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Abstract

In variants of the Electronic Mail Game (Rubinstein, 1989) where two or more players com-
municate via multiple channels, the multiple channels can facilitate collective action via redun-
dancy, the sending of the same message along multiple paths or else repeatedly along the same
path (Chwe, 1995 and De Jaegher, 2011). This paper offers another explanation for how multiple
channels may permit collective action: parties may be able to coordinate their actions when mes-
sages’ arrivals at their destinations are sufficiently correlated events. Correlation serves to fill in
information gaps that arise when players are uncertain of the source of message failure, effectively
strengthening messages from one player. This asymmetry in message strength in turn permits
cutoff equilibria, where players take action after receiving a minimum number of confirmations.
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1 Introduction

A squadron of planes plans a strike on a powerful enemy, but only a simul-
taneous attack with the full force of the squadron will ensure success. The
captain in command is tasked with identifying the precise moment when con-
ditions merit attacking, and then orders the attack via radio messages to his
fellow pilots. Radio messages are likely to reach their destination, though
transmission failures are also possible. Hence, when pilots receive a message,
they confirm receipt to the captain. If the captain receives some, but not all
confirmations, should he nevertheless initiate the attack, hoping it was simply
confirmations that were lost and not his original messages? And if the captain
requires confirmations from all before attacking, how does an individual pilot
know that the captain indeed received the needed confirmations? The captain
may choose to reconfirm to the other pilots that all received the attack mes-
sage, but does he then require confirmations of receipt of this message as well?
It seems we are back where we started.

In our pilots story, agents wish to coordinate on mutually beneficial
action, but if an individual agent undertakes action without the participation
of others, he incurs costs. This, of course, is the description of a stag hunt, a
classic strategic setting which has been studied as far back as in the writings
of the philosophers Rousseau and Hume.1 In a stag hunt, collective action is
the payoff-dominant equilibrium. But in a seminal paper, Rubinstein (1989)
demonstrates that when two agents have detailed yet imperfect information
about the existence of a risky opportunity, coordinated action may be impos-
sible.

In our paper, we examine how this logic extends to multiplayer settings
where one informed agent serves as a “leader,” relaying messages to and from
the other parties. Our main finding is that in contrast to Rubinstein’s result,
groups with an informed leader may indeed be able to coordinate on action,
and abilty to coordinate depends crucially on the degree of correlation in the
messages sent by the leader.

Before detailing our results, we briefly review the celebrated coordi-
nated attack problem from the computer science literature (see e.g. Gray,
1978), and Rubinstein’s game-theoretic formalization of this problem, the elec-

1In the classic two player stag hunt, each player has two options: hunt the stag, or gather
berries. Berries are filling, but not nearly as delicious as venison. If both players choose to
hunt stag, their hunt will be successful. If only one hunts stag, he will fail in his efforts and
go hungry, while his counterpart settles for berries. So while the (hunt, hunt) equilbrium
payoff dominates the (gather, gather) equilibrium, hunt is a risky action if a player is not
confident that his counterpart will also hunt.
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tronic mail game (henceforth EMG).
Two generals sit on opposite sides of an enemy. When “the time is ripe,”

if both generals attack, victory is certain. However, if only one general attacks,
his army suffers devastating losses. General 1 observes that the “time is ripe”
and sends a messenger to General 2 proposing an attack. However, there is
a small probability that the messenger will not make it through the enemy
lines. Since General 1 cannot be assured of the messenger’s success, General 2
sends a messenger back, confirming receipt. But now General 2 does not know
if General 1 received the confirmation, so General 1 again sends a messenger,
confirming the receipt of the confirmation. The generals send confirmations
back and forth until some messenger fails to make it through. Because only a
finite number of messages can be relayed before a messenger fails, the attack
proposal will never be common knowledge.2 For the proposal to be common
knowledge, it must be that for all integers n > 0,

(everybody knows that)n an attack has been proposed.

Rubinstein replaces the couriers with email messages and considers a
setting where confirmations are sent automatically upon message receipt. In-
tuition suggests that if sufficiently many messages have been relayed, the gen-
erals should be able to coordinate on attacking. Yet Rubinstein shows that
regardless of the number of messages received, the uncertainty prevents the
generals from coordinating on attacking in any equilibrium. By contrast, with
common knowledge that “the time is ripe,” they may indeed coordinate their
attack.

