
Optimal Process Control of Symbolic Transfer Functions

C. Griffin and E. Paulson
Applied Research Laboratory

Penn State University
University Park, PA 16802

griffinch@ieee.org, ecp141@psu.edu

ABSTRACT
Transfer function modeling is a standard technique in clas-
sical Linear Time Invariant and Statistical Process Control.
The work of Box and Jenkins was seminal in developing
methods for identifying parameters associated with classical
(r, s, k) transfer functions.

Computing systems are often fundamentally discrete and
feedback control in these situations may require discrete
event systems for modeling control structures and process
flow. In these situations, a discrete transfer function in the
form of an accurate hidden Markov model of input/output
relations can be used to derive optimally responding con-
trollers.

In this paper, we extend work begun by the authors in
identifying symbolic transfer functions for discrete event dy-
namic systems (Griffin et al. Determining A Purely Sym-
bolic Transfer Function from Symbol Streams: Theory and
Algorithms. In Proc. 2008 American Control Conference,
pgs. 1166-1171, Seattle, WA, June 11-13, 2008). We assume
an underlying input/output system that is purely symbolic
and stochastic. We show how to use algorithms for esti-
mating a symbolic transfer function and then use a Markov
Decision Processes representation to find an optimal sym-
bolic control function for the symbolic system.

1. INTRODUCTION
Transfer function modeling is critical in minimum mean

square error (MMSE) control [1]. The work of Box and
Jenkins was seminal [2] and has been extended and enhanced
over the years by several authors.

We contrast this with the discrete event control literature.
In that case, plant models are often developed by hand.
This may be reasonable in some cases but for real-world
applications controllers need to be synthesized for complex
(e.g., computational) systems that are not fully known a
priori. In particular, it is difficult to be certain that manu-
ally created models accurately reflect plant dynamics. This
is especially true when system transitions follow probabil-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

ity distributions. If we could automatically derive a plant
model whose outputs are observed responses to a known set
of inputs, the resulting model of input-output relationships
would be a discrete event transfer function. This transfer
function could be used to synthesize a discrete event con-
troller that could optimize some objective function defined
in terms of the discrete event dynamical system.

In [3], we showed how to extend Crutchfield and Shalizi’s
CSSR algorithm [4–6] to identify an asymptotically opti-
mal Mealy Machine representation, when three parameters
are supplied: l1, the maximal input history length; l2, the
maximal output history length; and k the delay. We called
this the symbolic transfer function. In this paper, we show
how to use the derived system to optimize the return in a
discounted reward context, essentially showing that this is
equivalent to finding the solution to a Markov Decision Pro-
cess [7]. It should be noted that this work is similar in spirit
to the work of Watkins [8] and the Q-learning literature [9],
which derive an optimal response to a Markov decision pro-
cess when limited initial information on the reward structure
is available. This work is different from the Q-learning liter-
ature in that (i) The Q-learning literature assumes an under-
lying Markov Decision Process (MDP) structure with only
reward outputs; i.e., there is no input-output assumption.
(ii) In Q-learning, reward is only a function of input, not
input and output. (iii) There is no underlying assumption
of lagged outputs as a function of inputs. (iv) Q-learning
is a fundamentally online process that attempts to learn a
system as it evolves. In this paper, we investigate a learn-
ing and optimization framework that operates offline. Thus
the work is in perfect analogy to the Box-Jenkins control
work [2].

2. PRELIMINARIES
In this section we provide the notation and preliminar-

ies necessary for the proposed approach. Our notation is
derived from Box and Jenkins [2] and symbolic dynamical
systems [10] using time series expressed as a string of sym-
bols. We discuss probabilistic automata, including prob-
abilistic labeled transition systems (which are essentially
Markov chains with labels) and probabilistic Mealey ma-
chines.

2.1 Time Series of Symbols
LetA (the input alphabet) and A (the output alphabet) be

finite sets of symbols. A symbolic time series is a sequence:
x = . . . x(−2)x(−1)x(0)x(1)x(2) . . . , where x(t) represents
the symbol that occurred at discrete time t in x. If x(t) is

undefined, then we assume it is ε the empty symbol. Fol-
lowing the work of Box and Jenkins, let B be the backshift
operator, so that (Bx)(t) = x(t− 1).

