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Abstract
In SIR models, infection rates are typically assumed to be exogenous. How-
ever, individuals adjust their behavior. Using daily data for 89 cities world-
wide, we document that mobility falls in response to fear, as approximated by
Google search terms. Combining these data with experimentally validated
measures of social preferences at the regional level, we find that stringency
measures matter less if individuals are more patient and altruistic (preference
traits), and exhibit less negative reciprocity (community traits). Modifying
the homogeneous SIR and the SIR-network model with different age groups
to incorporate agents’ optimizing decisions on social interactions, we show
that susceptible individuals internalize infection risk based on their patience,
infected ones do so based on their altruism, and reciprocity matters for
internalizing risk in SIR networks. Simulations show that the infection
curve is flatter when agents optimize their behavior and when societies
are more altruistic. A planner further restricts interactions due to a static
and a dynamic inefficiency in the homogeneous SIR model, and due to
an additional reciprocity inefficiency in the SIR-network model. Optimal
age-differentiated lockdowns are stricter for risk spreaders or the group with
more social activity, i.e., the younger.

Keywords: social interactions, pandemics, mobility, cities, SIR networks,
social preferences, social planner, targeted policies.
JEL Codes: D62, D64, D85, D91, I10.

∗ We thank John Cochrane, Pietro Garibaldi, Francesco Lippi, Maximilian Mayer, Dirk Niepelt, Vincenzo
Pezone, Matthias Trabandt and Venky Venkateswaran, as well as seminar participants at Banque de
France and Ifo Institute for Economic Research for their comments and suggestions. All errors are our
own responsibility.

† E-mail: lalfaro@hbs.edu
‡ E-mail: faia@wiwi.uni-frankfurt.de
§ E-mail: lamersdorf@econ.uni-frankfurt.de
¶ E-mail: fsaidi@bu.edu

1



1. Introduction

The onset of the COVID-19 pandemic has sparked a vivid debate on policies aiming to restrict

mobility, the role of heterogeneity for their effectiveness, and the potential economic cost. As

such, economies considering exit strategies from lockdowns seek to implement them in a way

that does not endanger a robust recovery from the public health crisis.

As the shape of the recovery is uncertain, a guiding principle for an optimal policy is to

consider how the risk of disease has affected agents’ behavior, which may not be uniform and

could vary widely across regions and individuals. Demand spirals and excessive precautionary

behavior,1 which would impair the recovery, typically result from deep scars. The recovery is

unlikely to be fast if agents maintain social-distance norms due to risk perceptions.2 Beyond

that, understanding the endogenous response of behavior to a pandemic, in particular in

social interactions, can also provide further insights for forecasting how a disease spreads.

We start from the premise that fear, other-regarding preferences, and patience interact with

social networks in determining individuals’ response to the pandemic and, in particular, their

mobility. We provide evidence from international daily mobility data that fear is negatively

associated with mobility at a level as granular as the city level. Furthermore, after controlling

for fear, any additional effect of (typically country-wide) lockdowns or other government

stringency measures on mobility varies across regions as a function of the latter’s average level

of patience, altruism, and reciprocity. We then rationalize these findings through the lens of

the homogeneous SIR and the SIR-network model where social-activity intensity depends on

individual preferences, namely patience and altruism, and on community traits, namely the

matching technology’s returns to scale (geographical density) and reciprocity among groups.

For our empirical analysis, we use Apple mobility data, which are obtained from GPS

tracking. Apple Mobility data provide indicators on walking, driving and transit, and

1 A recent survey by Bartik et al. (2020) indicates that small businesses are very pessimistic about a possible
recovery due to social distancing.

2 A quote from Larry Summers (Fireside Chats with Harvard Faculty on April 14, 2020) highlights this
aspect: “You can open up the economy all you want, but when they’re hiring refrigerator trucks to deliver
dead bodies to transport them to the morgues, not many people are going to go out of their houses...so
blaming the economic collapse on the policy, rather than on the problem, is fallacious in the same way
that observing that wherever you see a lot of oncologists, you’ll tend to see a lot of people dying of cancer
and inferring that that means that oncologists kill people.”
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Figure 1
City-level Google Searches around Lockdown Dates across Countries

contrary to others, are daily, have the longest time coverage, and city-level granularity across

53 countries.

Figure 1 plots the average value of the Google Trends Index for “Coronavirus” in 40

countries (with lockdown dates) for the period from 30 days before to 30 days after each

country’s lockdown.3 Fear, as proxied for by Google searches, increases up to shortly before

the country’s lockdown date, drops thereafter, and eventually levels off (around the same

level as two weeks prior to the lockdown).

The negative correlation between city-level mobility and risk perceptions, or fear, is robust

to controlling for lockdowns and a stringency index, both of which vary across countries (and

across states in the US). Stringency policies also have a mitigating effect on mobility, but

conditionally on time and social preferences, which we capture by experimentally validated

survey measures from the Global Preferences Survey (see Falk et al. (2018)).

Importantly, such granular data allow us to exploit regional variation, and to test for

heterogeneous effects across regions within a country following lockdowns as a function of

average preferences in those regions. To control for time-varying unobserved heterogeneity

3 We use the earliest date for any state-level lockdown in the US.
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at the country level, we incorporate country-month fixed effects. After including the latter

and controlling for fear, we find that the impact of stringency policies, such as lockdowns,

on mobility is muted in regions in which individuals are more patient, in which they have a

higher degree of altruism, and in which they exhibit less negative reciprocity.

Motivated by these findings, we enrich an SIR model from epidemiology,4 and in particular

modify both the homogeneous SIR and the SIR-network model to account for agents’ optimiz-

ing decisions on social interactions.5. In the SIR-network model, we include different groups

with varying homophily (contact) rates and different recovery rates. Within a community

hit by COVID-19, age groups are differentially exposed to health risk and depending on

the structure of the community, their interaction might be more or less intense. Even more

modern variants of this class of models, which account for the heterogeneous topology of

contact networks, assume exogenous contact rates, something starkly at odds with reality.

Our model lends support to the idea that preference and community traits matter in line

with our empirical evidence. We show analytically that susceptible individuals internalize

infection risk based on their patience, infected individuals do so based based on their altruism,

and homophily matters for internalizing risk in SIR networks. Simulations which compare

our SIR models with the traditional versions confirm our conclusions. Simulations of model

variants where agents adjust their social activity in response to risk, altruism, and homophily

all exhibit a significantly flattened infection curve compared to the traditional SIR model.

Altruism also implies that susceptible individuals have to reduce their social interactions

by less, as part of the burden of flattening the curve is borne by the infected individuals.

Differential homophily in the SIR-network model implies that younger and middle-aged

agents take into account the lower recovery rates of the other age groups; still, old susceptible

individuals reduce their social activity relatively more.

Despite this adjustment in behaviors, a social planner might want to restrict interactions

on top and above due to a static and a dynamic inefficiency. The planner internalizes the

effect of individual social activities on the overall congestion of a community, which leads

4 SIR stands for “S,” the number of susceptible, “I,” the number of infectious, and “R,” the number of
recovered, deceased, or immune individuals.

5 Recently, other papers have included some form of optimizing behavior as well. We review them below.
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to the static inefficiency. The planner is also aware that her policies can affect the future

number of infected, which in turn gives rise to a dynamic inefficiency.6 We decompose the

two inefficiencies, and show that they depend, among others, on the matching technology’s

returns to scale, which capture location density and infrastructure. In the SIR-network model,

an additional inefficiency arises since the planner also internalizes the differential impact

that the activity of each group has on the average infection rate of the others based on their

mutual homophily or contact rates.

Analytically, we show that lockdown policies targeted towards certain groups are imple-

mentable only when identification of infected individuals is possible. Simulations allow us to

quantify the optimal lockdown policies. In accordance with our empirical results, we find

that the optimal share of locked-down activities is smaller in the presence of altruism. In the

SIR-network model, the planner adopts relatively stricter stringency measures for the risk

spreaders, namely age groups with more social interactions. Also the extent of restrictions

optimally chosen by the planner for all groups is higher in societies with higher homophily

across groups. In communities in which the frequency of contacts between the young and the

older age groups, or other groups with underlying health conditions, are higher, the infection

spreads faster and the planner wishes to curb activities by more.

Relation to Literature. While we devise an application to the pandemic, our theory

belongs and contributes to the class of models used to study informal insurance in random

and social networks. This literature studies how transfers and obligations translate into

global risk sharing (see Ambrus et al. (2014), Bloch et al. (2008), or Bramoulle and Kranton

(2007)). As in those models, links, whether random or directed, have utility values, and social

interactions are chosen by sharing the infection risk within a community.

Our empirical analysis contributes to a burgeoning literature that scrutinizes the devel-

opment of mobility around the pandemic (see Coven and Gupta (2020) as well as Durante

et al. (2020)). In contrast to these studies, we employ novel data for 89 cities worldwide in

6 This is similar to Moser and Yared (2020), in that we highlight a dynamic inefficiency related to the social
planner’s commitment.
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conjunction with experimentally validated survey measures that link economic preferences

and community structure (e.g., through reciprocity).

The theoretical literature on the economics of pandemics is already vast. Here we list

some of the theoretical contributions that are closer to ours. Atkenson (2020), Alvarez et al.