The EMG demonstrates that “almost common knowledge” of a game
can yield vastly different outcomes from common knowledge. But in addition
to drawing attention to this distinction, Rubinstein’s example raises a related,
practical question: When can parties coordinate on risky, yet mutually benef-
ical action when communication channels are imperfect?

As a practical matter, almost any communication channel is necessar-
ily flawed with some positive probability. Hence, unsurprisingly, the study
of communication via flawed networks is a broad research topic with a rich
history, so we will work to quickly narrow our scope. One important line of re-
search is “network reliability theory” (see e.g. Colbourn, 1987 or Shier, 1991).
In these models, a communication network is represented by a graph, where
nodes represent agents, and edges between nodes represent communication
channels. Each edge is operational with some probability, and one may calcu-
late the probability of any two nodes being connected via a path of operational

2See Aumann (1976) for the first formal, set-theoretic treatment of common knowledge.
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channels. Using this framework, one may consider, for example, designing a
network from flawed channels to optimize the likelihood of connectedness of
all network nodes.

Chwe (1995) introduces the notion of “strategic reliability” which for-
mally combines network reliability with game theoretic foundations. In Chwe’s
formulation, agents are strategic players who take actions based on informa-
tion obtained via a network. With strategic reliability, the design goal shifts
from maximizing connectedness (or other measures of network reliability) to
maximizing the likelihood that agents communicating over a flawed network
can achieve desired outcomes, via equilibria in the induced game. Rubinstein’s
EMG falls squarely into this category, and indeed pre-dates and provides in-
spiration for Chwe’s work.

The goal of players in the EMG is to coordinate their actions in a
stag hunt. The stag hunt is a particularly appropriate setting to study flawed
communication channels. Coordination is desirable, but taking action alone
is costly. Hence, reliability of communication is critical in motivating players
to play the risky but payoff-dominant equilibrium rather than the safe equi-
librium. Several papers examine extensions of the two-player game, focusing
primarily on the consequences of making assumptions in Rubinstein’s example
more realistic.3

In recent years, an intriguing line of literature has emerged that in-
vestigates collective action in multiplayer settings with flawed communication
channels. With multiple players, agents can interact in ways that are not
available in the two player setting. A primary focus of this literature is to see
if this expanded interaction facilitates collective action or else corroborates
Rubinstein’s no-coordination result.

Morris (2001) considers a setting with “locally public communication.”
Nature determines whether the state is good or bad; only in the good state

3Dulleck (2007), Strzalecki (2011), and Takamiya and Tanaka (2006) consider the EMG
when players are boundedly rational. Dulleck (2007) finds that when “absent-minded” play-
ers are unsure of the number of messages received, coordination on attacking is possible.
Strzalecki (2011) demonstrates that players capable of only a finite number of steps of rea-
soning may likewise coordinate. Takamiya and Tanaka (2006) find that players’ mutual
knowledge of the state relative to their mutual knowledge of rationality dictates their abil-
ity to coordinate. Another class of papers explores plausibly realistic adjustments to the
messaging technology. Binmore and Samuelson (2001) examine a setting when messages
are costly and voluntary. Morris (2001) introduces a finite time horizon and messages that
take a random length of time to arrive. In Dimitri (2003), a third party learns the state of
nature and informs both generals with noise. De Jaegher (2008) examines a model in which
message confirmations are strategic, rather than automatic. In each of these settings the
adjustment to the messaging technology may permit partial coordination in equilibrium.
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is there an opportunity for collective action. In each round, a subset of the
players (smaller than the threshold for successful collective action) meets in
a private caucus. In each such meeting, players learn the state, and also the
history of messages received, and this information becomes common knowledge
within the group. But in each round, with positive probability communication
ceases, and the group receives no information from the previous caucus. This
setting confirms Rubinstein’s result: there is no equilibrium where players take
collective action when the state is good, despite potentially many rounds of
communication.

De Jaegher (2011) considers a multiplayer setting where collective ac-
tion is facilitated via redundancy, the transmission of the same information
along multiple paths. In De Jaegher’s formulation, one informed player learns
the state of nature, and if the state of nature is good, communicates this news
to all other players. Each message successfully reaches its destination with
probability 1−ε. Each time a player receives a message, he learns the state of
nature, as well as the message’s path: an analogy is the path of recipients on
a long email thread. After a finite number of rounds, all communication ends
and players select their actions. In this model, information sets for players are
extremely complex, and the imposition of a finite time horizon helps to ensure
collective action.4 Nevertheless, the model is quite general (and democratic)
in the sense that possible channels of communication are comprehensive. De
Jaegher finds that in this setting there are multiple equilibria. In some of these
equilibria, players take action upon receiving only a small number of confir-
mations. Notably, in these equilibria outcomes improve when the time horizon
is lengthened, in contrast to the finite versions of Rubinstein’s example. The
logic underpinning these findings is that players benefit from multiple chan-
nels, as these offer backup paths to gather information, should other channels
fail.

