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ABSTRACT

The ‘border effects’ literature finds that political boundaries have a large impact on relative prices across locations. In this
paper, we show that the standard empirical specification suffers from selection bias and propose a new methodology based on
binned-quantile regressions. We use a novel micro-price dataset from Uruguay and focus on city borders. We find that, when the
standard methodology is used, two supermarkets separated by 10 km across two different cities have the same price dispersion
as two supermarkets separated by 30 km within the same city, implying that crossing a city border is equivalent to tripling the
distance. By contrast, when upper quantiles are used the city border effect disappears. These findings imply that transport cost
have been systematically underestimated by the previous literature. Our methodology can be applied to measure any kind of
border effect. We illustrate this in the context of online–offline price dispersion to measure an ‘online-border’ effect in the city
of Montevideo. Copyright © 2015 John Wiley & Sons, Ltd
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1. INTRODUCTION

Political borders can have a significant impact on relative prices. The degree of price segmentation caused by
such boundaries was empirically documented in a seminal paper by Engel and Rogers (1996), who showed with
consumer price index (CPI) data that the US–Canadian border had an effect on price dispersion equivalent to adding
a distance of at least 1780 miles between locations (approximately the distance between Miami and Quebec). Their
work spurred a large literature that found similarly large ‘border effects’ across countries, states and even cities.1

These results have been heavily debated over the years. Some papers have argued that (i) the distances have been
mis-measured (Head and Mayer, 2002), (ii) the regressions suffer from aggregation bias (Evans, 2003; Broda and
Weinstein, 2008), (iii) the gravity equation implied in the standard specification has been misspecified (Anderson
and van Wincoop, 2003; Broda and Weinstein, 2008), and that (iv) the regressions do not have a proper benchmark
because of the fact that country distributions of prices are very different across countries (Gorodnichenko and Tesar,
2009). Despite all this work, the magnitude and reasons behind the segmentation introduced by political borders is
still an open question in the literature.

In this paper, we propose a simple method to estimate the size of the ‘border effect’ based on Samuel-
son’s iceberg cost model. This methodology imply that largest price differences observed between locations
are relevant for transport cost estimation. We first argue that the standard regression is based on an arbitrage
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4 FERNANDO BORRAZ ET AL.

inequality constraint, and that using all price observations creates a selection bias that affects both the distance
and border coefficients (and, therefore, the estimates of the ‘border effect’). We propose an alternative approach
based on quantile regressions that corrects for the selection bias while simultaneously controlling for potential
measurement errors.

Our method can be explained using a very simple framework along the lines of Engel and Rogers (1996).
Consider the problem of a firm that sets a price bounded by the existence of an arbitrage constraint. If the arbitrage
cost between two establishments (i and j ) is � and p denotes the log price in each location, then the arbitrage
constraint can be expressed as a simple inequality:

ˇ̌
pi � pj

ˇ̌
� � (1)

where � is a function of distance, political boundaries, and other regional and product characteristics. The literature
typically estimates � and the border effects by running the following regression on price dispersion:2

jpi;t � pj;t j D ˛ C ˇDi;j C �Bi;j C ıXi;j;t C �i;j;t (2)

where pi;t � pj;t is the log price difference between locations i and j at time t . The locations can be countries,
provinces, cities or establishments. Di;j is the distance between the two locations, Bi;j is a dummy that takes
value 1 if a border exists between locations i and j , and Xi;j;t is a series of additional controls. In this context, the
‘border effect’ is the equivalent number of miles that would produce the same dispersion as the estimated border
dummy coefficient � . In its simplest form, it is the ratio �=ˇ, which means that a bias in either (or both) of these
coefficients will have an impact on the estimate of the border effect.

We argue that � and its determinants cannot be estimated through a simple ordinary least squares (OLS) regres-
sion because prices in the two locations are an optimal choice subject to an inequality constraint that is not
necessarily binding. If the optimal prices of the two stores lie within the constraint, then their difference is smaller
than � ; these observations are not relevant to estimate the arbitrage costs. To illustrate this, consider two markets
that are highly segmented but have identical supply and demand characteristics. Goods will have the same price
across the two locations, but this price gap tells us nothing about the arbitrage costs or the degree of segmentation
between the markets. In fact, all observations within the no-arbitrage range suffer from selection bias; estimates
that use the mean or the standard deviation of jp1 � p2j will be biased downward as well.

The arbitrage cost � is better estimated when we use only the largest observed price differences between loca-
tions. Those are the observations that provide information about the limit that arbitrage imposes of the magnitude
of price dispersion.3 Ideally, we would like to use the maximum observed price gap between locations, but it is
potentially sensitive to measurement errors.4 Instead, we estimate a series of binned-quantile regressions that allow
us to measure the sensitivity of our estimates to the errors-in-variables (EIV). We start with the mean price gap
between locations (equivalent to the method typically used in the literature) and then use only the observations in
the 80th, 90th, 95th, 99th percentiles, and the maximum observed price difference.

We apply this method to study the impact of city borders on price dispersion in Uruguay. We use a novel
good-level dataset composed by daily prices from 202 Universal Product Code (UPC)-level products sold in 333
supermarkets across 47 cities collected between 2007 and 2010. When we first estimate the border effect using
standard methods, we find that the city border between two stores separated by 10 km is larger than 20 km wide,
and statistically different from zero. This implies that the border triples the distance of stores across the city bor-
ders. However, when we re-estimate using distance-binned quantile regressions, the border declines until it is not
significantly different from zero. As expected from our discussion, both the distance and border dummy coeffi-
cients are downward biased in the standard regression, but the bias is largest on the distance parameter.5 As a result,
the net impact is that the implied border effect (in kilometers) falls.

We perform robustness tests to correct for outliers and product mix, and we change the specification to include
non-linearity and interaction terms. In all of them, the city-border effect measured in kilometers tends to disappear
when higher percentiles are used. Furthermore, the results are similar at the 99th, 99.5th, 99.9th percentile and the
maximum, suggesting that the estimates are not significantly affected by potential errors in the data.
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DISTANCE AND POLITICAL BOUNDARIES 5

We further illustrate our methodology to study the dispersion between online and offline prices. We use daily
prices collected from the website of the largest grocery retailer in Montevideo and compare them with the prices
in all offline locations of the same retailer. The offline store’s data provide an estimate of the impact of distance
on price dispersion across locations. The ‘online border’ is simply the distance that would generate the same effect
on online–offline price dispersion observed in the data. When the standard procedure is used, online and offline
markets appear to be very closely integrated, with a border effect of just 1.6 km. However, when we use the 95th
percentile of the price gap distribution, the online border effect becomes 8.8 km, a number close to the actual
average physical distance between the online warehouse (where the online goods are delivered from) and each of
the offline stores in the city.6

Our approach and the nature of the data address four additional sources of concerns that have been raised since
the original Engel–Rogers regressions. First, we use product-level data with identical goods across all locations.
As suggested by Goldberg and Knetter (1997), product-level data is crucial to understand deviations from the
Law of One Price. Indeed, Evans (2003) and Broda and Weinstein (2008) argue that a significant problem in the
border effect literature is the aggregation bias induced by price indexes. Second, we use retail prices. Hillberry and
Hummels (2003) have argued that business-to-business data tends to overestimate trade flows and to underestimate
price differences within countries. Third, we know the exact location of each store. As pointed out by Head and
Mayer (2002), using approximate distances (such as from one country capital to another) can greatly overestimate
the border effect. Finally, all the stores in our sample sell the same set of products. As Evans (2003) points out, the
mix of products sold across borders can lead to a bias in the standard regressions.

Compared with recent papers in the literature, our results are consistent with Gorodnichenko and Tesar (2009),
who argue that with ‘cross-country heterogeneity in the distribution of within country price differentials there is no
clear benchmark from which to gauge the effect of the border’. We agree with this statement, but we show that, even
in the absence of a structural model, it is still possible to obtain a simple and reliable estimate for the magnitude
of the border effect using quantile regressions. Our paper is also complementary to the work of Gourinchas, Hsieh,
and Li (2011) who estimate the border effect by studying the response of average prices in one market to cost
shocks in another market. An advantage of our approach is that it does not require any cost data.