(2020), Gonzalez-Eiras and Niepelt (2020), and Jones et al. (2020) study the planner problem

in the traditional SIR framework. Eichenbaum et al. (2020) highlight the health externality.7

Garibaldi et al. (2020) and Farboodi et al. (2020) derive an optimizing SIR model, and Keppo

et al. (2020) derive a behavioral SIR model. Closest to our model is that by Garibaldi et al.

(2020), on which we build by differentiating the decision problem of the susceptible and the

infected, and by introducing the optimizing choice of social interaction in SIR networks.

Acemoglu et al. (2020) model a SIR network where contacts are determined based on a

Diamond (1982) style exogenous matching function.

In the epidemiology literature, there is a large number of SIR variants (starting with

Kermack and McKendrick (1927) and more recently Hethcote (2000)), all with exogenous

contacts. In particular, there are SIR networks with bosonic-type reaction-diffusion processes

(see, for instance, Colizza et al. (2007), Pastor-Satorras and Vespigiani (2001), and Pastor-

Satorras and Vespigiani (2000)) or activity-driven SIR networks (see Moinet et al. (2018)

and Perra et al. (2018), who also include a fixed risk-perception parameter that induces a

decaying process in the infection rate).

2. Empirical Analysis

In the following, we first describe the data that we use in our empirical analysis. After

presenting some evidence for the development of mobility around lockdowns across different

cities and countries, we discuss our empirical strategy for uncovering heterogeneous effects in

the effectiveness of lockdowns and the relationship between mobility and fear.

7 Related is Hall et al. (2020) who measure the cost of the health externality.
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2.1. Data Description

To measure mobility at the country and city level, we use data provided by Apple, which

stem from direction requests in Apple Maps.8 Mobility is split into three categories: walking,

driving, and transit. The data are at a daily frequency and start in January 2020. They

cover 53 countries and 89 cities, of which 15 cities are located in 13 states across the US. Our

sample period comprises three months in 2020, namely from January 22 to April 21.

To obtain an index reflecting potential fear regarding COVID-19, we use the daily number

of Google searches for the term “Coronavirus” in each country and region, provided by Google

Trends.9 For a given time period (in our case, three months), Google Trends assigns to the

day with the highest search volume in a given country or region the value 100, and re-scales

all other days accordingly. Since this leads to large spikes in the time-series data, we use the

natural logarithm of these values.

We obtain daily numbers on infections due to COVID-19 at the country level from Johns

Hopkins University.10 This time series starts on January 22, 2020, which sets the beginning of

the time span covered in our empirical analysis. To capture policy responses of governments

across the globe, we take two approaches. First, we generate a dummy variable that is one

from the first day of an official country-wide (or state-wide) lockdown onward, and zero

otherwise. For this purpose, we use the lockdown dates provided by Wikipedia.11 Since in

the US, the adopted policy responses may differ across states, we use the state-wide lockdown

dates for a given city in that state for our city-level regressions.

Relatedly, lockdown measures may also vary widely across countries. For this reason,

we use as an alternative measure the so-called stringency index, between 0 and 100, at the

country-day level from the Oxford COVID-19 Government Response Tracker (OxCGRT),

which is available from January, 1, 2020 onward. This index combines several different

8 See https://www.apple.com/covid19/mobility.
9 See https://trends.google.com/trends/?geo=US.
10 See https://github.com/CSSEGISandData/COVID-19/tree/master/csse covid 19 data/csse covid 19 time series.
11 See https://en.wikipedia.org/wiki/Curfews and lockdowns related to the 2019%E2%80%9320 coronavirus pandemic.
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policy responses governments have taken, and aggregates them into a single measure that is

comparable across countries.12

To analyze whether the effect of government responses on mobility depends on country- or

region-specific economic preferences, we use a set of variables from the Global Preferences

Survey.13 This globally representative dataset includes responses regarding time, risk, and

social preferences for a large number (80,000) of individuals for all countries in our sample.

In particular, this dataset provides us with experimentally validated measures of altruism,

patience, and negative reciprocity. These variables map to parameters of our theoretical

model and, thus, enable us to test for heterogeneous effects in our empirical analysis.

As pointed out by Falk et al. (2018), economic preferences tend to differ significantly

within countries. Therefore, we use their dataset on individual, rather than country-level,

survey responses, and compute for each variable the average value at the level of the regions

corresponding to the cities included in the Apple Mobility data.

We present summary statistics in Table 1. In particular, the statistics in the first four

columns pertain to the country-day level ct, whereas those in the last four columns are at

the more granular city-day level it for the mobility outcomes, and at the region-day level

gt for all remaining variables. Mirroring our regression sample in the respective tables, the

sample in the last four columns is furthermore limited to countries with at least two cities in

different regions. In this manner, we are left with 60, of which 15 are in the US, out of our

total of 89 cities.

All three mobility indices exhibit similar average values both at the country and at the

city level, with (mechanically) smaller variations at the more aggregate country level. The

same holds true for the the Google Trends Index for the search term “Coronavirus” at the

country and regional levels. Finally, we include summary statistics for the three variables

from the Global Preferences Survey (Falk et al. (2018)), which are available at the regional

12 For more information and the current version of a working paper describing the approach, see
https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker.

13 For more information on this survey, see https://www.briq-institute.org/global-preferences/home and also
Falk et al. (2016, 2018).
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Figure 2
Mobility around Global Lockdown Dates

level. While altruism and patience are positively correlated (with a correlation coefficient of

0.24), both are negatively correlated with the proxy for negative reciprocity (-0.15 and -0.10).

2.2. Motivating Evidence

We start by presenting evidence that motivates our investigation of the effect of fear on

mobility, and the role of other-regarding preferences for the effectiveness of lockdowns. In

Figure 2, we plot average city-level values for the walking, driving, and transit indices, based
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on the Apple Mobility data, around lockdown dates (in our regression sample limited to

countries with at least two cities in different regions), which are determined at the state level

in the US and at the country level in all other countries. The three figures in the left panel

plot these time series for the US vs. the rest of the world (RoW), and the three figures in the

right panel plot these time series for regions in which individuals report to exhibit different

average levels of altruism (based on the Global Preferences Survey).

The following stylized facts emerge. In the left panel of Figure 2, mobility is drastically

reduced well in advance of any lockdown, drops more outside of the US, but stabilizes both in

the US and elsewhere during the post-lockdown month. In the right panel, the pre-lockdown

reduction in mobility is more emphasized in regions in which individuals have other-regarding

preferences, which we approximate by sorting regions into the top vs. bottom quarter in

terms of Altruismg.

We next discuss our empirical strategy for formally testing these relationships in a regression

framework.

2.3. Empirical Specification

To assess the relationship between government responses and mobility across different cities

worldwide, controlling for fear, we estimate the following regression specification at the

city-day level it, with each city i being located in region g of country c:

ln(Mobility)it = β1ln(Corona ST )ct−1 + β2Lockdownct + β3Xct + µi + δt + εit, (1)

where the dependent variable is the natural logarithm of Apple Mobility’s walking, driving,

or transit index for city i at date t; Corona ST ct−1 is the Google Trends Index for the search

term “Coronavirus” in country c at date t− 1; Lockdownct is an indicator variable for the

lockdown period in country c (or state/region g for the US) at date t; Xct denotes control

variables at the country-day level; and µi and δt denote city and day fixed effects, respectively.

Standard errors are (conservatively) double-clustered at the city and day levels.

In contrasting between fear, as captured by β1, and government (typically country-level)
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responses, as captured by β2, we can further refine our measure of the former by using the

regional average of the Google Trends Index for “Coronavirus.” This effectively enables us

to exploit variation in fear across different regions in the same country, in which all regions

typically face the same lockdown measures (the US is the only notable exception in our data).

For this reason, when we use regional variation in Corona ST gt, we limit the sample to

countries c with at least two cities i in different regions g. This, in turn, allows us to include

country-month fixed effects, thereby estimating the effect of lockdowns, or other government

measures, while holding constant all remaining sources of unobserved heterogeneity at the

country level in a given month. In this setting, we can then test for heterogeneous effects

across regions within a country. In particular, we hypothesize that regions with a certain

preference, Preferenceg, such as greater altruism (see right panel of Figure 2), reduce their

mobility more preceding any government responses, thereby muting any additional effect of

Lockdownct on mobility. To test this, we estimate the following regression specification:

ln(Mobility)it = β1ln(Corona ST )gt−1 + β2Lockdownct + β3Lockdownct × Preferenceg

+β4Xct + µi + δt + θcm(t) + εit, (2)

where Corona ST gt−1 is the Google Trends Index for the search term “Coronavirus” in region

g at date t− 1; Preferenceg is the average value of altruism, patience, or negative reciprocity

in region g (as reported by Falk et al. (2018)); and θcm(t) denotes country-month fixed effects

(m(t) is the month for a given day t).

Finally, by testing for the heterogeneous effect of, for instance, altruism at the regional

level following lockdowns within countries, we mitigate the risk of picking up potential reverse

causality. This is because government policies are typically put in place with the entire, or

rather average, population in mind.

2.4. Results

We next turn to the results. In the first three columns of Table 2, we estimate (1), and use

as dependent variables the Apple mobility indices for walking, driving, and transit (the latter
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variable being available only for a subset of our regression sample). In addition, we control

for the lagged number of infection cases in a given country. Importantly, we use country-level

variation in Corona ST ct, and see that fear, as proxied for by the latter variable, is negatively

associated with mobility, above and beyond any government responses. In fact, the coefficient

on Lockdownct, while negative, is not statistically significant for transit (column 3). However,

this may be due to the fact that government responses are not uniform, and a simple dummy

variable may mask important underlying heterogeneity.