This paper offers a different explanation for how multiple channels may
permit collective action: parties may be able to coordinate their actions when
failures of messages to arrive at their destinations are sufficiently correlated
events.

In our setting, instead of two generals, there is a single general and

4Finiteness of the horizon can play an important role in coordination. For example, in
Rubinstein’s EMG, when the number of allowable rounds of confirmations is finite, players
can partially coordinate in equilibrium. In an extreme case, if General 1’s computer sends a
message whenever the state is good, but General 2’s computer may not send any confirma-
tions, then there is an equilibrium where General 1 attacks whenever the state is good and
General 2 attacks whenever he receives a message. The only miscoordination occurs when
the sole message fails to get through.
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N − 1 lieutenants. If “the time is ripe,” the general sends messages to each
of the lieutenants, who send confirmation messages back to the general (but
not to each other). Any message fails to reach its destination with some small
but positive probability. If the general hears back from all the lieutenants, he
reconfirms to all, while if some lieutenant has failed to confirm, communication
is terminated. Lieutenants respond with confirmations, and so forth. Once
communication ceases, each party must decide whether or not to attack. For
an attack to be successful, collective action is required from all parties.5 We
refer to this environment as the Hub and Spoke Electronic Mail Game (Hub
and Spoke EMG).

We first demonstrate that when message failures are independent, the
non-action result from the two-player model persists: players are unable to co-
ordinate even when a large number of confirmations are sent. The logic behind
this result parallels that of the two-player game: each player anticipates the
actions of the others when communication terminates, and each is sufficiently
pessimistic about the number of confirmations received by her counterpart
that they are unable to coordinate on action.

Suppose, however, that failure rates of messages sent by the general
are correlated. Why might we expect this? Consider any environment where
a leader is broadcasting a message to others, who respond with individual
communiqués. In such settings, failure rates may be correlated because of a
failure in the broadcast, or else because of the lieutenants’ inabilities to inter-
pret the common broadcast. Returning to our opening example, in a squadron
of planes, the control tower communicates to planes via its radio, while each
plane confirms receipt via its individual radio. Similarly, in a currency attack
setting, a ringleader may make a veiled public announcement about vulner-
ability of a sovereign currency (suggesting an attack may be in order), while
other investors confirm via individual channels their intent to similarly pile on.
A hopeful leader of a rebellion facing a regime keen to block communication
may put out a semi-public call to arms over the internet, and must monitor
individual replies via a variety of channels to gauge the depth of support. In
short, in any setting where a leader communicates with followers, it is natural
to think that failures of outbound messages may be correlated.

When the general sends a message but receives only a subset of con-
firmations, correlation may provide useful information about which messages

5In the Appendix, we consider the case where collective action from only a subset of the
lieutenants is necessary for victory (see Examples A1 and A2). Compared to the case where
action from all agents is required, in these settings coordination is possible under a wider
parameter range, since even after message failures agents can often proceed with confidence
that enough other players will join in the attack.
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were lost. If the degree of correlation across outbound message failures is high,
then it is likely that messages were not lost en route to the lieutenants, but
instead confirmations were lost upon return. This has the effect of creating a
“strong” message from the general: the general only needs some messages to
get through to be optimistic that messages made it through to the other lieu-
tenants as well. The lieutenants, by contrast, send “weak” messages, in that
when any of the lieutenants’ messages fails to make it through, communication
stops.

This asymmetry generates decision points that share characteristics
with the environments of Dimitri (2004) and Coles (2005).6 These models are
modifications of Rubinstein’s two player EMG with one simple adjustment:
messages from General 1 to General 2 are assumed to fail with probability dif-
fering from that of messages sent in the other direction. When the failure rates
are sufficiently different, the no-coordination result of the EMG is overturned.
The general who sends the “stronger” message, rather than being pessimistic
about his counterpart having received the final communiqué, is in fact opti-
mistic. This asymmetry allows the generals to agree on where communication
is likely to have broken down, which in turn allows the generals to coordinate
their actions.