2. METHODOLOGY

In this section, we present a simple model of price-setting across locations that provides the inequality we use to
estimate arbitrage costs and the border effect. In particular, we propose a model where the firms’ pricing decision
is constrained by the ability of the consumer to arbitrage the price gap between two locations. Standard OLS
regressions used in the literature consider all pairs of prices, including those that lie within the arbitrage constraint,
which introduces a bias in the estimates of factors that affect the cost to arbitrage, such as distance and political
borders. We propose an alternative methodology that focuses on the largest observed price differences between
locations using binned-quantile regressions.

2.1. A simple model of price-setting with arbitrage

2.1.1 Consumers
Consider an economy with a mass of consumers uniformly distributed along a line. This line encompasses two

cities (A, B) of equal distance. There are J stores in the economy, JA stores in city A and JB stores in city B. There
is also a ‘border’ between A and B, in the sense that consumers pay a cost whenever they cross to another city.
This border cost may arise because of differences in taxes, convenience in shopping hours and other characteristics
associated with the city but not driven by distance. A consumer located on point ` and buying in store i has an
indirect utility function represented by

u` .i/ D v � �pi � Q̌ j ` � `i j � Q�bi � QıIi (3)

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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6 FERNANDO BORRAZ ET AL.

where v is the reservation price of the consumer, and � captures how sensitive the consumer is to prices. The rest
of the parameters measure transaction costs are the following: Q̌ measures unit transportation costs, multiplied by
the distance between the consumer location (`) and the store position .`i / (including information costs about the
store, such as knowing the distance to the store or its prices); bi is a dummy that takes value 1 if the consumer and
the store are in different cities; and Ii measures additional store-specific costs not related with distance, such as
learning the layout and sale events of a given store.

Because the consumer buys the one item that maximizes his utility, we can compare the price each consumer
pays across all possible pairs of stores.7 The consumer ` weakly prefers store i to store j if u` .i/ � u` .j /,
for each i; j 2 J D .JA C JB/, i ¤ j . For simplicity, assume the price elasticity; the transportation cost are
symmetric in all locations. This implies that

v � �pi � Q̌ j ` � `i j � Q�bi � QıIi � v � �pj � Q̌ j ` � `j j � Q�bj � QıIj (4)

By rearranging terms, we obtain

pi � pj �
Q̌

�

�
j ` � `j j � j ` � `i j

�
C
Q�

�
� bi;j C

Qı

�
� Ii;j (5)

where � bij is equal to 1 if both stores are located in different cities and 0 otherwise, and � Ii;j measures the
incremental information cost incurred by changing the store. Thus for each pair of stores, the consumption decision
can be expressed as the result of inequality (6). The value of the distance terms depends on which store is further
away from the consumer. If the difference between j ` � `j j � j ` � `i j is negative, the price difference could
simply be defined as

�
pj � pi

�
. Therefore, the expression is simplified to the absolute difference of the location

between stores:

j pi � pj j�
Q̌

�

ˇ̌
`i � `j

ˇ̌
C
Q�

�
� bi;j C

Qı

�
� Ii;j (6)

Comparing across different pairs, if the distance increases, a border exists between the stores, or if there is a
positive cost of switching stores, the level of price dispersion rises. The opposite occurs if consumers are more
sensitive to prices. It can be shown that the price space is not empty and that the inequality constraint is binding
only for the indifferent consumer; ie. the one indifferent between buying in two different stores.8 This implies that
the rest of the consumers are not indifferent between two stores and always prefer to buy on a particular one. In the
end, the indifferent consumer is the one for which the inequality is binding and defines the demand for each store.

2.1.2 Producers
Assume there are JA and JB identical producers (or stores) in each city that sell an identical good at price pj ,

where j 2 J D .JA C JB/. Each producer maximizes profits, given the prices of the other stores and subject to
the participation constraint of the consumers. Suppose all producers, except for j , are in equilibrium. Then firm j

sets its price subject to the participation constraint of consumer `:

max
pj

Y
j

�
pj =p�j

�

st pj 2 <C

and to the other J � 1 consumer constraints

j pi � pj j�
Q̌

�

ˇ̌
`i � `j

ˇ̌
C
Q�

�
� bij C

Qı

�
� Ii;j ; 8i 2 J; i ¤ j

where this condition applies to all the J firms in the sample.
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DISTANCE AND POLITICAL BOUNDARIES 7

Firms maximize profits when setting the maximum price for the indifferent consumer, as shown in Appendix 6.
This in turn implies that the inequality will not be binding for the rest of the consumers. Therefore, comparing pairs
of prices for all stores to estimate equation 6 will not result in the correct measure of the consumers’ parameters,
as only those where the restriction is binding are valid.

2.2. Binned-Quantile Regressions

This model of inequality constraints provides an equation that can be estimated as any other regression in the
literature of border effects.9 In this case, the specification can be defined as follows:

j pi;t � pj;t j� ˇDi;j C �Bi;j C ıXi;j;t C "i;j;t (7)

where ˇDi;j �
Q̌

�

ˇ̌
`i � `j

ˇ̌
, �Bi;j �

Q�
�
�bi;j , and ıXi;j;t �

Qı
�
�Ii;j .

Notice that this inequality implies that all the residuals
�
�i;j;t

�
in equation 7 are either zero or negative, in

which case E
�
�i;j;t

�
� 0. When this happens, the estimation by OLS is expected to produce biased estimates

because of the failure of the orthogonality conditions, where the bias is downward. There is only one case in which
the estimates remain unbiased and is if the price deviations are exactly equal to the arbitrage cost—that is, the
constraint is always binding. The residuals are identical to zero and OLS produces unbiased estimates. Intuitively,

Figure 1. Price dispersion and the arbitrage cost. Note: Panel (a) shows cases where the no-arbitrage condition constrains the price dispersion.
Panel (b) cases where the price dispersion is not correlated with the arbitrage cost.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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8 FERNANDO BORRAZ ET AL.

prices are assumed free of EIV, so that the extreme in the distribution of price differences is the closest estimator
to the arbitrage costs. It is important to mention that if all prices are optimally chosen to lie within the no-arbitrage
region, then even the estimation using the extreme of the price distribution will produce downward biased estimates.
However, by construction, the biases will be smaller. Formally, the expected value of the errors at the medium are
more negative than the errors at the 95th quantile: E

�
�i;j;t j50th

�
� E

�
�i;j;t j95th

�
� 0. Nevertheless, as pointed

out by Simonovska and Waugh (2014), the maximum price difference could introduce additional biases; so we use,
instead, the upper quintiles for our estimation.10

Figure 1 illustrates how the observed price dispersion may not be informative of the arbitrage cost. Panel (a)
in Figure 1 shows hypothetical prices over time of one product in two locations. If the no-arbitrage condition is
binding, then as the arbitrage cost � decreases, so does the price dispersion. However, if the condition is not binding,

Figure 2. Example of price gaps in different store pairs. Note: We calculate the price gaps (in absolute value) for all goods sold in a single
retailer across two locations. We picked a random store from the largest retailer in the country and compared its prices with those of other

stores from the same retailer located at 1 km, 10 km (same city), 10 km (different city) and 20 km (different city). Where ‘DC’ denotes
pairs in different cities. The graph excludes the mass at 0% to facilitate the comparison of positive gaps. The table shows the distributional

statistics for all price gaps, including those at 0% (identical prices).

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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DISTANCE AND POLITICAL BOUNDARIES 9

as shown in Panel (b), distributional statistics such as the mean or the standard deviation will not be associated
with the estimate of � . In both cases, however, we would be able to obtain good estimates of � by using only the
maximum observed price difference.