To account for this, we replace Lockdownct by Stringency index ct, which is an index

∈ [0, 100] (taken from the Oxford COVID-19 Government Response Tracker) reflecting the

different policy responses that governments have taken. The estimates on the respective

coefficient in the last three columns are statistically significant at the 1% level throughout, of

similar or even larger size (once one accounts for the index being defined on the interval from

0 to 100) as the corresponding coefficients on Lockdownct, and appear to partially explain

some of the effect of fear. As a consequence, the estimated coefficients on ln(Corona ST )ct−1

are somewhat smaller than in the first three columns, and the estimate in the last column

becomes insignificant.

These insights hold up to using regional variation in Corona ST gt in Table 3. At least for

walking and driving, fear has a robust negative association with mobility that extends beyond

any government response, irrespective of how the latter is measured. The effect of fear is

not only statistically but also economically significant. As can be seen in Figure 1, Google

searches for “Coronavirus” have rapidly increased during the run-up period to a lockdown.

For instance, observing a 25% increase in the respective Google Trends index would not be

out of the ordinary, which would, in turn, be associated with at least 25%× 0.109 = 2.7% and

25%× 0.120 = 3.0% less walking and driving, respectively, in cities (see columns 4 and 5).

We then turn to testing for heterogeneous effects across regions within a country, as a

function of average preferences in said regions. In particular, we hypothesize that regions

in which individuals report to be more patient should exhibit a muted response to any

government measures, in particular lockdowns, as patient agents are more likely to postpone

any acts of mobility for the sake of internalizing any externalities on susceptible agents.
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Similarly, we would expect agents with other-regarding preferences, especially altruistic

agents, to behave this way. Finally, agents that exhibit negative reciprocity are more prone

to mimic any acts of mobility out of inequity aversion, so the effect of government responses

on reduced city-level mobility should be more emphasized for regions in which individuals

exhibit greater negative reciprocity.

These preference parameters are captured by the respective variables from the Global

Preferences Survey and incorporated in regression specification (2). In Tables 4, 5, and 6, we

use, respectively, interactions of Lockdownct with Patienceg, Neg. reciprocityg, and Altruismg.

We find that in regions which exhibit greater patience, the effect of lockdowns and other

government responses, as captured by the stringency index, on mobility is reduced significantly,

and at times undone, across the board (see Table 4).

Consistent with the idea that individuals that exhibit greater negative reciprocity are

less prone to internalize externalities by reducing their mobility, we find that lockdowns are

effective in imposing such behavior: the coefficient on Lockdownct × Neg. reciprocityg is

negative and significant for walking, driving, and transit (see columns 1 to 3 in Table 5). The

respective results are qualitatively similar but weaker in terms of economic and statistical

significance when replacing Lockdownct by Stringency index ct (in columns 4 to 6).

Finally, the effect of lockdowns on mobility is entirely neutralized in more altruistic regions

(see columns 1 to 3 in Table 6). This is in line with altruistic agents’ willingness to internalize

externalities on susceptible agents by reducing their mobility. As a consequence, lockdowns

do not have any effect on mobility above and beyond fear, the influence of which we capture

through Corona ST gt−1.

The results are similar but weaker after replacing lockdowns by the stringency index.

However, in the last three columns of Table 6, the sum of the coefficients on Stringency

index ct and Stringency index ct × Altruismg is not significantly different from zero for walking,

driving, and transit (the respective p-values are 0.85, 0.33, and 0.78). This suggests that the

additional impact of stringency policies may be muted for altruistic agents.
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3. Limitations of SIR and SIR-Network Models

Motivated by our empirical findings, we formulate an SIR model that accounts for agents’

optimizing behavior with respect to the intensity of their social activity. In the basic

homogeneous SIR model (see Kermack and McKendrick (1927) or Hethcote (2000) more

recently), there are three groups of agents: susceptible (S), infected (I), and recovered (R).

The number of susceptible decreases as they are infected. At the same time, the number of

infected increases by the same amount, but also declines because people recover. Recovered

people are immune to the disease and, hence, stay recovered. The mathematical representation

of the model is as follows:

St+1 = St − λtItSt (3)

It+1 = It + λtItSt − γIt (4)

Rt+1 = Rt + γIt, (5)

where N = St + It +Rt and λt is the transmission rate of the infection.

Hence, pt = λtIt is the probability that a susceptible individual gets infected at time t.

In the classic model, the latter is assumed to be exogenous, constant, and homogeneous

across groups. Even as agents become aware of the pandemic, it is assumed that they do

not adjust their behavior. More recent versions of the SIR model include the dependence of

the contact rates on the heterogeneous topology of the network of contacts and mobility of

people across locations (see Colizza et al. (2007), Pastor-Satorras and Vespigiani (2001), and

Pastor-Satorras and Vespigiani (2000) that include bosonic-type reaction-diffusion processes

in SIR models) or the dependence of the infection rate on the activity intensity of each node

of the network (see Perra et al. (2018) for solving activity-driven SIR using mean-field theory

and Moinet et al. (2018) who also introduce a parameter capturing an exogenous decay of

the infection risk due to precautionary behavior).

In what follows, we modify the homogeneous SIR and the SIR-network model so as to
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take into account how agents adjust their social-activity intensity in response to health risk

and how, in turn, their equilibrium choices affect the infection rates.

4. A Model of Decision–Theory Based Social

Interactions for Pandemics

We develop SIR models, both homogeneous and with a network structure, where the contact

rate results from a decision problem on the extent of social interactions. Combining search

and optimizing behavior in economics goes back to Diamond (1982).14 We build on Garibaldi

et al. (2020), who introduce in the homogeneous SIR model with random contacts the optimal

choice of social-activity intensity.

Two major extensions are considered here. First, we distinguish the optimization problem

of the susceptible, the infected, and the recovered individuals, where the infected agents

internalize the health risk only under altruistic preferences.15 Distinguishing among different

maximization problems implicitly amounts to assuming that individuals know or recognize

if they are infected. In the COVID-19 pandemic, a third group of individuals has emerged,

namely the asymptomatic. We do not include them in our model, but the setup can be

extended accordingly. The presence of different decision processes also requires a modification

of the matching function. Second, we introduce an optimal choice of social-activity intensity

in a SIR model with a network structure. The latter will allow us to examine the effect of

reciprocity among different interconnected groups.

We start with the homogeneous SIR model where all agents in the population are the

same except that they are susceptible, infected, or recovered. We label the health status with

the index i ∈ {S, I, R}. Transitions of susceptible individuals from state S to I depend on

contacts with other people,16 and those in turn depend on the social-activity intensity of each

14 See Petrongolo and Pissarides (2001) for a survey.
15 See Eichenbaum et al. (2020) for the role of health externalities in a SIR-macro model.
16 These can arise in, e.g., entertainment activities, other activities outside of home, or at the workplace.
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individual in the population and on a matching technology.17 The model is in discrete time,

time goes up to the infinite horizon, and there is no aggregate or idiosyncratic uncertainty.

Each agent has a per-period utility function U i
t (x

i
h,t, x

i
s,t) = ui(xih,t, x

i
s,t) − ci(xih,t, x

i
s,t)

where xih denotes home activities and xis denotes social activities. The function ui(xih, x
i
s) has

standard concavity properties and ui(xih, 0) > 0. The cost, ci(xih, x
i
s), puts a constraint on the

choice between home and social activities. At time t, a susceptible agent enjoys the per-period

utility, expects to enter the infected state with probability pt or to remain susceptible with

probability (1 − pt), and chooses the amount of home and social activities by recognizing

that the latter affects the risk of infection. The value function of a susceptible individual is

as follows:

V S
t = U(xSh,t, x

S
s,t) + β[ptV

I
t+1 + (1− pt)V S

t+1], (6)

where β is the time discount factor and pt is the probability of being infected. The latter

depends on the amount of social activity of the susceptible and infected agents, on the average

amount of social activity, x̄s,t, in the population, an exogenously given transmission rate η,

as well as on the individual shares of each group i in the population:

pt = pt(x
S
s,t, x

I
s,t, x̄s,t, η, St, It, Rt), (7)

where x̄s,t = x̄Ss,t
St
Nt

+ x̄Is,t
It
Nt

+ x̄Rs,t
Rt

Nt

. (8)

and where x̄Ss,t is the average amount of social activity of the susceptible, x̄Is,t is the average

amount of social activity of the infected and x̄Rs,t is the average amount of social activity of

the recovered. To map the endogenous SIR model into the standard SIR model in (3) to (5),

we use the convention that pt = λtIt. We will be more precise on the exact functional form

of pt later on. For now, it suffices to assume that ∂pt(.)

∂xSs,t
> 0 and pt(0, .) = 0.