The set of all finite length strings of symbols from A and
the concatenation (+) operation form a monoid with unit ε.
We may therefore write:

x =

∞∑
t=−∞

x(t). (1)

Consider a finite sub-sequence t = 0 to t = s of x, this
may be written as:

(1 + B + . . .Bs)x(s) = A(B)x(s). (2)

Let A(B) =
∑l
j=1 B

j .
We assume the following system dynamics

y(t) ∼ ξ(BkA1(B)x(t), A2(B)y(t)) (3)

where ξ is a function with output a probability distribution
over A and input recent observations (subsequences of x
and y). The observation y(t) is drawn from the distribution
provided by η. The formal polynomial A1 has degree l1 and
the polynomialA2 has degree l2. Thus our models have three
parameters (l1, l2, k). Without loss of generality, we can
always assume k = 1 by appropriately shifting the output
sequence y and adjusting l1 and l2 as needed.

If we assume an open loop control, then we have input
dynamics:

x(t) ∼ η (A1(B)x(t)) (4)

Closed loop control dynamics will be similar to those of
Equation 3 but with outputs in A.

The function ξ is a symbolic transfer function that maps
inputs to outputs. If η and ξ are known, then a complete
characterization of the (stochastic) system behavior is pos-
sible. The control problem, given ξ, is to determine an ap-
propriate η satisfying certain objectives. If ξ is unknown,
then the control problem is to first find a representation of
ξ and then to determine a corresponding η.

In this paper we use the fixed length left shift opera-
tor. Suppose that w = a1a2 · · · an ∈ A. Let ζ(w, an+1) =
a2 · · · anan+1 be the fixed length left shift operator.

2.2 Probabilistic Automata
A labeled transition system (LTS) is a tuple G = 〈Q,A, δ〉,

where Q is a finite set of states, A is a finite alphabet and
δ ⊆ Q×A×Q is a transition relation. The transition relation
δ is deterministic when for all q ∈ Q and for all x ∈ A there
is at most one q′ ∈ Q such that (q, x, q′) ∈ δ.

A probabilistic LTS is a pair 〈G, p〉 where G is an LTS and
p : δ → [0, 1] is a probability function such that∑

a∈A,q′∈Q

p(q, a, q′) = 1 ∀q ∈ Q. (5)

It is easy to see that if there is some initial probability
distribution π0 over Q, then the triple 〈G, p, π0〉 is a Markov
chain with transitions labels.

A polygenic Mealy machine is a tuple M = 〈Q,A,A, δ〉
where Q and A are as above and A is a second output al-
phabet and δ ⊆ Q×A×A×Q is a transition relation with
input alphabet A and output alphabet A. Determinism of
the transition relation is defined just as it was for an LTS.
If we assign a probability function to the transition relation

(as we did for probabilistic LTS), then we obtain a prob-
abilistic Mealy machine. (Note for the sake of brevity, we
remove the term polygenic.)

2.3 Probability Distribution Functions of Sym-
bols and Symbolic Transfer Functions

Consider an open loop control function η : Al1 → FA,
where FA is the set of probability distributions with support
A. The function η describes a probabilistic labeled transi-
tion system whose states are composed of strings of length l1
from A and whose transitions are defined so that if w1, w2 ∈
Al1 and w2 = ζ(w1, a) for a ∈ A, then p(w1, a, w2) =
η(w1)(a). It is worth noting that this may not be the small-
est statistically equivalent probabilistic labeled transition
system describing the behavior of η, however it is sufficient
as a model of η.

The function ξ : Al1 × Al2 → FA, describes a formal
probabilistic Mealey machine whose states are composed of
pairs of strings in Al1×Al2 and whose transitions are defined
so that if (w1, v1), (w2, v2) ∈ Al1 × Al2 and w2 = ζ(w1, a)
and v2 = ζ(v1, α), then:

p [(w1, v1), a, α, (w2, v2)] = ξ(w1, v1)(α)pa

where pa is a variable holding the probability that a occurs.

3. EXTRACTING ξ FROM DATA
A method for deriving η and ξ from data (as state ma-

chines) is provided in [3]. We review the results here and
simplify the work presented in [3]. We focus specifically on
generating ξ, since the algorithms for deriving η are dis-
cussed extensively in [3, 4, 6]. We simplify the discussion
in [3].