Figure 2 makes a similar point with real data. We plot the distribution of price differences for all goods between
two locations of a given retailer and compare the results for stores located at 1 km, 10 km (same city), 10 km
(different cities) and 20 km (different cities) of each other. As expected, as the distance increases the share of price
gaps at 0% (see table at bottom in Figure 2), and the mass between 1% and 20% increases. Interestingly, when we
compare the two pairs of stores located at 10 km from each other (one of which is for stores in different cities),
we find that crossing the city border has an effect on the mean and 90th percentile. The two pairs, however, have
exactly the same gaps at the 99th and 99.9th percentiles of the distribution. This last result is consistent with the
idea that city borders should not affect the cost to arbitrage across locations. Using the mean and lower percentiles
of the price gaps that lie within the arbitrage constraint can therefore lead to biased results.

In order to address this selection bias, we propose a new method to estimate border effects using distance
binned-quantile regressions. The methodology can be described as follows:

First, compute the absolute price difference for all possible location (stores) pairs. Repeat this exercise across
time and all goods, and pool all observations.

Second, define distance-border-bins according to a discrete spacing criteria that depends on the unit of observa-
tion (city versus countries) and the availability of enough observations within each bin. In the case of the city effect,
stores are assigned to bins of a few miles apart. If the unit of analysis is countries, bins should be larger to contain
stores that are separated by larger distances. The distance in each bin does not have to be set in linear increments.
For simplicity, denote each bin as n, where n D f1; : : : ; N g, and N is the number of bins. Each bin is defined by a
distance Dn, a dummy Bn D 1 if there is a border between the two stores and additional controls Xn. In our case,
Xn includes a chain dummy and an interaction term between distance and city dummy.

Third, compute the relevant quantile statistic of the absolute price differences for each bin. Denote the statistic
as Qn

�
jpi;t � pj;t j; q

�
for the qth percentile of bin n.

Finally, estimate the following equation:

Qn
�
jpi;t � pj;t j; q

�
D ˛ C ˇDn C �Bn C ıXn C �n (8)

In Figure 3, we depict the impact of the bias and the intuition behind our methodology. The horizontal axis shows
the bins for a range of distances, and the vertical axis is the absolute price difference. The dots mark the absolute
differences in the data for each of the selected ‘bins’. The thick black line reflects the price difference implied by
the no-arbitrage constraint. Because all the observed price differences are less than or equal to the thick line, the
estimation in the standard regression—which implicitly uses the mean within each bin—is downward biased as
denoted by the red line. In small samples, the true maximum per bin might not be observed; therefore estimating
via the sample maximum will also be downward biased. Still, in this case, the bias is smaller than using the mean.
In other words, it is possible that there is no realization on the black line, but using the maximum within each bin
gets closer to the ‘true’ line. This explains why we interpret our results as a lower bound estimate of the degree
of segmentation.

2.3. Dealing with errors-in-variables

One of the reasons we use quantile regressions to estimate arbitrage costs, instead of only the maximum, is to
relax the assumption of no (EIV). In particular, the maximum of the price difference distribution within each bin
can be significantly affected if prices are mis-measured. These errors can arise either because prices are observed
and/or reported with errors or because stores make mistakes and post prices outside the no-arbitrage range. When
we describe our data in Section 3, it will become clear that the errors from misreporting are very small because
of the way the data is collected. However, there is still the possibility that the prices are incorrectly reported; thus,
concentrating the estimates on the maximum within each bin would exacerbate the impact of any EIV.

This case is depicted in Figure 4. The black thick line is still the ‘true’ upper bound of the no-arbitrage band;
that is the true degree of segmentation. However, because of EIV, some price differences might even be above the
no-arbitrage range. In this case, using the maximum within each bin also produces a bias in the estimation.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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10 FERNANDO BORRAZ ET AL.

Figure 3. Bias in standard regressions. Note: This figure illustrates the source of the selection bias. The horizontal axis shows the bins for a
range of distances. The vertical axis is the absolute price difference across locations. For each bin, all the absolute differences from the data are
shown as the black dots. The thick black line reflects the price difference implied by the no-arbitrage constraint. Because all the observed price

differences are less or equal to the thick line, the estimation in the standard regression which implicitly uses the mean within each bin (red
line) is downward biased.

Figure 4. Bias in standard regression in the presence of errors-in-variables. Note: The black thick line is still the ‘true’ upper bound of the
no-arbitrage band, that is, the true degree of segmentation. However, because of errors-in-variables, some price differences might even be

above the no-arbitrage range. In this case, using the maximum within each bin also produces a bias in the estimation. For this reason, we use a
series of quantile regressions instead.

We address EIV in two ways. One is to eliminate outliers from the distribution. As we discuss in the succeeding
paragraphs, the type of errors that are likely to be present in our data are misplacement of the decimal point or
flipping digits, both of which are likely to produce large price changes at the item level that we can identify.
This approach, however, does not provide a definite answer. For example, if the estimates change little, then it is
not clear whether the EIV had a small impact, or not enough observations were eliminated to remove the bias.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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DISTANCE AND POLITICAL BOUNDARIES 11

The alternative is we propose it to estimate the regression using different quantiles. Within each bin, we compute
several quantiles—the median, 80th, 90th, 95th and 99th percentiles.11 The 50th and 80th percentiles are clearly
less affected by the EIV than the maximum, but those estimates will be affected by the sample selection of prices
within the no-arbitrage range. As we move towards higher percentiles, the estimates are less affected by the sample
selection and more affected by the EIV. If the EIV is small, it should be the case that the estimates are monotonically
increasing. We evaluate the robustness and sensitivity of our estimates in Section 4.1.

3. DATA

We use a good-level dataset of daily prices compiled by the General Directorate of Commerce (DGC), which
comprises grocery stores all over the country.12 The DGC is the authority responsible for the enforcement of the
Consumer Protection Law at the Ministry of Economy and Finance.

In 2006, a new tax law was passed by the Uruguayan legislature that changed the tax base and rates of the
value added tax. The Ministry of Economy and Finance was concerned about incomplete pass-through from tax
reductions to consumer prices and hence decided to collect and publish a dataset of prices in different grocery
stores and supermarkets across the country. The DGC issued Resolution Number 061/006, which mandates grocery
stores and supermarkets to report its daily prices for a list of products if they meet the following two conditions:
(i) they sell more than 70% of the products listed and (ii) they either have more than four grocery stores under the
same name or have more than three cashiers in a store. The information sent by each retailer is a sworn statement,
and they are subject to penalties in case of misreporting. The objective of the DGC is to ensure that prices posted
reflect real posted prices by stores. In this regard, stores are free to set the prices they optimally choose, but they
face a penalty only if they try to misreport them

The data includes daily prices from 1 April 2007 to 31 December 2010 for 202 items corresponding to 61 product
categories, where each item is defined by its UPC.13 See table A.4 in Appendix A.4 for a detailed description of
the products in the data.

The three highest selling brands are reported for each product category. Most items had to be homogenized in
order to be comparable, and each supermarket must always report the same item. For example, sparkling water
of the ‘Salus’ brand is reported in its 2.25 L variety by all stores. If this specific variety is not available at a
store, then no price is reported. Whenever prices are 50% greater (or less) than the average price, the retailer

Table 1. Product, time and regional coverage in the data

All stores

(i) Retailers 136

(ii) Stores 333

(iii) Products 202

(iv) Categories 61

(v) Country Uruguay

(vi) Cities 47

(vii) Departments 19

(viii) Time Period 1 April 2007 to

31 December 2010

(ix) Days 1154

(x) Observations (bins) 179,215

(xi) Observations (pairs) 32,159,865

Note: Summary statistics of the data compiled by the General
Directorate of Commerce (DGC).

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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12 FERNANDO BORRAZ ET AL.