In the baseline model, infected individuals do not have any altruistic motive. Their Bellman

equation is:

V I
t = U(xIh,t, x

I
s,t) + β[(1− γ)V I

t+1 + γV R
t+1]. (9)

17 Transitions for individuals in the infected group I to recovery R depend only on medical conditions related
to the disease (mostly the health system) that are outside of an individuals’ control.
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Currently infected individuals will remain infected for an additional period with probability

(1− γ) or will recover with probability γ. 18 The value function of the recovered reads as

follows:

V R
t = U(xRh,t, x

R
s,t) + βV R

t+1. (10)

Susceptible individuals’ first-order conditions with respect to xh,t and xs,t are as follows:

∂U(xSh,t, x
S
s,t)

∂xSh,t
= 0 (11)

∂U(xSh,t, x
S
s,t)

∂xSs,t
+ β

∂pt(.)

∂xSs,t
(V I

t+1 − V S
t+1) = 0, (12)

where it is reasonable to assume that (V I
t+1 − V S

t+1) < 0.

Susceptible individuals internalize the drop in utility associated with the risk of infection

caused by the social activity, and choose a level of social activity which is lower than the one

that they would choose in the absence of a pandemic. This parallels the empirical findings in

that agents naturally reduce their mobility in response to increased fear of infection. Also,

individuals reduce social interactions by more when the discount factor, i.e., β, is higher.

This mirrors our empirical result that the degree of patience reduces mobility and makes the

lockdown policy less effective or less needed.

The first-order conditions of the infected with respect to xh,t and xs,t read as follows:

∂U(xIh,t, x
I
s,t)

∂xIh,t
= 0,

∂U(xIh,t, x
I
s,t)

∂xIs,t
= 0. (13)

Infected individuals choose a higher level of social activity than susceptible ones since they

do not internalize the effect of their decision on the risk of infection. However, their level of

social activity will in turn affect the overall infection rate. In Section 4.2, infected individuals

are assumed to hold altruistic preferences. This will induce them to also internalize the effect

of their actions on the infection rate of the susceptible.

18 Infected individuals might have a lower utility than susceptible or recovered ones due to the disease. We
capture this in our calibration of the simulated model by assigning an extra cost of being sick in the utility
function.

17



Last, the first-order conditions of the recovered individuals read as follows:

∂U(xRh,t, x
R
s,t)

∂xRh,t
= 0,

∂U(xRh,t, x
R
s,t)

∂xRs,t
= 0. (14)

Recovered people choose the same level of social activity as they would in the absence of a

pandemic.

4.1. The Matching Function and the Infection Rate

Given the optimal choice of social-activity intensity, we can now derive the equilibrium

infection probability in the decentralized equilibrium. This involves defining a matching

function (see Diamond (1982) or Pissarides (2000)). The intensity of social interaction,

xs, corresponds to the number of times people leave their home or, differently speaking,

the probability per unit of time of leaving the home. In each of these outside activities,

individuals come in contact with other individuals. How many contacts the susceptible

individuals have with the infected individuals depends on the average amount of social

activities in the population. Given (7) and normalizing the population size to one, the latter

is given by x̄s,t = Stx̄
S
s,t + Itx̄

I
s,t + Rtx̄

R
s,t. More precisely, the aggregate number of contacts

depends on a matching function, which depends itself on the aggregate average social activity,

x̄s,t, and which can be specified as follows: m(x̄Ss,t, x̄
I
s,t, x̄

I
s,t) = (x̄s,t)

α.

The parameter α captures the matching function’s returns to scale, ranging from constant

to increasing returns to scale. As such, this parameter captures, e.g., the geographic aspects

of the location in which the disease spreads. Cities with denser logistical structures induce a

larger number of overall contacts per outside activity. These could be, for example, cities

with highly ramified underground-transportation systems. In such locations, citizens tend to

use public transport more frequently, and their likelihood of encountering infected individuals

is larger.

Given the aggregate number of contacts, the average number of contacts per outside

activity is given by m(x̄s,t)

x̄s,t
. Under the matching-function specification adopted above, this

can be written as: (x̄s,t)
(α−1). The probability of becoming infected depends also on the joint
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probability that susceptible and infected individuals both go out, which is given by xss,tx
I
s,t, on

the infection transmission rate, η, and on the number of infected individuals in the population.

Therefore, we can denote the infection probability in the decentralized equilibrium as:

pt(.) = ηxSs,tx
I
s,t

m(x̄Ss,t, x̄
I
s,t, x̄

R
s,t)

x̄s,t
It = ηxSs,tx

I
s,t(x̄s,t)

α−1It. (15)

Note that atomistic agents take the fraction of outside activities of other agents as given.

If α = 0, the probability pt = ηxSs,tx
I
s,tx̄s,tIt is homogeneous of degree one, hence there are

constant returns to scale while if α = 1, the probability becomes a quadratic function (see

Diamond (1982)), as a consequence of which it exhibits increasing returns to scale.

The baseline SIR model in the decentralized equilibrium can now be re-written as follows:

St+1 = St − ptSt (16)

It+1 = It + ptSt − γIt (17)

Rt+1 = Rt + γIt, (18)

where St + It +Rt ≡ 1.

Definition 1. A decentralized equilibrium is a sequence of state variables, St, It, Rt, a set of

value functions, V S
t , V

I
t , V

R
t , and a sequence of consumption, probabilities, and social contacts,

pt, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t, such that:

1. St, It, Rt solve (3) to (5), with the probability of contact given by (15)

2. V S
t , V

I
t , V

R
t solve (6), (9), and (10)

3. The sequence pt, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t solves (11), (12), (13), and (14).

4.2. Altruism of Infected Individuals

Our empirical results have highlighted that the degree of altruism matters. It is also reasonable

to conjecture that infected individuals hold some altruistic preferences. These attitudes may
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include both warm-glow preferences toward relatives and friends (see Becker (1974))19 or

general unconditional altruism and social preferences.20 For this reason, we now extend

their per-period utility to include some altruistic preferences. Their per-period utility is now

defined as follows:

U(xIh,t, x
I
s,t) = u(xIh,t, x

I
s,t)− c(xIh,t, xIs,t) + δV S

t . (19)

While infected individuals do not internalize the effect of their social activities on the infection

rate fully, as they are already immune in the near future, they do hold an altruistic motive

toward the susceptible, which is captured by a weight δ. The first-order condition with

respect to the social activity changes to:

∂U(xIh,t, x
I
s,t)

∂xIs,t
+ δβ

∂pt(.)

∂xIs,t
(V I

t+1 − V S
t+1) = 0. (20)

Now the optimal level of social activity chosen by infected individuals is lower than the one

obtained under (13) since they partly internalize the risk of infecting susceptible individuals,

who then turn into infected ones next period. Time discounting is also relevant in this case:

more patient individuals tend to internalize the impact of their social activity on the infection

probability by more.

4.3. Extension to Networked SIR

Within communities there are different groups that have different exposure or contact rates

to each of the other groups. Homophily in networks describes the likelihood that two nodes

(groups) are linked to each other.21 Our empirical analysis has also uncovered a role for

reciprocity. To capture such a role, we extend the SIR model to include different groups of

the population that experience different contact rates. These groups could correspond to,

19 Warm-glow preferences have a long-standing tradition in economics. Besides Becker (1974)’s original
work, see Andreoni (1989) or Andreoni (1993).

20 See, for instance, Bolton and Ockenfels (2000) or Andreoni and Miller (2002).
21 A more general concept of homophily can be found in Fehr and Schmidt (1999) or Fehr and Gächter

(2000).
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e.g., the age structure, different strengths in ties, or closer face-to-face interactions in the

workplace. The underlying idea is that contact rates tend to be higher among peer groups.

Consider a population with different groups j = 1, ...., J . The number of people in each

group is Nj. Groups have different probabilities of encounters with the others. The contact

intensity between group j and any group k is ξj,k. Intuitively this captures some forms of

homophily within groups. For example,younger individuals tend to meet other young ones,

i.e. their peers, more often. Also, workers in face-to-face occupations enter more often in

contacts with workers performing similar tasks. This implies that the infection outbreak

usually takes place within members of the same group. Whether the outbreak then spreads to

the rest of the network and how fast it does so, depends on the relative degree of attachment

of the initially infected group to the other groups. Each susceptible individual of group j

experiences a certain number of contacts per outings with infected individuals of his own,

but also of all the other groups. Given this structure we can derive the matching function

for the network-SIR model. In parallel with our previous discussion in 4.1, the number of

contacts experienced by group j depends on the average level of social activity in each group

k weighted by the contact intensity across groups, and is equal to:

mj(x̂js,t) = mj

(∑
k

ξj,k(x̄
S,k
s,t S

k
t + x̄I,ks,t I

k
t + x̄R,ks,t R

k
t )

)
. (21)

As before, the matching function can be specified as: mj(x̂js,t) =
(∑

k ξj,k(x̄
S,k
s,t S

k
t + x̄I,ks,t I

k
t + x̄R,ks,t R

k
t )
)α

.

Like before the average number of contacts is obtained by dividing the aggregate contacts, (21),

by the average social activity, namely x̂js,t =
(∑

k ξj,k(x̄
S,k
s,t S

k
t + x̄I,ks,t I

k
t + x̄R,ks,t R

k
t )
)

. Therefore,

the probability of infection of a susceptible person in group j is modified as follows:

pjt(.) = xS,js,t

[∑
k

ηξj,kx
I,k
s,t

mj(x̂js,t)

x̂js,t
Ikt

]
, (22)

where k = 1, .., J and ξj,j = 1. The underlying rationale is equivalent to the one described

in the single-group case, except that now the probability of meeting an infected person from

any other group k is weighted by the likelihood of the contacts across groups, ξj,k.
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The SIR model for each group j then reads as follows:

Sjt+1 = Sjt − p
j
t(.)S

j
t (23)

Ijt+1 = Ijt + pjt(.)S
j
t − γI

j
t (24)

Rj
t+1 = Rj

t + γIjt , (25)

where St + It +Rt ≡ 1.