Assume we are given x, the input and y, the output. We
will assume that the input signal is generated randomly and
not as a function of the observed output (i.e., x is dithered).
If not, we will be modeling the coupled dynamics of an ex-
isting control system and we will not obtain a true represen-
tation of the impact of a control signal on system output.
This is consistent with classical transfer function modeling.

Let w be a subsequence of x and let z be a subsequence of
y. By (w, z) we mean the pair of input/output sequences.
Assume that we know there is a lag of k time observation
symbols before an output is observed. Then, for example
if we began generating input symbols x(1)x(2) · · · , and the
lag is 2, then the output y(1) will occur as symbol x(3) is
generated. From now on, we assume that the two sequences
are appropriately aligned, so that y(2) corresponds to the
input x(1), and previous output y(1) even though though
y(2) appears at time k + 1.

Algorithm 1 will produce the symbolic transfer function;
it is similar to the initialization portion of the CSSR al-
gorithm presented by Crutchfield and Shalizi [4–6]. Let
#(w1,x,w2,y) be the number of times sequence w1 occurs
in x and at the same time sequence w2 occurs in y so that
the ends of the two sequences coincide. (Recall, w1 may
have different length w2). Also let #(w1,x,w2,y, α) be the
number of times w1 occurs in x and at the same time se-
quence w2 occurs in y so that the ends of the two sequences
coincide and α immediately follows w2.

Using the remarks presented in Section 2.3, it is easy to
see how to construct a stochastic Mealey machine from the
resulting ξ function. In Line 1 of Algorithm 1 we compute

Algorithm 1

Input:

Symbolic time series x and y
Alphabets A and A
Lengths l1 and l2

Output:

Map ξ

Procedure:

1: Let W be the set of pairs of substrings of (w1,w2) with length
l1 and l2 respectively, synchronized in ending position.

2: for all (w1,w2) ∈W do

3: Compute Pr(α ∈ A|w1,w2) :=
#(w1,x,w2,y,α)
#(w1,x,w2,y)

.

4: Define fw1,w2 (α) := Pr(α ∈ A|w1,w2).
5: Define ξ(w1, w2) := fw1,w2 .
6: return ξ

the substrings needed. In Line 3, we produce the maximum
likelihood estimator for the probability of observing output a
given observation of input sequence w1 and output sequence
w2 prior to the appearance of a. Finally, ξ is defined as the
collection of these estimators.

3.1 Reducing the State Space
Assuming the dynamics provided in Equation 3, Algo-

rithm 1 produces a state space Q = Al1 ×Al2 , where states
correspond to pairs of histories of length l1 and l2. At
state q = (w1,w2) ∈ Q input a ∈ A occurs with corre-
sponding output α ∈ A and transfers the system to a new
state q′ = (w′1,w

′
2) = (ζ(w1, a), ζ(w2, α)). We will write

q′ = δ(q, a, α) to denote this relationship.
For any state q ∈ Q, ξ(q) ∈ FA. The probability distri-

butions can be thought of as a set of vectors in [0, 1]|A|, for
a fixed ordering of A. For the remainder of this section, we
will treat ξ(q) as such a vector.

In [3], Algorithm A provides a way of reducing this state
space that can be useful for simplifying the optimization
problem presented in the next section. The technique we
present is identical to the one given in [3] and is drawn from
the results of Shalizi and Crutchfield [4–6]. We present it in
a manner more consistent with modern pattern recognition
techniques.

The approach to minimizing the state space Q is to first
cluster (merge) existing states that have statistically iden-
tical conditional distributions over A and then to de-cluster
those states that would result in a non-deterministic state
transition function δ.

Let q1, q2 ∈ Q. Define a metric T (q1, q2). In [3] the met-
ric was based on the p-value of the Kolmogorov-Smirnov test
when applied to distributions ξ(q1) and ξ(q2). A χ2 test [11],
multinomial comparison test [12], or simple Euclidean dis-
tance could also be used. Let t0 be a user provided threshold
and let p = {qi1 , . . . , qin} be a cluster of states in Q. Define

ξ(p) =
1

n

n∑
j=1

ξ(qij) (6)

We can then define T (q, p) using ξ(p) as expected. Cluster-
ing the states of Q into a new state space P can now proceed
iteratively. Algorithm 2 shows this procedure.

Clearly the size of state space P is less than or equal to
the size of state space Q. However, the resulting transition
function δ may be non-deterministic.