Figure 5. Cities covered in the sample. Note: Each dot represents a store location across the 19 Uruguayan departments.

is contacted to confirm whether the submitted price is correct. The data are then used in a public web site that
allows consumers to check prices in different stores or cities and to compute the cost of different baskets of goods
across locations.14

After the exclusion of observations labeled as ‘preliminary’ as well as wrongly categorized or unidentified
data (e.g. products that share the same UPC), our final dataset is composed by 202 products at the UPC level
in 333 grocery stores from 47 cities. Table 1 describes the summary statistics of the coverage in the data and
Appendix 6 provides a detailed list of the products. In addition, see Figure 5 for a map with the cities covered in
the dataset. These cities represent more than 80% of the total population of Uruguay. Montevideo, with 45% of the
population, accounts for 58% of the supermarkets in the sample. The maximum distance between two supermarkets
is 526 km.15

We consider two datasets separately to account for outliers that may have a greater impact on the largest price
differences between one good. We construct a baseline case with the complete sample, and a second case in which
those price higher than three times (or less than a third) of the median daily price were excluded. However, deleted
prices only account for a small 0.034% of the whole database.

In order to compute the linear distance between each pair of stores in our sample, we use information on
the exact geographical location of each supermarket as provided by Ciudata, an industry organization. We then
construct distance bins using a geometric sequence starting from 0.1 km and incrementing by ..526=0:1/1=N /%.
Our baseline estimation uses N=500 bins, but we re-estimated our results using 50, 100 and 1,000 bins as well.
We then calculate the distance between all supermarkets in the sample (333) and assign each pair of supermarkets
(55,278) to its proper bin according to their distance range.

Finally, we define the following specification:
Qn

�
jpi;t � pj;t j; q

�
D ˛ C ˇDn C �Bn C ı1Bn �Dn C ı2Firmn C �n (9)

where Qn
�
jpi;t � pj;t j; q

�
is the qth quantile of the absolute price differences for all store pairs i and j whose

distance belongs to bin n; Dn measures the distance between stores that belong to bin n; Bn is a dummy that takes
the value 1 if the supermarkets are in different cities; F irmn is a dummy variable that takes the value 1 if the price
difference in bin n comes from the same supermarket chain. We also add an interaction dummy between distance
and the city border dummy, and fixed effects for each good.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
DOI: 10.1002/ijfe



DISTANCE AND POLITICAL BOUNDARIES 13

Figure 6. Distribution of observations for 500 bins in the same city and between cities. Note: The black line shows the distribution of bilateral
observations for each of the 500 bins within cities, while the grey line (extending to the right, with multiple peaks) shows the distribution

across cities. Lines are smoothed for better visualization.

Notice that this regression requires that we have both observations within and across cities that overlap in
distance bins. Figure 6 shows the distribution of observations for each of the 500 bins for the same city pairs and
the different city pairs. The horizontal axis is the log distance starting at 100 m to a maximum of 526 km. The black
line is the number of observations per bin for the stores within the same city boundaries, while the grey line are
the observations for the stores in different cities. There is a non-trivial range in which stores are separated exactly
by the same distance within cities and across cities—although almost all of them between 5 and 15 km. This is the
source of the variation where the city-border effect is actually estimated.

4. RESULTS

As described in Section 2.2., we pool all the prices into each corresponding bin and estimate the distribution of
price differences. We select the mean, median, 80, 85, 90, 95, 97.5, 99, 99.5 and 99.9th percentiles. For each
of these, we estimate equation 9 by weighted least squares to account for differences in the number of observa-
tions inside each bin. Price differences are expressed in percentage terms, while distance is measured in hundreds
of kilometers.

The results are presented in Table 2. The first coefficient is the segmentation generated by distance. The sec-
ond and third estimate the effect of the city boundaries (border dummy) and the interaction term (how the effect
of distance changes once the stores are in different cities), respectively. The fourth coefficient is the impact of
both stores belonging to the same retailer, and the last one is the constant term. Each column reflects a different
regression. The first one uses the mean within each bin, which replicates the standard regressions in the litera-
ture. After that, we present the results for the quantiles moving from the 50th until 99.9th percentiles and finally
the maximum.

Notice that, as we increase the percentile, all individual coefficients increase—in line with the intuition we
discussed before. This pattern can be easily appreciated in Figures 7 and 8, which show the coefficient on distance
and city dummy, respectively, as a function of the percentile.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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Figure 7. Estimation of the distance coefficient by quantile. Note: Estimated distance coefficient when different quantiles are used for the
baseline regression.
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Figure 8. Estimation of the city coefficient by quantile. Note: Estimated city dummy coefficient when different quantiles are used for the
baseline regression.

There are two alternatives to compute the border effect. One way is to base the effect upon a specific distance.
First, we calculate the degree of price dispersion when the two stores are located in different cities. Then we
solve for the distance that would be needed for two stores within the same city to have the same degree of price
dispersion. The following example clarifies the analysis.16 Using the results in the first column (average) in Table 2,
we compute the price dispersion of two cities across the border that are 10 km apart. The price dispersion is 5:081C
4:188 � 0:1C 1:260 � 4:049 � 0:1 D 6:355. Two stores in the same city exhibit a segmentation equal to 5:081C
4:188�X . Solving forX to make the within city segmentation equal to 6.355 yields 30.5 km. Therefore, the border
adds 20 km to two stores 10 km apart—that is, the city border triples the distance. Although the literature simply
uses the ratio of the two coefficients to compute the border effect, our specification also allows for non-linearities.
Therefore, the implied border effect needs to be estimated conditional to a given distance.

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
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16 FERNANDO BORRAZ ET AL.

In Panel (a) of Figure 9, we compute this implied additional distance for two stores 10 km apart for each of
the quantiles. The border effect, as measured in kilometers, collapses towards zero around the 99.5th percentile.
Interestingly, the effect is even found negative at the highest percentiles. In addition, notice the (almost) monotonic
decrease in the estimates. This is encouraging from an EIV point of view. If the maximum of the distribution were
the result of large EIV, there is no reason to expect the estimates and the impact of the border effect to remain
similar to the upper percentiles.

The second way to compute the border effect is to focus on the relative price dispersion for a given distance.
In other words, we compute how large is the implied degree of segmentation for a pair of stores 10 km apart
across two cities, relative to another pair of stores 10 km apart within the same city. In both cases, we consider

−
10

0
10

20
30

K
m

Mean 80 85 90 95 97.5 99 99.5 99.9 Max

Percentile

Figure 9. Estimation of the city border effect using all data. Note: Panel (a) shows the implied additional kilometre for the linear specification
using all data and 500 bins. Panel (b) shows the relative increase in the degree of segmentation for the baseline linear specification, with its

95th percent confidence band.
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DISTANCE AND POLITICAL BOUNDARIES 17

all stores that do not belong to the same retailer. For instance, in the average case (column 1 in Table 2), the price
dispersion for Dn D 0:1 and Bn D 1 is, as before, 5:081 C 4:188 � 0:1 C 1:260 � 4:049 � 0:1 D 6:355. The
price dispersion when Bn D 0 is 5:081 C 4:188 � 0:1 D 5:499. Thus, the border implies a 15.57 percent higher
degree of segmentation. However, this relative effect becomes small and insignificant using higher quantiles. In
Panel (b) in Figure 9, we present the decreasing pattern in the relative degree of segmentation, together with its 95th
confidence band.

Panels (a) and (b) show that the degree of segmentation is overestimated—and the impact of distance is
underestimated—when the average price deviations are used. By contrast, the effect of the border becomes not
significantly different from zero when the upper quantiles of the distribution within each bin are used. Notice that
the reduction in the border effect is not a mechanical consequence of the methodology. The estimation using upper
quantiles should in fact increase the absolute value of all coefficients—simply because there is less sample selec-
tion. The decrease in the final border effect, however, comes from the fact that the bias in the distance coefficient
is larger than in the border coefficient.

4.1. Robustness

In this section, we test the sensibility of the baseline estimates to changing the specification of the regres-
sion; to different subsamples of product mix, to elimination of outliers and to different number of bins. In
all cases, we find that the results are qualitatively similar. That is, the traditional regression (average price
dispersion) estimates a large and significant city border effect, whereas quantile regressions show that the
city border becomes insignificant using upper quantiles of the distribution. Furthermore, the results are simi-
lar at the highest percentiles and the maximum, suggesting that the estimates are not significantly affected by
measurement errors.