As before, atomistic individuals take the average social activity and the average social

encounters as given. The first-order condition for social activity of the susceptible individuals

belonging to group j now reads as follows:

∂U(xS,jh,t , x
S,j
s,t )

∂xS,js,t
+ β

[∑
k

ηξj,kx
I,k
s,t

mj(x̂js,t)

x̂js,t
Ikt

]
(V I,j

t+1 − V
S,j
t+1) = 0. (26)

Note that again, each susceptible agent takes the average level of social activity by the others

as given. It becomes clear that the differential impact of her social activity on the various

groups affects her optimal choice.

We can now derive the first-order conditions of the infected. For this purpose, we assume

altruistic preferences, which means that the infected agents internalize at least partly, with

the weight δ, the impact of their choices on the susceptible agents of all other groups. The

first-order condition with respect to social activity is:

∂U(xI,jh,t, x
I,j
s,t )

∂xI,js,t
+ δβ

∑
k

xS,ks,t ηξk,j
mk(x̂ks,t)

x̂ks,t
Ijt (V

I,k
t+1 − V

S,k
t+1) = 0. (27)

The first-order conditions for the recovered individuals are the same as in (14), but separately

for each group j. We can now formulate an equilibrium definition of the decentralized

SIR-network model.

Definition 2. A decentralized equilibrium for the SIR-network model is a sequence of state
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variables, Sjt , I
j
t , R

j
t , a set of value functions, V S,j

t , V I,j
t , V R,j

t , and a sequence of consumption,

probabilities, and social contacts, pjt , x
S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t , such that:

1. Sjt , I
j
t , R

j
t solve (16) to (18) for each group j, with the contact rate given by (42) for

each group j

2. V S,j
t , V I,j

t , V R,j
t solve (6), (9), and (10), now defined separately for each group j

3. The sequence pjt , x
S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t solves (26), (27) , (11), (13) and (14) for

each group j.

4.4. Social Planner

As noted before, when each person chooses her optimal social activity, she does not consider

its impact on the average level of social activity nor on the future course of the number of

infected individuals. We now introduce a social planner who takes both into account, starting

with the planner problem for the homogeneous SIR model.

Before defining the optimal planning problem note that the planners’ constraints include

the SIR model, whereby the infection rate depends upon the equilibrium social interactions

chose by the agents. In the Nash equilibrium individual and average social interactions are

the same, hence xSs,t = x̄Ss,t and xIs,t = x̄Is,t. This implies that the equilibrium infection rate is

given by:

pPt (.) = ηxSs,tx
I
s,t(Stx

S
s,t + Itx

I
s,t +Rtx

R
s,t)

(α−1)It. (28)

Definition 3. Social Planner in the Homogeneous SIR Model. The social planner

chooses the paths of home and social, i.e., outside, activities for each agent by maximizing the

weighted sum of the utilities of all agents. The planner is aware that the number of infected

and susceptible individuals in the future will affect the future value function of the susceptible

individuals. The planner chooses the sequence [St+1, It+1, Rt+1, x
S
h,t, x

I
h,t, x

R
h,t, x

S
s,t, x

I
s,t, x

R
s,t]
∞
t=0

at any initial period t to maximize:

ˆV N
t = StV̂ S

t (St, It) + ItV̂ I
t +RtV̂ R

t (29)

23



where

V̂ S
t (St, It) = U(xSh,t, x

S
s,t) + β[pPt (.) ˆV I

t+1 + (1− pPt (.)) ˆV S
t+1], (30)

V̂ I
t = U(xIh,t, x

I
s,t) + δV̂ S

t (St, It) + β[(1− γ) ˆV I
t+1 + γ ˆV S

t+1], (31)

V̂ R
t = U(xRh,t, x

R
s,t) + β[ ˆV R

t+1], (32)

subject to:
St+1 = St − pPt (.)St (33)

It+1 = It + pPt (.)tSt − γIt (34)

Rt+1 = Rt + γIt, (35)

where St + It +Rt ≡ 1.

We denote the value function under the planner problem with a hat since the planner is

aware of the dependence of the value function of susceptible individuals on the number of

infected and susceptible individuals.

Proposition 1. The planner reduces social interactions on top and above the decentralized

equilibrium. She does so due to a static and a dynamic externality.

Proof. The first-order conditions for home activities of susceptible and infected individuals

and for all activities of the recovered remain the same as in the decentralized equilibrium.

The choices of the social activity of the susceptible and the infected agents are derived in B.

The size of the aggregate inefficiency is obtained by the difference between the first order

conditions for social activity of susceptible and infected individuals in the decentralized

equilibrium, 12 and 20 and the corresponding ones in the social plan, 55 and 56. The

difference reads as follows:

χSt = β

[
∂pPt (.)

∂xSs,t
− pt
xSs,t

]
[ ˆV I
t+1 − ˆV S

t+1] + β(1− pPt (.))

[
∂ ˆV S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂ ˆV S

t+1

∂It+1

∂It+1

∂xSs,t

]
= 0 (36)
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χIt = δ

{
β

[
∂pPt (.)

∂xIs,t
− pt
xIs,t

]
[ ˆV I
t+1 − ˆV S

t+1] + β(1− pPt (.))

[
∂ ˆV S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂ ˆV S

t+1

∂It+1

∂It+1

∂xIs,t

]}
= 0.

(37)

where pPt (.) is given by (28). Equations (36) and (37) are different from the first-order

conditions for the optimal choice of social activity of susceptible and infected agents in the

decentralized equilibrium (cf. equations (12) and (20)). The difference can be decomposed

into two parts, which correspond to a static and a dynamic inefficiency (this is similar to

Garibaldi et al. (2020). First, atomistic agents do not internalize the impact of their decisions

on the average level of social activity, while the planner does. In other words, when choosing

their social activity, the atomistic agents take into account the infection rates given by (15),

while the social planner takes into account the infection rates given by (28). Hence, the static

inefficiency is given by:

ΦS
t = β

[
∂pPt (.)

∂xSs,t
− pt(.)

xSs,t

]
[ ˆV I
t+1 − ˆV S

t+1] (38)

ΦI
t = δβ

[
∂pPt (.)

∂xIs,t
− pt(.)

xIs,t

]
[ ˆV I
t+1 − ˆV S

t+1]. (39)

where pt(.)

xis,t
= ∂pt(.)

∂xis,t
, for i = S, I. Note that the static inefficiency is affected by the matching

function’s returns to scale. In places with more dense interactions, the spread of the disease

is faster and the size of the inefficiency is larger. This implies that the social planner will

adopt stringency or non-pharmaceutical interventions (henceforth NPIs) on top and above

the restraints applied by both the susceptible and the infected.

The second components that distinguish (36) and (37) from (12) and (20) is:

ΨS
t = β(1− pPt (.))

[
∂ ˆV S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂ ˆV S

t+1

∂It+1

∂It+1

∂xSs,t

]
(40)

ΨI
t = δβ(1− pPt (.))

[
∂ ˆV S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂ ˆV S

t+1

∂It+1

∂It+1

∂xIs,t

]
. (41)

The terms in (40) and (41) identify a dynamic inefficiency which arises since the planner
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acts under commitment. The planner recognizes that next period’s number of infected and

susceptible individuals is going to have an effect on the value function of the susceptible

individuals through all future infection rates.

Definition 4. Social Planner in the SIR-Network Model. In the SIR-network model,

the social planner maximizes the sum of future discounted utilities for all groups in the

population taking as given the SIR network model in which infection rates depend upon

the Nash equilibrium of social interactions. This implies that the infection rates in the

equilibrium SIR-network are given by:

pPjt (.) = xS,js,t

∑
k

ηξj,kx
I,k
s,t

mj
(∑

k ξj,k(x
S,k
s,t S

k
t + xI,ks,t I

k
t + xR,ks,t R

k
t )
)

(∑
k ξj,k(x

S,k
s,t S

k
t + xI,ks,t I

k
t + xR,ks,t R

k
t )
) Ikt

 , (42)

The planner now chooses the sequence [Sjt+1, I
j
t+1, R

j
t+1, x

S,j
h,t , x

I,j
h,t, x

R,j
h,t , x

S,j
s,t , x

I,j
s,t , x

R,j
s,t ]∞t=0 at any

initial period t and for all j to maximize:

V̂ N
t =

∑
j

[Sjt V̂
S,j
t + Ijt V̂

I,j
t +Rj

t V̂
R,j
t ] (43)

where:
V̂ S,j
t (Sjt , I

j
t ) = U(xS,jh,t , x

S,j
s,t ) + β[pPjt V̂ I,j

t+1 + (1− pPjt )V̂ S,j
t+1], (44)

V̂ I,j
t = U(xI,jh,t, x

I,j
s,t ) + δ

∑
j

V̂ S,j
t (Sjt , I

j
t ) + β[(1− γ)V̂ I,j

t+1 + γV̂ S,j
t+1], (45)

V̂ R,j
t = U(xR,jh,t , x

R,j
s,t ) + β[V̂ R,j

t+1 ], (46)

subject to

Sjt+1 = Sjt − p
Pj
t (.)Sjt (47)

Ijt+1 = Ijt + pPjt (.)Sjt − γI
j
t (48)

Rj
t+1 = Rj

t + γIjt , (49)
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where St + It +Rt ≡ 1. The full set of first-order conditions can be found in Appendix C.