To correct the non-determinism, we must split the states

Algorithm 2

Input:

State Space Q
Threshold t0 ∈ R

Output:

State Space P

Procedure

1: P := ∅
2: for all q ∈ Q do
3: if P 6= ∅ then
4: p∗ = arg minp∈P T (q, p)
5: if T (q, p∗) > t0 then
6: pnew = {q}
7: P := P ∪ {pnew}
8: else
9: p := p ∪ {q}

10: else
11: pnew = {q}
12: P := P ∪ {pnew}

of P apart into the final (reduced) state space R. Splitting is
a recursive operation in which we iterate through the states
of P selecting an initial pair (w1,w2) = q in some state p.
We create a new state r ∈ R with this q. We then analyze
the remaining elements (original states) in p to determine
whether they should be added to r or whether a new state r′

should be created in R to deal with non-determinism in the
transition function. This procedure is repeated recursively
until no new states are added to R. Algorithm 3 summarizes
the procedure.

Algorithm 3

Input:

State Space P

Output:

State Space R

Procedure

1: N0 := 0
2: N := |P |
3: repeat
4: for all pi ∈ P do
5: s := 0
6: M = |pi| {The size of cluster pi}
7: Choose qi0 ∈ pi
8: Create state ris = {qi0}
9: R := R ∪ {ris}

10: for all qij ∈ pi (j 6= 0) do
11: FOUND = 0
12: for l ∈ 0, . . . , s do
13: Choose q ∈ ril
14: if δ(q, a, α) = δ(qij , a, α) for all (a, α) ∈ A × A

then
15: FOUND = 1
16: ril := ril ∪ {qij }
17: if FOUND = 0 then
18: s := s+ 1
19: Create state ris = {qij }
20: R := R ∪ {ris}
21: N0 := N
22: N : |R|
23: until N 6= N0

Beginning with an initial symbolic input/output pair (x,y)
the application of Algorithms 1-3 will create a reduced state
space representation of the symbolic transfer function ξ. It
should be noted that it is sufficient to execute only Algo-

rithm 1 to obtain a complete representation of the symbolic
transfer function. If the state space is too large, then the
additional algorithms can be executed to enhance processing
later.

Work in [3, 5, 6] is sufficient to show that the resulting ξ
(and by extension η function) representations are minimal in
state size after executing Algorithms 1 - 3 as the number of
samples approaches infinity. More recent work by Paulson
and Griffin shows how to correct this for smaller sample
sizes [13] and also shows that the minimum state estimation
problem is NP-hard in this case. State minimization is useful
in managing the size of the optimal control problem as we
see in the sequel.

4. OPTIMAL CONTROL OF THE SYMBOLIC
TRANSFER FUNCTION

In this section, we assume known and fixed alphabets A
and A. We further assume that l1, l2 and k are known and
fixed. An algorithm for inferring l1 is available in [14]. It
can be extended to infer l2 if needed. As noted previously,
we will assume that k = 1, which will simplify the notation
significantly.

Let Q be the state space of ξ and let rq : A × A → R
be a state parameterized reward function. At each discrete
time t the system is in some state q ∈ Q. A control function
chooses an input a ∈ A which causes an output symbol α to
be generated at the next time step. This output is a function
of previous inputs up to (but not necessarily including a,
when there is a k = 1 lag). We may assume a reward βtrq(t)
results where β ∈ (0, 1) is a discounting factor. The state
then becomes q′ as a result of the input and output.

For all q ∈ Q define:

Rq =

 rq(a1, α1) · · · rq(a1, αn)
...

. . .
...

rq(am, α1) · · · rq(am, αn)

 (7)

where |A| = m and |A| = n. For state (u,v) ∈ q ∈ Q let
ξ(q) = ξ(u,v) be the vector of probabilities that the various
α ∈ A will occur.