First, we modify the equation to the following non-linear specification:

Qn
�
jpi;t � pj;t j; q

�
D ˛ C ˇDn C �Bn C ı1Bn �Dn C ı2D

2
n C ı3D

3
n

C ı4Bn �D
2
n C ı5Bn �D

3
n C ı6 Firmn C �n

(10)

where the variables are defined as in equation 9.
The results, presented in Table 3, yield the same patterns we described earlier for the baseline estimation.

In absolute value, all point estimates increase as the estimation is performed over the higher quantiles. Fur-
thermore, if one computes the implied additional distance, the results remain qualitatively the same as those
in Panel (a) in Figure 9. The border effect, as measured in kilometers, is close to 25 km using the traditional
regression (average). However, it decreases with higher percentiles until it becomes small and insignificant at the
97.5th percentile.

In addition, we perform three robustness tests using different subsamples. Results are presented in the Appendix
A.3 (Tables A.1, A.2, A.3 and Figures A.1, A.2, A.3) for both the linear and non-linear specifications. First, we
eliminate products in which the matching across stores is not perfect. In particular, we exclude meat, bread, and
among other categories. Quantile regressions yield identical patterns as when using the complete dataset. Second,
we use all products but eliminate the outliers; defined here as those whose price is above three times (or a third
below) the median price. This approach is more conservative that the one typically used in the literature. For
example, Gopinath and Rigobon (2008) and Klenow and Kryvtsov (2008) eliminate prices that are more than 10
times higher or less that a 10th of the median price. Still, our rule only excludes 11.2 thousand in 32.8 million
or just 0.034% of the observations. Once again, the patterns are almost identical to the ones obtained using the
complete number of observations. The only minor difference is that, for a given percentile, the border effects
are smaller in absolute terms. In other words, the estimated implied distances are smaller than those in Panel (a)
in Figure 9.

Third, we further combine the two cases earlier and estimate quantile regressions excluding goods with imperfect
matching as well as those defined as outliers. The results do not yield significant differences with respect to our
baseline estimation.
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Lastly, we tested the linear and non-linear specifications to the sensibility of the number of distance bins. Instead
of 500 bins, we re-estimated using 50, 100 and 1000 bins. Notice the trade-off in the selection of bins. The advan-
tage of a larger number of bins is that each pair of stores is allocated to a very specific distance bin, and the distance
representing the bin is closer to the real distance across the stores. The disadvantage is that the number of observa-
tions within each bin decreases. In the limit, if the bins are so narrow that each store pair belongs to a single bin,
then the problem is that the estimation at the 99.9 percentile becomes very noisy.17 The results are qualitatively
the same to the baseline estimation. The city-border effect measured in kilometers falls and becomes insignificant
when the upper quantiles are used in the estimation.

5. THE ONLINE BORDER EFFECT

We now use online and offline prices from a retailer in Uruguay to estimate an ‘online border’ effect. The degree
of segmentation between online and offline markets is an interesting topic by itself but has received little attention
because of the data limitations. Selling online allows a retailer to price discriminate among consumers who have
time to travel to a store and those who prefer the convenience of online shopping. By deciding to buy online, the
consumer may therefore be paying a cost in terms of price dispersion (in addition to any delivery charges).

We use data collected by the Billion Prices Project at MIT using a method that scans the HyperText Markup
Language code of public retailers’ website, identifying and storing all relevant price and product information on
a daily basis.18 The largest grocery retailer in Uruguay sells products in dozens of offline locations, as well as
online, in the city of Montevideo. We compared the daily prices of all goods in the DGC offline data with their
corresponding online price on the same date. Both datasets contain daily prices for the period between 1 October
2007 and 31 December 2010.

Figure 10 provides an example of the prices posted in the different stores (including the online store) for a given
product over time. On most dates, the online price is within the range of prices observed in offline stores. This
feature is observed in most goods in the sample.

50
60

70
80

P
ric

e 
(P

es
os

)

10/2008 01/2009 04/2009 07/2009 10/2009 01/2010 04/2010 07/2010 10/2010 01/2011

Date

Online Price Offline Price (each line is a different store)

Figure 10. Example of online and offline prices: Cocoa – 0.5 kg. Note: This is an example of the typical time series pattern of online prices
compared with offline prices in the same city of Montevideo. Each line is a different store. The online price is marked with a dotted line and

tends to lie in-between the prices of the offline stores.
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Table 4. The online–offline border

Price difference

(1) (2)

Variables Mean 95th Percentile

Log distance 0.100*** 0.156***

(0.005) (0.010)

Constant 0.439*** 3.177***

(0.174) (0.362)

Observations 2300 2300

Difference online-offline (%) 0.60 4.55

Implied distance (Km) 1.60 8.78

Note: *** significant at 1%. Robust standard errors in parenthesis. We
measure the online border effect, defined as the implied “distance”
between the offline stores and the online stores. If the usual procedure
is used, online and offline markets appear to be very closely integrated,
with an equivalent border of 1.6 kilometers. When the 95th percentile
of the price gap distribution is used, the online border effect becomes
8.8 kilometers. This is very close to the actual physical average distance
between the online warehouse (store 22, where the online goods appear
to be delivered from) and each of the offline stores in the city.

Table 5. Online versus offline stores

Store City Online match probability Distance to store 22

22 Montevideo 97.34 0.00

31 Montevideo 96.59 1.28

39 Montevideo 96.59 1.88

41 Montevideo 96.83 2.32

21 Montevideo 96.83 2.72

38 Montevideo 96.58 3.32

33 Montevideo 81.85 5.66

34 Montevideo 96.96 6.50

35 Montevideo 96.70 8.04

32 Montevideo 81.702 8.84

43 Montevideo 81.18 8.96

28 Montevideo 81.68 9.23

30 Montevideo 96.54 10.58

27 Montevideo 81.73 11.81

23 Montevideo 81.57 12.87

36 Montevideo 81.56 13.29

42 Montevideo 81.37 15.42

Mean 89.62 7.22

Median 96.54 8.04

Note: The ‘online match probability’ shows the percentage of days in which the online
price is identical to the price observed offline in a particular store. Distance from store
22 to the other offline stores is measured in kilometers.
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Suppose a consumer decides to buy a good from the retailer’s website instead of walking to an offline location.
What is the effect of crossing this ‘online border’ on prices? We can calculate an online border effect by simply
estimating the implied distance that would produce the same degree of online–offline price dispersion observed in
the data. We calculate this effect in two steps. First, we estimate the following regression for each quantile q using
only data from the offline stores:

Qn
�
jpi;t � pj;t j; q

�
D �C ˇDn C �n (11)

Notice that this is equal to equation 9 with Bn D 0 (same city), F irmn D 1 (same retailer) and � D ˛C� . The
coefficient ˇ therefore provides an estimate of the effect of distance on the dispersion of prices across locations.
Finally, to calculate the implied online border effect, we simply compute the average online–offline price dispersion
(between all pairs of online–offline stores), subtract the constant � and divide by ˇ.

We estimated regression 11 using both the traditional and the binned-quantile methods and computed the online
border in both cases. Table 4 shows that using the traditional OLS regression provides an implied distance of
1.6 km. By contrast, if we use the 95th percentile, we obtain an implied distance of 8.78 km.

How do we know which estimate is better? We can compare the results in both methods with the actual ‘distance’
of the online store. Although the warehouse of the online store is not known, the website of this retailer states that
the online prices are identical to those available in an offline store that fills the orders. It fails to name it explicitly,
but we can compute a simple ‘matching probability’ between the online prices and each of the offline stores to
identify it. This matching probability is just the average probability that the online price is identical to the price in
an offline store on any given day. We calculate it at the store level in two steps. First, for each product, we compute
the share of days that the online price is identical to the offline price. And second, we get the mean (or median)
across all products in that store.