Proposition 2. The inefficiencies in the SIR-network model are larger than in the homoge-

neous SIR model, and also take into account the reciprocal relations.

Proof. The first-order conditions of the planner problem can be found in C. Comparing

those, i.e. (57) and (58), with the corresponding ones from the decentralized equilibrium of

the SIR-network we obtain the following aggregate inefficiencies for each group, j:

ΩS,j
t = β

[
∂pPjt (.)

∂xS,js,t
− ∂pjt

∂xS,js,t

]
[V̂ I,j
t+1−V̂

S,j
t+1]+β(1−pPjt (.))

∑
k

[
∂V̂ S,j

t+1

∂Skt+1

∂Skt+1

∂xS,js,t
+
∂V̂ S,j

t+1

∂Ikt+1

∂Ikt+1

∂xS,js,t

]
= 0

(50)

ΩI,j
t = δβ

∑
k

{[
∂pPkt (.)

∂xI,js,t
− ∂pkt
∂xI,js,t

]
[V̂ I,k
t+1 − V̂

S,k
t+1 ] + (1− pPkt (.))

∑
n

[
∂V̂ S,k

t+1

∂Snt+1

∂Snt+1

∂xI,js,t
+
∂V̂ S,k

t+1

∂Int+1

∂Int+1

∂xI,js,t

]}
= 0

(51)

For the SIR-network model, the inefficiencies contain additional components. First of all

the static inefficiency is summed across all groups j. Second, the dynamic inefficiency is

weighted by a probability that takes into account the summation of the infection rate across

groups. Those additional terms capture a reciprocity externality. The planner is aware that

the social activity has a differential impact across different age group and this is reflected in

the size of the externality.

Having characterized the inefficiencies, we next turn to actual implementation policies

in the homogeneous SIR and the SIR-network model, and their suitability to close the

inefficiencies.

4.5. Implementability: Partial Lockdown in the Homogeneous SIR

Model and Targeted Lockdown in the SIR-Network Model

We now examine which lockdown policies are efficient. In particular, we consider partial and

targeted lockdown policies.
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Partial Lockdown in SIR. We start by examining a simple partial lockdown policy for

the homogeneous SIR model. We define as θ the fraction of social activity that is restricted.

Note that the planner can enforce two different lockdown policies, θS and θI , only if there

is the possibility to identify infected individuals. Let us first assume she cannot identify

them and there is only one single θ. Then, a partial lockdown policy affects the infection

probability in the decentralized economy as follows:

pt(θ, .) = η(1− θ)xSs,t(1− θ)xIs,t
m((1− θ)x̄s,t)

(1− θ)x̄s,t
It. (52)

Lemma 1. The partial lockdown policy is efficient only in the presence of the means to

identify infected individuals, such as universal testing.

Proof. The partial lockdown policy would be efficient if it would set to zero the aggregate

inefficiencies:

β

[
∂pPt (.)

∂xSs,t
− pt
xSs,t

]
[V̂ I
t+1 − V̂ S

t+1] + β(1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xSs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xSs,t

]
= 0 (53)

δβ

{[
∂pPt (.)

∂xIs,t
− pt
xIs,t

]
[V̂ I
t+1 − V̂ S

t+1] + (1− pPt (.))

[
∂V̂ S

t+1

∂St+1

∂St+1

∂xIs,t
+
∂V̂ S

t+1

∂It+1

∂It+1

∂xIs,t
]

]}
= 0. (54)

Equations (53) and (54) include both the static and the dynamic inefficiency. If the planner

is endowed with a single instrument, i.e., a single lockdown policy applied equally to both

susceptible and infected individuals, she cannot close these two inefficiencies at once. Only in

presence of a second instrument, specifically a measure to identify infected individuals, she

can target policies toward agents in these two states and set the inefficiencies to zero.

Targeted Lockdown Policies in SIR Network. In the SIR-network model, the planner

could consider targeted policies, i.e., different degrees of stringency measures targeted at
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different groups.

Lemma 2. Implementable targeted lockdown policies require differentiated fractions θSj and

θIj for susceptible and infected individuals of each group. This can be achieved only with the

additional instrument of testing.

Proof. Targeted lockdown policies would be efficient if it set to zero the aggregate inefficiencies

arising from (50) and (51). This would imply different θSj and θIj that can close the 2j

inefficiencies. This can be achieved only by means of identifying and isolating infected from

susceptible individuals.

5. Simulations

In this section, we simulate the various variants of our model. The primary goal is to

ascertain the impact of social-activity choices on the dynamics of infections. For this reason,

we start by comparing our baseline SIR model to the traditional variant with exogenous

contacts. We then move to comparing simulations of our SIR model with and without

altruism and of our SIR-network model with homophily. Overall, all models in which agents

adjust their social activity in response to risk, altruism, and homophily exhibit a flattened

infection curve compared to the traditional SIR baseline. This enhances the salience of our

model implications. Policymakers designing mitigation policies shall be aware of the agents’

responses to risk. Only in this way can they design policies which strike the optimal balance

between economic and health risk, and which are appropriately adjusted to the cultural,

preference, and community traits of society.
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5.1. Comparison Homogeneous SIR Model with Optimizing

Individuals and Standard SIR Model

We start by detailing the calibration choice. The instantaneous utility of the susceptible and

infected is a function of their social activities xSs,t and xIs,t, respectively.22 The functional

forms read as follows: U(xSs,t) = xSs,t −
(xSs,t)

2

2cS
and U(xIs,t) = xIs,t −

(xIs,t)
2

2cI
− CI , where CI is

the cost of being sick, and we set cS = 1 and cI = 0.5. In general, CI might depend on the

congestion of the health system, which in turn depends on the number of infected individuals.

We abstract from this dependence, but note that its incorporation would actually strengthen

our conclusions: infected individuals aware of the health-system congestion would reduce

their social activity even more.

The cost is set equal to 10. This is a relatively high value, which reflects fear of severe

long-term health complications or even death. Recall that for simplicity, in our analytical

derivations we have assumed a death rate of zero, so it is reasonable to include its impact

among the costs of the infection. Following, for instance, Newman (2018), we set the recovery

rate γ to 0.4. Furthermore, β is set to 0.95 and δ to 0.5. Following Garibaldi et al. (2020), we

set η = 2.2, which combines a constant term from the matching function and the exogenous

transmission rate of COVID-19.

Figure 3 below compares the dynamics of infected, susceptible, and recovered individuals

both in our homogeneous SIR model with endogenous social activity and in the traditional

SIR model with exogenous contacts. For the comparison, in the latter the social activity

is set to a constant value equal to the average steady-state social activity, i.e., 0.75. The

other parameters are the same across the two models. Figure 4 shows the dynamics of the

social activity chosen by the infected individuals, and compares the models with and without

altruism.

First and foremost, Figure 3 shows that the peak of the infection curve (middle panel) is

significantly flattened when one uses the model with endogenous social activity. The number

22 We assume that in steady state the utility function of the recovered and of the susceptible individuals are
the same. Recovered individuals do not change their social activity since they become immune. This is
realistic at least for a certain length of time.
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of susceptible individuals remains higher in the optimizing SIR model. Figure 4 shows that

the social interaction of the infected individuals (left panel) is unchanged in the absence of

altruism, while it decreases significantly in the presence of altruism. Interestingly, in the

presence of altruism susceptible individuals shall decrease their social contacts by less, since

part of the burden is assumed by the infected individuals.

Figure 3
Comparison of the Homogeneous SIR Model with Endogenous Social Activity and

the Traditional SIR Model with Constant Exogenous Contact Rates

Figure 4
Comparison of Social Activity of Infected and Susceptible Individuals in the

Homogeneous SIR Model with (right panel) and without Altruism (left panel)

5.1.1. Comparison SIR-Network Model with Endogenous Social Activity and

Standard SIR-Network Model

In the SIR-network model, we allow for three age groups. Following Acemoglu et al. (2020),

the three groups consist of the young (20 − 49 years), middle-aged (50 − 64 years), and

old (65+ years). The respective population shares are set to Ny = 53%, Nm = 26%, and
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No = 21%. The network adjacency or homophily matrix is calibrated so all groups have

a contact rate, ξj,k, equal to 1 with their peers and equal to 0.7 (or later on 0.4) with the

other groups. The matrix is symmetric. This calibration is similar to that in Acemoglu et al.

(2020), which facilitates the comparison of our SIR-network with endogenous social activity

and other SIR-network models with similar age structures. We choose different recovery rates

for the different age groups. For the middle-aged group, we set γm = 0.4, which is standard.

For the younger group, we assume a slightly faster recovery γy = 0.45, and for the older group

γo = 0.35. All other parameters are kept as in the benchmark homogeneous SIR model.

Figure 5 compares the dynamics of infected, susceptible, and recovered individuals in our

SIR-network model (thicker lines) with those in the exogenous SIR-network model (thinner

lines).23 The second case is obtained by setting the social activity of each group equal to their

respective steady-state values. The comparison is again revealing. In our SIR-network model,

the curves for the infected of all age groups are much flatter than those in the exogenous

SIR-network model. In Figure 6, we compare the social activity of susceptible individuals of

all three age groups in our model. While young, middle-age, and old agents all reduce their

social interaction, the old group reduces it by more since its agents are more exposed due to

their lower recovery rate.