If we are given the symbolic transfer function ξ and the
objective is to derive a policy η so that the long run pay-off is
optimized under the β-discounting rule, then this problem
can be coded as a Markov Decision Problem [7]. Follow-
ing [15], we may write the problem of maximizing long run
reward subject to β discounting as:


min

∑
q′∈Q

π0
q′vq′

s.t. vq ≥ [Rqξ(q)]a + β
∑
q′∈Q

Pr(q′|q, a)vq′ ∀q ∈ Q, a ∈ A

(8)

Here v is a vector in R|Q| with elements vq and for vector y,
[y]a indicates the element of y corresponding to a ∈ A. Note
well: the problem structure itself (from ξ) is incorporating
the delay in output response k. This allows us to use the
MDP framework for the more general problem. Problem 8

has known dual:

max
∑
q∈Q

∑
a∈A

[Rqξ(q)]axqa

s.t.
∑
q∈Q

∑
a∈A

[
δ(q, q′)− β Pr(q′|q, a)

]
xqa = π0

q′ ∀q′ ∈ Q

xqa ≥ 0 ∀q ∈ Q, a ∈ A
(9)

Here xqa are the dual variables corresponding to the |Q| ×
|A| constraints in Problem 8 and δ(q, q′) is the Dirac delta
function. It should also be noted that Pr(q′|q, a) is precisely
ξ(q)(α) where q′ = δ(q, a, α).

Proposition 1. Let x∗ be an optimal (vector) solution
to Problem 9. For fixed q ∈ Q, let

xq =
∑
a∈A

xqa (10)

Then the optimal policy η is given by:

η(q)(a) =
x∗qa
x∗q

(11)

For fixed u ∈ Al1 , if for all v1,v2 ∈ Al2 we have η(u,v1) =
η(u,v2) then η is an open loop controller. Note Problem
9 has a constraint space with size equal to the number of
states in Q, making state minimization of the η model useful
for minimizing the size of the optimization problem. Even
without state minimization, recent work by Post and Ye [?]
has shown that the simplex algorithm is strongly polynomial
for Markov decision problems, like the one formulated. Thus
scaling will by polynomial.

5. SYMBOLIC STATISTICAL PROCESS CON-
TROL

We define a learning and optimization strategy for sym-
bolic dynamical systems analogous to the statistical process
control process identified by Box and Jenkins and discussed
in detail in [1].

Assuming an N -time step learning period, the following
algorithm can be used to derive a symbolic transfer function
and optimal open-loop η controller:

1. While t ≤ N
(a) Choose a completely random (i.e., dithered) input

(i.e., a random η function) and record the output.
(b) Builds symbolic sequences x and y.

2. At time t = N , use Algorithms 1 - 3 (or Algorithm
A from [3] to derive function ξ, the symbolic transfer
function.

3. Using function ξ, compute η∗ using Problem 9.

5.1 Example: Learning to Play against Tit-
for-2-Tats

Repeated games offer a simple symbolic input / output
system on which to build an example. This modeling ap-
proach could also be used in other computational systems
in which symbolic (categorical) inputs lead to symbolic (cat-
egorical) outputs like in I/O protocols.

The Prisoner’s Dilemma Game is a well known symmetric
bimatrix game describing the behavior of two captured crim-
inals. There are two strategies for each player, Collude (C)

(cc,CC)

(cc,DC)

(cd,CC)

(cd,DC)

(dc,CC)

(dc,CD)

(dc,DD)

(dd,CC)

(dd,CD)

(dd,DD)

d/C (p_d)

c/
C

 (p
_c

)

c/C (p_c)

d/
C

 (p
_d

)
c/D (p_c)

d/
D

 (p
_d

)
c/C (p_c)

d/
C

 (p
_d

)

d/C (p_d)

c/C (p_c)

d/C (p_d)

d/
D

 (p
_d

)

c/D (p_c)

d/C (p_d)

c/C (p_c)

d/D (p_d)

c/C (p_c)

d/C (p_d)

Figure 1: The formal Mealey machine state space
model of ξ derived using Algorithm 1 from a Tit-for-
Two-Tats game scenario. In this figure, the symbols
p c and p d indicate the probability that Player 1
strategies c or d will be played. The deterministic
nature of the Tit-for-Two-Tats algorithm makes it
deterministic in Player 2’s strategy.

and Defect (D). ([16], Page 25) has an excellent overview.
In the repeated Prisoner’s Dilemma Game, two players re-
peat this game in an attempt to maximize their long run
pay-off.

In Tit-for-2-Tats, a forgiving strategy is used to avoid un-
ending defection. If Player 1 plays C in round i, then Player
2 will play C in round i + 1. If Player 1 plays D in round
i and had previously played C in round i − 1, then Player
2 still plays C in Round i + 1. Otherwise, Player 2 plays
D. If Player 2 is using a fixed strategy (protocol) S such
as Tit-for-2-Tats, it may be possible to game the strategy
thus deriving a better long run payoff for Player 1. This is
exactly the problem of generating an optimal control law for
Player 1.