Table 5 shows that online prices most closely resemble those of offline store number 22. The last column in
the table shows the physical distance between store 22 and each of the other offline stores. The average distance
is 7.22 km (and a median of 8.04 km). This number is very close to the estimate we obtained by using the 95th
percentile in the regression. In this case, the traditional regression greatly underestimates the degree of online–
offline market segmentation.

This example illustrates why our method will not mechanically cause a reduction in border effects every time.
By using the largest observed price differences, we know that all coefficients and constant in 9 will increase
because the standard OLS method creates a downward bias in all of them. But whether the border effect rises
or falls depends on the magnitude of those changes. In the case of the online border in equation 11, the dis-
tance coefficient ˇ rises less than the constant, as shown in Table 4. This is because we are only looking at
stores within the city of Montevideo, where the share of identical prices is very large. When the traditional OLS
regression is used, the average price dispersion captured by � is extremely small. When those identical prices
are ignored, as we do with our methodology, � rises significantly more than the ˇ coefficient on distance; the
“border effect” increases.

6. CONCLUSIONS

The extensive literature on the degree of segmentation resulting from political borders has reported extremely large
transaction costs introduced by country, province and even city borders. In this paper, we argue that some of those
estimates have been overstated because the empirical strategy has not taken into account the selection problem in
posted prices: when a firm faces the possibility of arbitrage because of the existence of a transaction cost, the firm
sets prices subject to a no-arbitrage constraint. However, if the optimal price falls within the no-arbitrage range,
the dispersion in prices is not informative of the tightness of the constraint. A firm may set the same price in two
locations, but it does not mean that the arbitrage cost for the consumer is zero. This implies that the estimation
using average absolute price differences or standard deviations of price differences will not capture the size of the
trade or arbitrage cost.
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This paper builds on the existing literature with two main contributions. In the first place, it offers an alternative
methodology to estimate transactions costs—which can be applied not only in international trade but also in other
areas as in empirical finance, measurement of liquidity or the cost of regulatory restrictions. In the second place,
we show that city borders matter little for price dispersion within a country. Although the border effect of a city
should be small from an intuitive point of view, the traditional methods still estimated a very wide border effect (20
additional kilometers to two stores separated 10 km apart, that is, the border triples the distance). This is particularly
large in a country where the largest city is less than 40 km wide, and there are no significant differences between
cities in terms of taxes, language and the like. By contrast, the border becomes insignificant once we estimate
using our method of distance binned-quantile regressions. We illustrate our method to measure border effects for
the online–offline border in Montevideo and showed that we can correctly approximate the true average distance
between the offline stores and the location where online purchases are sourced by simply using price gap data.

Finally, we believe further research should advance in at least two dimensions. From a methodological point
of view, it is important to further examine the definition of optimal bandwidths. Although, in our paper, we used
different bin sizes and results remained consistent across all specifications, this may not be the case in other appli-
cations in economics. And second, similar micro-level data needs to be collected across several countries to shed
light on the actual width of international borders.

APPENDIX A

A.1 Proofs to the model of price-setting with arbitrage

A.1.1 Consumers

Lemma 1
The price space is non empty.

Proof
Given prices pi and pj the right-hand side of the inequality is non negative for the consumer located on store `i .

In this case, equation 6 is j pi � pj j�
Q̌

�

ˇ̌
` � `j

ˇ̌
C Q�

�
bj C

Qı
�
Ij , as ` D `i . This implies that there must exist at

least one price in order for the consumer to compare its bundles. Thus, both the right-hand and left-hand side of
the inequality are positive. �

Lemma 2
The inequality constraint is binding only for the indifferent consumer.

Proof
The indifferent consumer can be defined as the one obtaining the same utility from buying in both stores, that is,
u` .i/ D u` .j /. This in turn implies that v � �pi � Q̌ j` � `i j � Q�bi � QıIi D v � �pj � Q̌ j `� `j j � Q�bj � QıIj .

By rearranging terms, we obtain that j pi � pj jD
Q̌

�

ˇ̌
`j � `i

ˇ̌
C Q�

�
� bi;j C

Qı
�
� Ii;j . �

A.1.2 Producers

Lemma 3
Firms maximize profits by setting the price that binds the participation constraint for consumer i .

Proof
Given the prices of all stores except for j , and given the right-hand side of the equation in terms of pj , Kuhn
Tucker conditions determine that the price difference should be maximal, that is, when the consumer restric-
tion is binding. At the same time, notice that the indifferent consumer for firm j determines the demand for
its products. �
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Proposition 4
The consumer that maximizes profits is the indifferent consumer.

Proof
From Lemma 2 and Lemma 3, the firm sets the maximum price for the indifferent consumer. �

Proposition 5
For any given two stores (locations), the parameters can only be estimated for the indifferent consumer, that is,
where the inequality is binding.

Lemma 6
If transportation costs increase (beta) or a border exists between two stores, or if the sensitivity of the consumer
to price changes decrease, then the price dispersion increase.

Proof
From Lemma 2 and Proposition 4, the firm sets its price for the indifferent consumer such that equation 6 is bind-
ing. Therefore, the price differences will be maximum given the store location and other exogenous variables for
the consumer. �

Proof
Take partial derivatives of each coefficient on the last equation of Lemma 2. �

A.1.3 Consumer heterogeneity: Discussion

So far, we have assumed that consumers only differ in their location on the line. However, consumers can also
differ in their valuation of the good. This feature can be introduced to the original model in either two ways. First,
consumers can differ in their maximum valuation of the good, in which case v 2 Œv; v�. In this case, previous results
are easily maintained as well, although now satisfying two conditions for the indifferent consumer: indifference in
distance and in valuation. Recall that previous results are for the medium consumer. Second, consumers can differ
in their disposition to pay for the good, that is, � 2

h
�; �

i
. Similarly as before, there are two constraints to estimate

the demand for each store: the distance constraint and the valuation constraint.
Therefore, adding heterogeneity to consumers’ taste does not change the estimation procedure. In order to

estimate the demand for each store, we must still solve the model for the indifferent consumer. As previously
shown, the price inequality should only be binding for this consumer and slack for non-indifferent consumers.

A.2 Samuelson’s Iceberg Costs
The results from our model of product arbitrage is also related to the no-arbitrage pricing region generated in

Samuelson’s Iceberg costs.19 Assume that there is an arbitrage cost between two locations that can be described
as follows:

�i;j;t D ˛ C ˇDi;j C �Bi;j C ıXi;j;t (12)

where the variables are defined as before. This arbitrage cost � represents the proportion of the item that is lost
when a customer transports one unit from i to j .20 Under this form of arbitrage costs, prices need to lie within the
range

ˇ̌
pi � pj

ˇ̌
� �i;j;t to avoid the possibility that a customer arbitrates across locations. In particular, assume

that pi is set. The second store, when deciding its price, maximizes profits subject to the no-arbitrage constraint. If
the optimal price is such that the difference between pi and pj is smaller than � , then the constraint is not binding;
the price difference is a biased estimate of � . But if the difference is larger, then the store sets the price at the
corner solution, and the constraint is binding. This simple behavior implies that the absolute difference of log prices
satisfies inequality 1, which can be rewritten as

ˇ̌
pi � pj

ˇ̌
� �i;j;t D ˛ C ˇDi;j C �B C ıXi;j;t .
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A.3 Alternative Specifications

Figure A.1. Estimation of the city border effect excluding meat and bread. Note: Panel (a) shows the additional kilometre implied by the city
border effect for the linear specification, excluding meat and bread, using 500 bins. Panel (b) shows the relative increase in the degree of

segmentation, with its 95th percent confidence band, for the same specification.
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Figure A.2. Estimation of the city border effect using all data and excluding outliers. Note: Panel (a) shows the additional kilometre implied
by the city border effect for the linear specification, excluding outliers, and using 500 bins. Panel (b) shows the relative increase in the degree

of segmentation, with its 95th percent confidence band, for the same specification.
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Figure A.3. Estimation of the city border effect excluding meat, bread and outliers. Note: Panel (a) shows the additional kilometre implied by
the city border effect for the linear specification, excluding meat, bread and outliers, using 500 bins. Panel (b) shows the relative increase in the

degree of segmentation, with its 95th percent confidence band, for the same specification.
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A.4 Data Details