Figure 5
Comparison of SIR-Network Models with Endogenous Social Activity vs. Constant

Exogenous Contact Rates

23 Note that we assume that the initial infection shock takes place in the young group.
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Figure 6
Dynamics of Social Interactions of Age Groups in the SIR-Network Model with

Endogenous Social Activity

5.2. Planner Solution: Optimal Lockdown Policy in Homogeneous

SIR and SIR-Network Models

Finally, we quantify the optimal lockdown policy and its dependence on the preference and

community structure. We start with the homogeneous SIR model. Figure 7 plots the optimal

lockdown policy as captured by the fraction θ chosen by the planner (right panel) and the

resulting social interactions of the susceptible individuals in our homogeneous SIR model

with optimizing agents (the parameters are as before). In each panel, we compare the cases

with (dashed line) and without altruism (solid line). Interestingly, and in accordance with

our empirical results, the planner chooses a smaller fraction of locked-down activities when

individuals are altruistic. Again, social interactions of susceptible individuals are higher in

the altruistic case. This is because infected individuals adjust their interactions already by

themselves in consideration of other people’s infection risk.

Figure 8 plots the optimal lockdown policy (right panel) and the resulting social interactions

of the infected (left panel) for the planner solution in the SIR-network model. We allow for

differentiated lockdown policies across age groups. While a full lockdown of a single group

(sequestering) jointly with full freedom for the others would be unethical, a joint burden

33



sharing with some differentiation across groups might be the right protective measure, also in

light of the fact that different age groups experience different recovery rates.24

A practical implementation of this policy would include more extensive leave of absence

for workers in older age groups or in groups with pre-existing health conditions. Our results

point to two main implications. First, stringency measures are stricter for the greatest risk

spreaders, namely the age group with the highest intensity of social activity. Second, in each

panel we compare the cases when individuals have different degrees of homophily, setting

ξ = 0.7 (lower homophily, black lines) and ξ = 0.4 (higher homophily, blue lines). Stringency

measures are generally stricter in the case of lower homophily, since it implies faster spreading

of the disease across groups, and the planner optimally restricts social activity by more.

Figure 7
Social Activity of Susceptible Individuals and Optimal Lockdown Depending on

Degree of Altruism of Infected Individuals

24 Again, recall that different recovery rates also implicitly capture different mortality rates.
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Figure 8
Social Activity of Susceptible Individuals and Optimal Differentiated Lockdown

Policies for Different Degrees of Group Connections

6. Concluding Remarks

While envisaging a return to freedom of mobility and to past customs, though hopefully with

fading fears, understanding the determinants of people’s behavior in the face of catastrophic

events is important along at least two dimensions. First, it is difficult to accurately forecast

the spread of a disease with models that do not account for human behavior. Second, as

policymakers seek advice on exit strategies that could mitigate both the loss of lives and

the economic consequences, understanding individuals’ behavior even as lockdowns or other

stringency measures are lifted is informative. Excessive precautionary behavior is likely to

trigger demand spirals which might slow down the recovery process.

We use daily mobility data for 89 cities worldwide to show that preference traits, such as

patience and altruism, and community traits, such as reciprocity, matter for the behavioral

response of individuals during a pandemic. We rationalize this behavior by proposing

extensions of the homogeneous SIR and the SIR-network model that account for agents’

optimizing behavior.

One of the initial approaches to contain the pandemic, suggested by experts, has been a

“one size fits all” response, namely a full lockdown. We uncover important heterogeneities

in individuals’ behavior as well as in the efficacy of stringency measures with respect to
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regional differences in time and social preferences. Our findings suggest that a balanced

approach involving a joint interaction of stringency measures, in respect of human dignity,

and responsible social preferences can help mitigate both the public health crisis and the

economic costs. Finally, by designing the planner problems, we show that a static and a

dynamic inefficiency arise in the homogeneous SIR model, and a reciprocity inefficiency in

the SIR-network model. However, the planner can close those inefficiencies only if targeted

lockdown policies are accompanied by the possibility to identify infected individuals.

References

Acemoglu, D., Chernozhukov, V., Werning, I., and Whinston, M. D. (2020). A Multi-Risk

SIR Model with Optimally Targeted Lockdown. NBER Working Paper No. 27102.

Alvarez, F., Argente, D., and Lippi, F. (2020). A Simple Planning Problem for COVID-19

Lockdown. CEPR Discussion Paper No. 14658.

Ambrus, A., Mobius, M., and Szeidl, A. (2014). Consumption Risk-Sharing in Social Networks.

American Economic Review, 104(1):149–182.

Andreoni, J. (1989). Giving with Impure Altruism: Applications to Charity and Ricardian

Equivalence. Journal of Political Economy, 97(6):1447–1458.

Andreoni, J. (1993). An Experimental Test of the Public Goods Crowding-Out Hypothesis.

American Economic Review, 83(5):1317–1327.

Andreoni, J. and Miller, J. (2002). Giving according to GARP: An Experimental Test of the

Consistency of Preferences for Altruism. Econometrica, 70(2):737–753.

Atkenson, A. (2020). What Will Be the Economic Impact of COVID-19 in the US? Rough

Estimates of Disease Scenarios. NBER Working Paper No. 26868.

Bartik, A. W., Bertrand, M., Cullen, Z. B., Glaeser, E. L., Luca, M., and Stanton, C. T.

(2020). How Are Small Businesses Adjusting to COVID-19? Early Evidence from a Survey.

NBER Working Paper No. 26989.

36



Becker, G. (1974). A Theory of Social Interactions. Journal of Political Economy, 82(6):1063–

1083.
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A. Tables
Table 1

Summary Statistics

Country level City/regional level

Mean Std. dev. Min Max Mean Std. dev. Min Max

Walking 85.17 42.89 3.78 324.06 86.04 43.31 3.78 324.06

Driving 82.01 35.23 7.52 195.53 82.25 35.48 7.52 194.74

Transit 76.53 44.09 4.11 322.18 77.21 45.18 4.11 322.18

Corona ST 31.63 25.34 1.00 100.00 31.93 25.70 0.00 100.00

Stringency index 38.44 34.19 0.00 100.00

Patience 0.57 0.42 -0.47 1.42

Altruism 0.12 0.30 -0.98 0.60

Neg. reciprocity 0.05 0.25 -0.45 0.57

N 8,099 5,460

This table presents summary statistics for the main dependent and independent variables, which correspond

to the respective descriptions in Tables 2 to 6. The statistics in the first four columns are at the country-day

level, whereas the statistics in the last four columns are at the city-day level for the three mobility outcomes

(walking, driving, and transit) and at the region-day level for all remaining variables. Furthermore, the

sample in the last four columns is limited to countries with at least two cities in different regions.
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Table 2
Effect of Fear and Government Responses on Mobility

ln(Walking) ln(Driving) ln(Transit) ln(Walking) ln(Driving) ln(Transit)

Variable (1) (2) (3) (4) (5) (6)

ln(Corona STt−1) -0.152** -0.166*** -0.131* -0.113** -0.134*** -0.084

(0.057) (0.052) (0.073) (0.050) (0.048) (0.061)

Lockdown -0.394*** -0.338*** -0.276

(0.125) (0.111) (0.187)

Stringency index -0.005*** -0.004*** -0.006***

(0.001) (0.001) (0.002)

Cases per capitat−1 -0.057 0.010 -0.108 -0.108 -0.034 -0.120

(0.143) (0.113) (0.133) (0.141) (0.107) (0.124)

City FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Adj. R2 0.81 0.82 0.86 0.80 0.81 0.86

N 7,740 7,740 5,580 7,740 7,740 5,580

The level of observation is the city-date level it, where city i is in region g of country c. The dependent

variable in columns 1 and 4 is the natural logarithm of Apple Mobility’s walking index for city i at date t. The

dependent variable in columns 2 and 5 is the natural logarithm of Apple Mobility’s driving index for city i at

date t. The dependent variable in columns 3 and 6 is the natural logarithm of Apple Mobility’s transit index

for city i at date t. Corona ST ct−1 is the Google Trends Index for the search term “Coronavirus” in country

c at date t− 1. Lockdownct is an indicator variable for the lockdown period in country c (or state/region g for

the US) at date t. Stringency index ct is the stringency index (taken from the Oxford COVID-19 Government

Response Tracker), reflecting the different policy responses that governments have taken, in country c at date

t. Cases per capitact−1 are the infection cases per capita in country c at date t− 1, and are multiplied by

1,000. Robust standard errors (double-clustered at the city and date levels) are in parentheses.
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Table 3
Effect of Fear and Government Responses on Mobility – Regional-level Variation

ln(Walking) ln(Driving) ln(Transit) ln(Walking) ln(Driving) ln(Transit)

Variable (1) (2) (3) (4) (5) (6)

ln(Corona STt−1) -0.176*** -0.177*** -0.072 -0.109*** -0.120*** -0.012

(0.040) (0.038) (0.050) (0.038) (0.038) (0.046)

Lockdown -0.414*** -0.365*** -0.186

(0.109) (0.089) (0.134)

Stringency index -0.007*** -0.006*** -0.007***

(0.001) (0.001) (0.001)