5.1.1 Learning ξ from Input Data
We apply Algorithms 1 - 3 to identify a ξ function for the

Tit-for-2-Tats strategy assuming Player 1 executed a ran-
dom strategy in order to fully explore the search space. As
in [3], we used 25 iterations of a repeated game to extrapo-
late ξ using a randomized input.

After executing Algorithm 1 on the input sequence, we
obtain the state space model for the behavior of ξ shown in
Figure 1. This model shown in Figure 1 contains 10 states,
corresponding to the 10 observed pairs of strategy sequences
observed for Players 1 and 2, each with length 2. We can
cluster theses states using Algorithm 2. The results of run-
ning Algorithm 2 are shown in Figure 2. Having identified
the clustered state space, we can execute Algorithm 3 to
identify the reduced state space and formal Mealey machine
modeling ξ. This is shown in Figure 3.

5.1.2 Finding the Optimal Response η

(dd,CC)

(dd,CD)

(dd,DD)

(cc,CC)

(cc,DC)

(cd,CC)

(cd,DC)

(dc,CC)

(dc,CD)

(dc,DD)

p1 p2
P

Figure 2: The clustering of states from the formal
Mealey state machine shown in Figure 1.

(cd,CC)

(cd,DC)

(cc,CC)

(cc,DC)

(dc,CC)

(dc,CD)

(dc,DD)

c/
C

 (p
_c

)

(dd,CC)

(dd,CD)

(dd,DD)

d/D
 (p_d)

d/C (p_d)

c/C (p_c)

d/C (p_d)

c/D (p_c)

r1

r2
r3

Figure 3: The reduced state space formal Mealey
machine modeling ξ derived from an input sequence
of player moves. This machine is the result of exe-
cuting Algorithms 1 - 3.

Let:

Rq =

[
1 −2
2 1

2

]
for all q ∈ Q. This is a standard Prisoner’s Dilemma type
game matrix. We suppose that the strategies are read from
left to right as collude or defect and from top to bottom
in the same order. If we assume an initial state to contain
([c, c], [C,C]), i.e., one in which all players have cooperated
up to this point, then when using the derived ξ function, the
specific instance of Problem 9 is:

max x1,c + 2x1,d + x2,c + 2x2,d − 2x3,c +
1

2
x3,d

s.t. (1− β)x1,c + x1,d − βx2,c − βx3,c = 1 (q′ = 1)

− βx1,d + x2,c + x2,d = 0 (q′ = 2)

(1− β)x3,d − βx2,d + x3,c = 0 (q′ = 3)

x1,c, x2,c, x3,c, x1, d, x2,d, x3,d ≥ 0

The state q′ to which each constraint corresponds is shown
in the right most column. For large enough (e.g., β > 1/2)
the optimal solution yields behavior:

η([c, c])(d) =1.0

η([c, d])(c) =1.0

η([d, c])(d) =1.0

and η(q)(a) = 0 for all other q ∈ Q and a ∈ A. These dy-
namics create a cycle in which Player 1 (who constructs η)
will repeatedly defect and then collude, thus taking advan-
tage of the altruism of Player 2 in employing the Tit-for-2-
Tats strategy. This is illustrated in Figure 4. It is worth

(cd,CC)

(cd,DC)

(cc,CC)

(cc,DC)

(dc,CC)

(dc,CD)

(dc,DD)

c/
C

 (p
_c

)

(dd,CC)

(dd,CD)

(dd,DD)

d/D
 (p_d)

d/C (p_d)

c/C (p_c)

d/C (p_d)

c/D (p_c)

r1

r2
r3

Figure 4: The cycle induced by the dynamics pro-
vided in the optimal response to Tit-for-Two-Tats
illustrated as a sub-machine of the reduced state
space shown in Figure 3.

noting that for smaller values of β (i.e., β < 0.45) the op-
timal strategy is to always defect. Thus when the award
decay is too great, cyclic cooperation and defection is not
worth it.

6. CONCLUSIONS AND FUTURE DIREC-
TIONS

In this paper we have provided a method for optimizing a
control process in which the inputs and output are symbolic
and the transfer function is stochastic. This work attempts
to apply the notions of optimal control in the Box Jenkins
framework [2] to the case of purely symbolic processes. We
drew upon our initial work in [3] to obtain symbolic transfer
function estimators. We then applied results from Markov
Decision Processes [7] to determine closed loop controls in
this case.