Table A.4. Description of products in the database and share in consumer price index

Product Brand Specification Share in CPI (%)

Beer Pilsen 0.96 L 0.38
Beer Patricia 0.96 L 0.38
Beer Zillertal 1 L 0.38
Bleach Agua Jane 1 L n/i
Bleach Solucion Cristal 1 L n/i
Bleach Sello Rojo 1 L n/i
Bovine Beef ‘Aguja’ No Brand – Cow 1 kg 0.23
Bovine Beef ‘Aguja’ No Brand 1 kg 0.23
Bovine Beef ‘Aguja’ With Bone – No Brand 1 kg 0.23
Bovine Beef ‘Aguja’ Boneless – No Brand 1 kg 0.23
Bovine Beef ‘Aguja’ With Bone – No Brand – Cow 1 kg 0.23
Bovine Beef ‘Aguja’ Boneless – No Brand 1 kg 0.23
Bovine Beef ‘Nalga’ No Brand – Novillo 1 kg 0.32
Bovine Beef ‘Nalga’ With Bone – No Brand 1 kg 0.32
Bovine Beef ‘Nalga’ Boneless – No Brand 1 kg 0.32
Bovine Beef ‘Nalga’ Boneless – No Brand – Cow 1 kg 0.32
Bovine Beef ‘Nalga’ With Bone – No Brand – Cow 1 kg 0.32
Bovine Beef ‘Paleta’ With Bone – No Brand – Cow 1 kg 0.20
Bovine Beef ‘Paleta’ Boneless – No Brand 1 kg 0.20
Bovine Beef ‘Paleta’ With Bone – No Brand 1 kg 0.20
Bovine Beef ‘Peceto’ No Brand 1 kg 0.16
Bovine Beef ‘Peceto’ No Brand – Cow 1 kg 0.16
Bovine Beef ‘Rueda’ With Bone – No Brand 1 kg 0.17
Bovine Beef ‘Rueda’ With Bone – No Brand – Cow 1 kg 0.17
Bread Bimbo 0.33 kg 0.06
Bread Los Sorchantes 0.33 kg 0.06
Bread Pan Catalan 0.33 kg 0.06
Bread No Brand 1 Unit approx. 0.215 kg 1.14
Brown Eggs El Ecologito 1/2 dozen 0.46
Brown Eggs El Jefe 1/2 dozen 0.46
Brown Eggs Prodhin 1/2 dozen 0.46
Brown Eggs Super huevo 1/2 dozen 0.46
Brown Eggs El Ecologito 1 dozen 0.46
Brown Eggs El Jefe 1 dozen 0.46
Brown Eggs Prodhin 1 dozen 0.46
Burgers Burgy 3 units 0.17
Burgers Schneck 2 units 0.17
Burgers Paty 2 units 0.17
Butter Lacteria 0.2 kg 0.23
Butter Conaprole sin sal 0.2 kg 0.23
Butter Calcar 0.2 kg 0.23
Butter Kasdorf 0.2 kg 0.23
Cacao Copacabana 0.5 kg 0.08
Cacao Aguila 0.5 kg 0.08
Cacao Vascolet 0.5 kg 0.08
Cacao Saint 0.5 kg 0.08
Cheese Cerros del Este 1 kg 0.21

Copyright © 2015 John Wiley & Sons, Ltd Int. J. Fin. Econ. 21: 3–35 (2016)
DOI: 10.1002/ijfe



DISTANCE AND POLITICAL BOUNDARIES 31

Table A.4. Continued.

Product Brand Specification Share in CPI (%)

Cheese Dispnat 1 kg 0.21
Chicken Avesur 1 kg 0.83
Chicken Tenent 1 kg 0.83
Chicken Avicola del Oeste 1 kg 0.83
Chicken Melilla 1 kg 0.83
Chicken Tres Arroyos 1 kg 0.83
Coffee Aguila 0.25 kg 0.09
Coffee Chana 0.25 kg 0.09
Coffee Saint 0.25 kg 0.09
Coffee Tropical 0.2 kg 0.09
Cola Coca Cola 1.5 L 1.23
Cola Pepsi 1.5 L 1.23
Cola Nix 1.5 L 1.23
Cola Coca Cola 2.25 L 1.23
Cola Pepsi 2 L 1.23
Corn oil Delicia 0.9 L n/i
Corn oil Rio de la Plata 0.9 L n/i
Corn oil Salad 1 kg n/i
Cornmeal Gourmet 0.45 kg n/i
Cornmeal Presto Pronta Arcor 0.5 kg n/i
Cornmeal Puritas 0.45 kg n/i
Crakers Famosa 0.14 kg 0.28
Crakers Maestro Cubano 0.12 kg 0.28
Crakers El Trigal 0.15 kg 0.28
Deodorant Axe Musk 0.113 kg 0.34
Deodorant Dove Original 0.1 kg 0.34
Deodorant Rexona Active Emotion 0.105 kg 0.34
Diswashing detergent Hurra Nevex Limon 1.25 L 0.13
Diswashing detergent Deterjane 1.25 L 0.13
Diswashing detergent Protergente limon 1 L 0.13
Dulce de leche Conaprole 1 kg 0.14
Dulce de leche Manjar 1 kg 0.14
Dulce de leche Los Nietitos 1 kg 0.14
Fish No Brand 1 kg 0.43
Flour Cololo 1 kg 0.21
Flour Canuelas 1 kg 0.21
Flour Cololo 1 kg 0.21
Flour Puritas 1 kg 0.21
Frankfurters Cattivelli 8 Units – approx. 0.340 kg 0.23
Frankfurters Ottonello 8 Units – approx. 0.330 kg 0.23
Frankfurters Schneck 8 Units – approx. 0.330 kg 0.23
Frankfurters Centenario 8 Units – approx. 0.33 kg 0.23
Frankfurters Sarubbi 8 Units 0.23
Frozen fish No Brand 1 kg n/i
Grated Cheese Conaprole 0.08 kg 0.16
Grated Cheese El Trebol 0.08 kg 0.16
Grated Cheese Milky 0.08 kg 0.16
Grated Cheese Artesano 0.08 kg 0.16
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Table A.4. Continued.

Product Brand Specification Share in CPI (%)

Grit Noodles Adria 0.5 kg 0.43
Grit Noodles Las Acacias 0.5 kg 0.43
Grit Noodles Puritas 0.5 kg 0.43
Ground Beef No Brand - Cow 1 kg 0.98
Ground Beef No Brand 1 kg 0.98
Ground Beef Up to 20% Fat 1 kg 0.98
Ground Beef Up to 5% Fat 1 kg 0.14
Ham La Constancia 1 kg 0.16
Ham Schneck 1 kg 0.16
Ham Centenario 1 kg 0.16
Ice cream Crufi 1 L 0.22
Ice cream Conaprole 1 L 0.22
Ice cream Gebetto 1 L 0.22
Laundry Soap Nevex 0.8 kg 0.45
Laundry Soap Drive 0.8 kg 0.45
Laundry Soap Skip – Paquete azul 0.8 kg 0.45
Laundry Soap in Bar Bull Dog 0.3 kg – 1 Unit n/i
Laundry Soap in Bar Nevex 0.2 kg – 1 Unit n/i
Margarine Doriana nueva 0.25 kg n/i
Margarine Primor 0.25 kg n/i
Margarine Danica dorada 0.2 kg n/i
Margarine Flor 0.25 kg n/i
Mayonnaise Hellmans 0.5 kg 0.21
Mayonnaise Natura 0.5 kg 0.21
Mayonnaise Fanacoa 0.5 kg 0.21
Mayonnaise Uruguay 0.5 kg 0.21
Noodles Cololo 0.5 kg 0.43
Peach Jam Los Nietitos 0.5 kg n/i
Peach Jam Dulciora 0.5 kg n/i
Peach Jam Limay 0.5 kg n/i
Peach jam El Hogar 0.5 kg n/i
Peas Arcor 0.35 kg 0.09
Peas El Hogar 0.35 kg 0.09
Peas Trofeo 0.35 kg 0.09
Peas Campero 0.3 kg 0.09
Peas Cololo 0.38 kg 0.09
Peas Nidemar 0.3 kg 0.09
Quince jam Los Nietitos 0.4 kg 0.13
Quince jam Limay 0.4 kg 0.13
Rice Green Chef 1 kg 0.38
Rice Blue Patna 1 kg 0.38
Rice Aruba tipo Patna 1 kg 0.38
Rice Pony 1 kg 0.38
Rice Vidarroz 1 kg 0.38
Rice Saman Blanco 1 kg 0.38
Salt Sek 0.5 kg 0.09
Salt Urusal 0.5 kg 0.09
Salt Torrevieja 0.5 kg 0.09
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Table A.4. Continued.