Cases per capitat−1 -0.137 -0.047 -0.173 -0.180 -0.085 -0.146

(0.118) (0.095) (0.104) (0.116) (0.089) (0.107)

City FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Adj. R2 0.80 0.82 0.84 0.80 0.81 0.85

N 5,393 5,393 4,404 5,393 5,393 4,404

The level of observation is the city-date level it, where city i is in region g of country c. The sample is limited

to countries c with at least two cities i in different regions g. The dependent variable in columns 1 and 4 is the

natural logarithm of Apple Mobility’s walking index for city i at date t. The dependent variable in columns 2

and 5 is the natural logarithm of Apple Mobility’s driving index for city i at date t. The dependent variable

in columns 3 and 6 is the natural logarithm of Apple Mobility’s transit index for city i at date t. Corona

ST gt−1 is the Google Trends Index for the search term “Coronavirus” in region g at date t− 1. Lockdownct is

an indicator variable for the lockdown period in country c (or state/region g for the US) at date t. Stringency

index ct is the stringency index (taken from the Oxford COVID-19 Government Response Tracker), reflecting

the different policy responses that governments have taken, in country c at date t. Cases per capitact−1 are

the infection cases per capita in country c at date t− 1, and are multiplied by 1,000. Robust standard errors

(double-clustered at the city and date levels) are in parentheses.
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Table 4
Effect of Fear and Government Responses on Mobility: The Role of Patience –

Regional-level Variation

ln(Walking) ln(Driving) ln(Transit) ln(Walking) ln(Driving) ln(Transit)

Variable (1) (2) (3) (4) (5) (6)

ln(Corona STt−1) -0.024 -0.034** 0.025 0.049* 0.022 0.122***

(0.025) (0.017) (0.035) (0.026) (0.021) (0.030)

Lockdown -0.927*** -0.815*** -0.823***

(0.155) (0.112) (0.221)

Lockdown 0.760*** 0.691*** 0.596**

× Patience (0.179) (0.122) (0.268)

Stringency index -0.007*** -0.006*** -0.009***

(0.002) (0.001) (0.003)

Stringency index 0.006*** 0.004*** 0.005*

× Patience (0.001) (0.001) (0.003)

Cases per capitat−1 -0.150 -0.061 -0.149 -0.119 -0.035 -0.066

(0.093) (0.065) (0.102) (0.122) (0.091) (0.115)

City FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Country-month FE Y Y Y Y Y Y

Adj. R2 0.91 0.93 0.92 0.90 0.91 0.91

N 5,393 5,393 4,404 5,393 5,393 4,404

The level of observation is the city-date level it, where city i is in region g of country c. The sample is limited

to countries c with at least two cities i in different regions g. The dependent variable in columns 1 and 4 is the

natural logarithm of Apple Mobility’s walking index for city i at date t. The dependent variable in columns 2

and 5 is the natural logarithm of Apple Mobility’s driving index for city i at date t. The dependent variable

in columns 3 and 6 is the natural logarithm of Apple Mobility’s transit index for city i at date t. Corona

ST gt−1 is the Google Trends Index for the search term “Coronavirus” in region g at date t− 1. Lockdownct is

an indicator variable for the lockdown period in country c (or state/region g for the US) at date t. Stringency

index ct is the stringency index (taken from the Oxford COVID-19 Government Response Tracker), reflecting

the different policy responses that governments have taken, in country c at date t. Patienceg is the average

value for the measure of time preference in region g reported by Falk et al. (2018). Cases per capitact−1 are

the infection cases per capita in country c at date t− 1, and are multiplied by 1,000. Robust standard errors

(double-clustered at the city and date levels) are in parentheses.
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Table 5
Effect of Fear and Government Responses on Mobility: The Role of Negative

Reciprocity – Regional-level Variation

ln(Walking) ln(Driving) ln(Transit) ln(Walking) ln(Driving) ln(Transit)

Variable (1) (2) (3) (4) (5) (6)

ln(Corona STt−1) -0.037 -0.046** 0.017 0.021 0.004 0.083***

(0.027) (0.020) (0.035) (0.029) (0.022) (0.031)

Lockdown -0.424*** -0.359*** -0.349***

(0.093) (0.075) (0.101)

Lockdown -0.583** -0.510*** -0.917***

× Neg. reciprocity (0.225) (0.167) (0.271)

Stringency index -0.004*** -0.003*** -0.005***

(0.001) (0.001) (0.002)

Stringency index -0.001 -0.002 -0.007**

× Neg. reciprocity (0.002) (0.002) (0.003)

Cases per capitat−1 -0.132 -0.045 -0.144 -0.138 -0.048 -0.086

(0.104) (0.076) (0.110) (0.125) (0.092) (0.123)

City FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Country-month FE Y Y Y Y Y Y

Adj. R2 0.90 0.92 0.92 0.89 0.91 0.91

N 5,393 5,393 4,404 5,393 5,393 4,404

The level of observation is the city-date level it, where city i is in region g of country c. The sample is limited

to countries c with at least two cities i in different regions g. The dependent variable in columns 1 and 4

is the natural logarithm of Apple Mobility’s walking index for city i at date t. The dependent variable in

columns 2 and 5 is the natural logarithm of Apple Mobility’s driving index for city i at date t. The dependent

variable in columns 3 and 6 is the natural logarithm of Apple Mobility’s transit index for city i at date

t. Corona ST gt−1 is the Google Trends Index for the search term “Coronavirus” in region g at date t− 1.

Lockdownct is an indicator variable for the lockdown period in country c (or state/region g for the US) at

date t. Stringency index ct is the stringency index (taken from the Oxford COVID-19 Government Response

Tracker), reflecting the different policy responses that governments have taken, in country c at date t. Neg.

reciprocityg is the average value for the measure of negative reciprocity in region g reported by Falk et al.

(2018). Cases per capitact−1 are the infection cases per capita in country c at date t− 1, and are multiplied

by 1,000. Robust standard errors (double-clustered at the city and date levels) are in parentheses.
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Table 6
Effect of Fear and Government Responses on Mobility: The Role of Altruism –

Regional-level Variation

ln(Walking) ln(Driving) ln(Transit) ln(Walking) ln(Driving) ln(Transit)

Variable (1) (2) (3) (4) (5) (6)

ln(Corona STt−1) -0.041 -0.048** 0.013 0.019 0.003 0.089***

(0.027) (0.021) (0.035) (0.030) (0.023) (0.032)

Lockdown -0.537*** -0.448*** -0.517***

(0.101) (0.081) (0.111)

Lockdown 0.539** 0.395** 0.674**

× Altruism (0.217) (0.154) (0.281)

Stringency index -0.004*** -0.003*** -0.005***

(0.001) (0.001) (0.002)

Stringency index 0.003 0.002 0.004

× Altruism (0.002) (0.001) (0.003)

Cases per capitat−1 -0.143 -0.053 -0.153 -0.135 -0.046 -0.082

(0.107) (0.079) (0.113) (0.124) (0.092) (0.123)

City FE Y Y Y Y Y Y

Date FE Y Y Y Y Y Y

Country-month FE Y Y Y Y Y Y

Adj. R2 0.90 0.92 0.92 0.89 0.91 0.91

N 5,393 5,393 4,404 5,393 5,393 4,404

The level of observation is the city-date level it, where city i is in region g of country c. The sample is limited

to countries c with at least two cities i in different regions g. The dependent variable in columns 1 and 4 is the

natural logarithm of Apple Mobility’s walking index for city i at date t. The dependent variable in columns 2

and 5 is the natural logarithm of Apple Mobility’s driving index for city i at date t. The dependent variable

in columns 3 and 6 is the natural logarithm of Apple Mobility’s transit index for city i at date t. Corona

ST gt−1 is the Google Trends Index for the search term “Coronavirus” in region g at date t− 1. Lockdownct is

an indicator variable for the lockdown period in country c (or state/region g for the US) at date t. Stringency

index ct is the stringency index (taken from the Oxford COVID-19 Government Response Tracker), reflecting

the different policy responses that governments have taken, in country c at date t. Altruismg is the average

value for the measure of altruism in region g reported by Falk et al. (2018). Cases per capitact−1 are the

infection cases per capita in country c at date t− 1, and are multiplied by 1,000. Robust standard errors

(double-clustered at the city and date levels) are in parentheses.
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B. First-Order Conditions of the Social Planner in the

Homogeneous SIR Model

The first-order conditions to the social plan laid down in Definition 3 for the home activity of
the infected and susceptible individuals and for the home and outside activity of the recovered
individuals are equivalent to the ones obtained under the decentralized equilibrium. For the
social activity of the susceptible and infected individuals, we have:

∂U(xSh,t, x
S
s,t)

∂xSs,t
+β

∂pPt (.)(.)

∂xSs,t
[(V̂ I

t+1−V̂ S
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∂V̂ S

t+1

∂St+1

∂St+1

∂xSs,t
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∂V̂ S
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]
= 0 (55)
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(56)

C. First-Order Conditions of the Social Planner in the

SIR-Network Model

The first-order conditions to the social plan laid down in Definition 4 for the home activity
of the infected and susceptible individuals and for the home and outside activity of the
recovered individuals are equivalent to the ones obtained under the decentralized equilibrium.
For the social activity of the susceptible and infected individuals in each group j, first-order
conditions read as follows:
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(58)
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