For future work, we note that in computing an estima-
tor for ξ, we applied Algorithms 1 - 3 (Algorithm A of
[3]). These algorithms provides a pointwise predictor for the
multinomial distributions that comprise the symbolic trans-
fer functions. We showed in [17] how to use confidence inter-
vals to improve recognition in hidden Markov models [18].
In that work, we showed how to derive confidence intervals
on the transitions of a specific HMM process. The same
technique can be applied here to derive confidence intervals
on the transition probabilities of the symbolic transfer func-
tion. We could use this information to find a solution that is
robust to our imprecise knowledge of the second player us-
ing a competitive Markov decision process [15] in this case
as well. This is particularly useful for online learning when
the convergence of the symbolic transfer function is slow.

Acknowledgement
Portions of Dr. Griffin’s and Ms. Paulson’s work were sup-
ported by the Army Research Office under Grant W911NF-
11-1-0487.

7. REFERENCES
[1] E. del Castillo, Statistical Process Adjustment for

Quality Control. Wiley Interscience, 2002.

[2] G. E. P. Box and G. M. Jenkins, Time Series Analysis:
Forecasting and Control, 2nd ed. Holden-Day, 1976.

[3] C. Griffin, R. R. Brooks, and J. Schwier, “Determining
a purely symbolic transfer function from symbol
streams: Theory and algorithms,” in Proc. American

Control Conference, Seattle, WA, June 11-13 2008, pp.
4065–4067.

[4] C. Shalizi and J. Crutchfield, “Compuational
mechanics: Pattern and prediction, structure and
simplicity,” J. Statistical Physics, vol. 104, no. 3/4,
2001.

[5] C. R. Shalizi, K. L. Shalizi, and J. P. Crutchfield,
“Pattern discovery in time series, part i: Theory,
algorithm, analysis, and convergence,” Santa Fe
Institute, Tech. Rep., 2002.

[6] C. Shalizi, K. Shalizi, and J. Crutchfield, “An
algorithm for pattern discovery in time series,”
arXiv:cs.LG/0210025 v3, November 2002.

[7] M. L. Puterman, Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY:
John Wiley and Sons, 1994.

[8] C. Watkins, “Learning from Delayed Rewards,” Ph.D.
dissertation, Cambridge University, 1989.

[9] A. L. Strehl, L. Li, E. Wiewiora, J. Langford, and
M. L. Littman, “Pac model-free reinforcement
learning,” in Proc. 23rd ACM International Confernce
on Machine Learning International Confernce on
Machine Learning, 2006.

[10] M. Morse and G. Hedlund, “Symbolic dynamics,”
American Journal of Mathematics, vol. 60, no. 4, pp.
815–866, 1938.

[11] R. Hogg and E. Tanis, Probability and Statistical
Inference, 7th ed. Pearson/Prentice-Hall, 2006.

[12] C. P. Quesenberry and D. C. Hurst, “Large sample
simultaneous confidence intervals for multinomial
proportions,” Technometrics, vol. 6, pp. 191–195, 1964.

[13] E. Paulson and C. Griffin, “Computational
Complexity of the Minimum State Probabilistic Finite
State Learning Problem on Finite Data Sets,” ArXiv
e-prints, Dec. 2015.

[14] R. R. Brooks, J. Schwier, C. Griffin, and
S. Bukkapatnam, “Zero knowledge hidden markov
model inference,” Pattern Recognition Letters, vol. 30,
pp. 1273–1280, 2009.

[15] J. Filar and K. Vrieze, Competitive Markov Decision
Processes. New York, NY, USA: Springer-Verlag,
1997.

[16] P. Morris, Introduction to Game Theory. Springer,
1994.

[17] R. R. Brooks, J. Schwier, and C. Griffin, “Behavior
detection using confidence intervals of hidden markov
models,” IEEE Transactions on Systems, Man and
Cybernetics, Part B, vol. 39, no. 6, pp. 1484–1492,
December 2009.

[18] L. R. Rabiner, “A tutorial on hidden markov models
and selected applications in speech recognition,” Proc.
IEEE, vol. 77, no. 2, pp. 257–286, 1989.

