s response contained one or more of the word stems corresponding to a

strategy’s dictionary, they were marked as having followed that strategy. Participants could therefore follow multiple

strategies. The strategies examined were:

1. Averaging: This strategy corresponded to naı̈ve advice weighting, where participants took a constantly weighted

average between their initial prediction and the algorithm’s recommended prediction to make a final prediction.

The dictionary for this strategy was: averag, combin, between, middl

2. Adjusting: This strategy mapped to anchoring on the algorithm’s recommended prediction and adjusting it using

only private features to make a final prediction. The dictionary for this strategy was: adjust, modif, adapt, revis

3. Guessing: This strategy corresponded to using some amount of guessing to make a final prediction. The dictio-

nary for this strategy was: guess, gut, random

Table C.1 Percentage of participants in each treatment condition who mention words corresponding to a

particular demand prediction strategy

Transparency Type Mentions Averaging Mentions Adjusting Mentions Guessing
No Transparency M=16.3%, SD=37.0 M=11.6%, SD=32.2 M=27.3%, SD=44.7

Feature Transparency M=11.1%, SD=31.5 M=15.2%, SD=36.0 M=23.4%, SD=42.5
Training Data Transparency M=15.2%, SD=36.0 M=11.8%, SD=32.4 M=24.7%, SD=43.3

Table C.2 The Effects of Each Self-Reported Advice-Taking Strategy on Participants’ Prediction Error

(RMedSE across All Products) and Within-Participant Variability in Weighting the Algorithm (Standard

Deviation of WOA across All Products; Difference in MedWOA across Low vs. High Impact of Private Feature

Products)

Dependent Variables: RMedSE SD(WOA) MedWOAL −MedWOAH

Model: (1) (2) (3)

Variables
(Intercept) 21.31∗∗∗ 0.2735∗∗∗ 0.1422∗∗∗

(0.9087) (0.0060) (0.0179)
Mentions Adjusting -4.582∗∗ 0.0325∗∗ 0.1821∗∗∗

(2.155) (0.0143) (0.0424)
Mentions Averaging -0.8201 0.0104 0.0115

(2.074) (0.0138) (0.0408)
Mentions Guessing 3.604∗∗ 0.0191∗ -0.0676∗∗

(1.670) (0.0111) (0.0328)

Fit statistics
Observations 521 521 521
R2 0.01685 0.01767 0.04086
Adjusted R2 0.01115 0.01197 0.03529

IID standard-errors in parentheses
Signif. Codes: ***: 0.01, **: 0.05, *: 0.1
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C.3. Experiment 2: APAE

We define a participant’s absolute percent adjustment error for task i as

APAEi =

∣∣∣∣ (ŷfinal
i − ŷalg

i )− (y∗
i − ŷalg

i )

y∗
i − ŷalg

i

∣∣∣∣ (28)

where y∗
i is the best prediction benchmark prediction (the true demand minus the random error term). Intuitively,

APAE is how far away a participant’s adjustment (from the algorithm’s recommendation) is from the optimal adjust-

ment. It is zero when the adjustment is optimal and becomes more positive as the adjustment is further from optimal.

Consistent with the patterns with RMedSE, we find that participants’ median APAE are significantly lower in

Feature Transparency than in No Transparency. However, while participants with Feature Transparency do have a

significantly lower APAE relative to participants’ with Training Data Transparency for High |vi| products, they do

not have a significantly lower APAE for Low |vi| products. This indicates that although Training Data Transparency

does not mitigate naı̈ve advice weighting, it may increase participants’ use of the algorithm for products with both

low and high impact of private features. While this will lead to more beneficial participant adjustments for Low |vi|

products where relying on the algorithm is helpful, this increased adherence to the algorithm across the board will not

result in better adjustments for High |vi| products for which relying too heavily on the algorithm can be harmful.

Table C.3 Means of Participants’ median APAE separated by low vs. high impact of private features and

across all products

Low |vi| products High |vi| products All products
No Transparency M=4.314 SD=4.056 M=0.531, SD=0.280 M=1.018, SD=0.924

Feature Transparency M=2.943, SD=2.922 M=0.441, SD=0.279 M=0.874, SD=0.654
Training Transparency M=3.374, SD=3.716 M=0.539, SD=0.371 M=1.101, SD=1.354

Table C.4 T-test Comparisons of Participants’ median APAE separated by low vs. high impact of private

features and across all products

Low |vi| products High |vi| products All products
Feature vs. No Transparency t(305.34) = 3.561 t(341.00) = 2.967 t(302.71) = 1.656

p= 0.000214 p= 0.00161 p= 0.0494

Training vs. No Transparency t(336.97) = 2.239 t(328.60) =−0.251 t(308.02) = 0.0668

p= 0.0129 p= 0.599 p= 0.473

Feature vs. Training Data Transparency t(328.39) = 1.196 t(328.04) = 2.803 t(253.26) = 1.192

p= 0.116 p= 0.00268 p= 0.117

C.4. Experiment 2: Time to Make Predictions

Across the three transparency treatment conditions there are no significant differences in the time taken to make initial

predictions both for low impact and high impact of private feature products. Similarly, for High |vi| products, there is

no significant difference in time taken to make final predictions across treatment conditions. The difference in time to

make final predictions for Low |vi| products is significant, with participants taking longer to make their updated final

predictions under Feature Transparency. This may be partly due to participants with Feature Transparency being more
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likely to follow an “anchor on the algorithm and adjust it” strategy, resulting in longer times to make these adjusted

final predictions, as opposed to using a simpler advice weighting (averaging) heuristic.