Product Brand Specification Share in CPI (%)

Sausage Cattivelli – Extra 1 kg 0.37
Sausage La Familia – Hilo amarillo 1 kg 0.37
Sausage Centenario – Extra 1 kg 0.37
Semolina Noodles Adria 0.5 kg 0.43
Semolina Noodles Las Acacias – franja celeste 0.5 kg 0.43
Shampoo Sedal 0.35 L 0.36
Shampoo Suave 0.93 L 0.36
Shampoo Fructis 0.35 L 0.36
Soap Astral 0.125 kg 0.16
Soap Palmolive 0.125 kg 0.16
Soap Suave 0.125 kg 0.16
Soap Astral plata 0.125 kg 0.16
Soap Rexona 0.125 kg 0.16
Soap Primor 0.3 kg n/i
Soybean Oil Condesa 0.9 L 0.11
Soybean oil Rio de la Plata 0.9 L 0.11
Soybean oil Salad 0.9 L 0.11
Sparkling Water Salus 2.25 L 0.82
Sparkling Water Matutina 2 L 0.82
Sparkling Water Nativa 2 L 0.82
Sugar Azucarlito 1 kg 0.35
Sugar Bella Union 1 kg 0.35
Sunflower oil Optimo 0.9 L 0.37
Sunflower oil Uruguay 0.9 L 0.37
Sunflower oil Rio de la Plata 0.9 L 0.37
Tea Hornimans Box 10 Units 0.07
Tea La Virginia Box 10 Units 0.07
Tea Lipton Box 10 Units 0.07
Tea President 10 Units 0.07
Toilet paper Higienol Export 4 Unit – 25 m each 0.24
Toilet paper Sin Fin 4 Unit – 25 m each 0.24
Toilet paper Personal 4 Unit – 25 m each 0.24
Toilet paper Elite 4 Units – 30 m each 0.24
Tomate pulp Gourmet 1 kg 0.16
Tomato Paste Qualitas 1 L 0.16
Tomato Paste Conaprole 1 L 0.16
Tomato Paste De Ley 1 L 0.16
Toothpaste Colgate Total 0.09 kg 0.19
Toothpaste Kolynos 0.09 kg 0.19
Toothpaste Colgate Herbal Blanqueador 0.09 kg 0.19
Toothpaste Closeup Triple 0.09 kg 0.19
Toothpaste Kolynos Triple accion 0.09 kg 0.19
Toothpaste Pico Jenner Plus 0.09 kg 0.19
Wheat Flour Canuelas 1 kg 0.21
Wheat Flour Primor 1 kg 0.21
Wine Santa Teresa Clasico 1 L 0.79
Wine Tango 1 L 0.79
Wine Roses 1 L 0.79
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Table A.4. Continued.

Product Brand Specification Share in CPI (%)

Wine Faisan 1 L 0.79
Yerba Canarias 1 kg 0.64
Yerba Sara 1 kg 0.64
Yerba Envase Del Cebador 1 kg 0.64
Yerba Del Cebador 1 kg 0.64
Yerba Baldo 1 kg 0.64
Yogurt Conaprole 0.5 kg 0.13
Yogurt Parmalat (Skim) 0.5 kg 0.14
Yogurt Calcar 1 L 0.14
Yogurt Conaprole BIO TOP 1.2 L 0.14
Yogurt Parmalat BIO YOGUR 1 L 0.14

Note: n/i means not included in the CPI, consumer price index; kg, kilograms; L,
liters; and m, meters.
Source: Own elaboration from data of the Uruguayan Ministry of Economy and
Finance.
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NOTES

1. For example, see Parsley and Wei (2001) for results between the US and Japan and Ceglowski (2003) for the effects of provincial borders
in Canada.

2. A common alternative specification used by papers such as Engel and Rogers (1996) has the standard deviation �
�
pi;t � pj;t

�
instead.

In both cases, the objective is to measure the effect of the right-hand side variables on price dispersion, which can be done either through
the mean of the absolute value or the standard deviation of the price differences. Our results do not change if we use the standard deviation.
See Broda and Weinstein (2008) for an overview of the papers that use these two regressions in the literature.

3. The estimation problem is analogous to estimating using inequality moments as opposed to equality moments. This area has received
significant attention recently. See, for example, Andrews, Berry, and Jia (2004), Andrews and Guggenberger (2009), Andrews and Soares
(2010), Andrews and Shi (2014), Ponomareva and Tamer (2011), and Rosen (2008).

4. A related idea in the context of trade can be found in Eaton and Kortum (2002) who propose estimating trade friction using the maximum
price difference. Simonovska and Waugh (2014) criticizes the use of the maximum price difference in the estimating strategies, based on
the possibility of bias of the estimator on finite samples.

5. The reason is that price gaps within the arbitrage constraint are less common for observations across cities; therefore, the border coefficient
is less affected by the selection bias. Within cities, by contrast, small price gaps are very frequent and can greatly bias the distance
coefficient.

6. The retailer’s website indicates that the online prices match those of the store where the orders are sent from, but it does not provide details
on what specific store it is. In order to identify the most likely candidate, we compared daily online prices for all products with each offline
store in the city and found a location where prices were identical 97.3 percent of the time. That location has an average distance of 7.2 km
to all the other stores.

7. We require that v is large enough so that u` .i/ is positive in at least one store.
8. See the proof in Appendix 6
9. The results from our model are also related to Samuelson (1954). Appendix 6.

10. Note that Simonovska and Waugh (2014) argues that the estimation of the transport costs can be downward biased if the maximum
price difference is used, but we find a monotonic increase in this parameter as we use move from lower quintiles to the maximum price
difference.

11. We also evaluate the robustness of our estimates to the elimination of price change outliers.
12. The same dataset is used in Borraz and Zipitria (2012).
13. The only exceptions are meat, eggs, ham, some types of cheese, and bread. However, as we later show, the exclusion of these goods, which

could potentially be affected by an imperfect matching, does not modify the results.
14. http://www.precios.uy/servicios/ciudadanos.html.
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15. See Borraz and Zipitria (2012) for a detailed description of the database and an analysis on its price stickiness.
16. We show the results for 10 km, but results remain qualitatively the same for stores 15 and 20 km apart. Given the characteristics of our

data, it makes no sense to go beyond that distance because, in the city of Montevideo, there are very few observations with stores more
than 20 km apart.

17. Future research should formally address the optimal bandwidth selection. For the moment, we compare the results across different spec-
ifications and do not explore the issue further because the results remain essentially identical. It is possible that if the estimation is done
using less frequent data such as month by month or using a much smaller dataset; then the issue of bandwidth selection becomes more
important. This was not the case in our application.

18. See Cavallo (2010) for additional details on the online data scraping methodology.
19. Samuelson (1954).
20. For simplicity in the exposition, it is assumed that the arbitrageur is the customer itself. Thus, the arbitrage cost can be interpreted not

only as the loss of physical items but also as the loss in terms of utility that the customer would experience if were forced to travel from
one location to another.
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