Table C.5 Participants’ mean prediction time in Step 5 for initial and final predictions

Initial Prediction Time (sec) Final Prediction Time (sec)
No Transparency & Low |vi| M=12.312 (SD=11.461) M=5.100 (SD=2.956)
No Transparency & High |vi| M=16.579 (SD=27.084) M=7.220 (SD=5.162)

Feature Transparency & Low |vi| M=13.548 (SD=12.391) M=6.780 (SD=4.092)
Feature Transparency & High |vi| M=15.119 (SD=15.644) M=7.272 (SD=4.163)

Training Data Transparency & Low |vi| M=12.646 (SD=10.962) M=5.947 (SD=3.181)
Training Data Transparency & High |vi| M=13.691 (SD=12.982) M=7.156 (SD=4.524)

Timings are averaged per participant and impact of private feature and means are taken across conditions

Table C.6 One-way ANOVA tests of prediction time across 3 transparency treatment conditions

Impact of Private Feature Timing Metric One-way ANOVA
All products Initial Predictions F (2,518) = 0.387, p= 0.679

Low |vi| Initial Predictions F (2,518) = 0.521, p= 0.594

High |vi| Initial Predictions F (2,518) = 0.960, p= 0.384

All products Final Predictions F (2,518) = 0.884, p= 0.414

Low |vi| Final Predictions F (2,518) = 3.177, p= 0.0425

High |vi| Final Predictions F (2,518) = 0.028, p= 0.973

Appendix D: Experiment 3: Supplementary Analyses

D.1. Experiment 3: Prediction Error by Low and High Impact of Private Feature Products
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Figure 8 Root median squared error results are averaged (mean) by transparency type, separately for low

and high impact of private feature; standard error bars are shown. Additionally, the mean RMedSE is reported

for the algorithm and the best prediction benchmark.

D.2. Experiment 3: Rates of Algorithm Prediction Adjustments in the Correct Direction

Figure 9 Each participant’s percentage of algorithm prediction adjustments in the correct direction are

averaged (mean) by transparency type; standard error bars are shown.
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Appendix E: Experiment 1: Participant Experience

E.1. Step 1: Instructions and Comprehension Checks
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E.2. Step 2: Historical Data Review
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E.3. Step 3: Demand Predictions without Algorithm
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E.4. Step 4: Algorithm Introduction
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E.5. Step 5: Demand Predictions with Algorithm
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Appendix F: Experiment 2: Participant Experience Changes

F.1. Feature Transparency
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F.2. Training Data Transparency
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Appendix G: Experiment 3: Participant Experience

G.1. Step 1: Instructions and Comprehension Checks

The following screenshots from Step 1 are identical across all three treatment conditions.
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G.2. Step 2: Historical Data Review

The following screenshots from Step 2 are identical across all three treatment conditions.
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G.3. Step 3: Demand Predictions without Algorithm

The following screenshots from Step 3 are identical across all three treatment conditions.

G.4. Step 4: Algorithm Introduction - No Transparency

The following screenshots from Step 4 are presented for the No Transparency treatment condition.
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G.5. Step 4: Algorithm Introduction - Feature Transparency

The following screenshots from Step 4 are presented for the Feature Transparency treatment condition.
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G.6. Step 4: Algorithm Introduction - Adjusting Nudge

The following screenshots from Step 4 are presented for the Adjusting Nudge treatment condition.
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G.7. Step 5: Demand Predictions with Algorithm - No Transparency

The following screenshots from Step 5 are presented for the No Transparency treatment condition.
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G.8. Step 5: Demand Predictions with Algorithm - Feature Transparency

The following screenshots from Step 5 are presented for the Feature Transparency treatment condition.
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G.9. Step 5: Demand Predictions with Algorithm - Adjusting Nudge

The following screenshots from Step 5 are presented for the Adjusting Nudge treatment condition.
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If the participant selects “No, I’ll use the algorithm,” then the algorithm’s demand prediction, ŷalg
i , is recorded as

their final demand prediction, ŷfinal
i . If they select “Yes, my extra information is far from its average value and I’d like

to override the algorithm,” then they see the following screen:
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Regardless of whether the participant selects “No, I’ll use the algorithm” or “Yes, my extra information is far from

its average value and I’d like to override the algorithm,” they will see the following screen:
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