In our setting, the correlation and the many-to-one structure of the
communication network generate a natural asymmetry that is similar to the
pre-specified, technological asymmetry of Dimitri and of Coles. This asymme-
try permits coordination via cutoff strategies, strategies where agents attack
provided they have received a sufficient number of confirmations. Unlike in the
two-player game, or in the Hub and Spoke EMG with independent message
failures, with correlated message failures players are able to coordinate their
actions when communication ceases, because due to the asymmetry in message
strength, they have coincidental beliefs about the source of signal failure.

From an organizational standpoint, our finding will help anticipate the
likelihood of coordination in multiplayer communication settings, and to the
extent that selection of a signaling mechanism is possible, it suggests that
choosing a mechanism that induces correlated failures may be advisible, even
if the mechanism involves higher individual message failure rates than mecha-
nisms with independent channels of communication. The results demonstrate
that we may take advantage of multiple communication channels in a way that
is not possible in a two player setting, and in a way that is distinct from the
redundancy benefits focused on previously in the literature.

6These two papers independently demonstrate similar results.
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2 The Hub and Spoke Electronic Mail Game

In this section we model an environment where one informed, central party
communicates with peripheral parties over faulty communication channels.

There is a set N of players with |N | = N, N > 2.7 There are two
possible states of the world, a and b. States a and b occur with probability
1 − q and q respectively, where q < 1/2. Thus, a is the more likely state.
For each player, there are two possible actions, A and B. Players who play
A receive payoff 0. If the state is b, then if all players coordinate on B, each
receives payoff M > 0. But if the state is b and some, but not all of the
players play B, the players who chose B receive a payoff of −L, regardless
of the state, with L > M . Finally, if the state is a, any player who plays B
receives a payoff of −L. Thus, it is risky to play B without confidence that the
state is b, and that opponents will also all play B. Following the coordinated
attack language, b can be interpreted as the state of nature where conditions
are ripe for an attack, B is “attack” and A is “do not attack.”8

The game unfolds as follows. Player 1, the “general,” learns the state
of nature, either a or b. If the state of nature is b, email messages are automat-
ically sent to each of the N − 1 peripheral players, “the lieutenants,” indexed
by i = 2 . . .N . However, message channels are flawed, and some of these
messages will not get through. Let p : {0, 1}N−1 −→ [0, 1] be the distribu-
tion over message outcomes. That is, p(1) is the probability that all messages
get through, p(〈1, 1, . . . , 1, 0〉) is the probability that all messages get through
except that to lieutenant N , etc. Note that we place no restrictions on p, so
that correlated failure is permitted. Sections 3 and 4 will examine outcomes
for specific instances of p(·).

Whenever a lieutenant receives a message, a confirmation message is
automatically sent back to the general. Messages from lieutenants are in-
dependent and each fails with probability ε. Whenever the general receives
confirmations from all lieutenants, the general reconfirms to all, and sends
out reconfirmations whose success is again described by p(·), independent of
outcomes in other rounds. If, however, the general receives only an incomplete
subset of the N−1 possible confirmations, communication ends: confirmations
are sent back to none.

Note that this information structure preserves the feature from the

7When N = 2 the setting simplifies to the usual EMG.
8Payoffs in state a depart slightly from Rubinstein’s model. Here, playing A always yields

payoff 0 (even in state a), and B ensures a payoff of −L in state a (even if all counterparts
also play B). These changes, adopted in the literature by Chwe (1995), Morris and Shin
(1997) and others, simplify the exposition, but do not affect any of the core analysis.
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Lieutenants Lieutenants 

General 

Figure 1: Messaging Structure in the Hub and
Spoke Electronic Mail Game

original game that upon sending her T th message, a player knows that all
players have a minimum depth of knowledge of the state, yet do not have
common knowledge. For example, when player i ∈ {2, . . . , N} has sent Ti

messages, then Ki(KEveryone)
Ti−1b, where the notation Ki(E) means that “i

knows that event E has taken place.”
Following this automatic process, the lieutenant’s computer displays

the number of messages Ti he has sent. A pure strategy si : Z
+ → {A,B} for

each lieutenant i = 2 . . .N is a mapping describing i’s planned action when his
machine has sent Ti messages (where Z

+ indicates the non-negative integers).
The computer of player 1, the general, displays both the number of rounds of
messages T1 his machine has sent, and the vectorm ∈ {0, 1}N−1 of messages he
receives in the final communication. For example, m = 〈0, 1, 1, . . . , 1〉 means
the general received confirmations from all lieutenants except lieutenant 2. We
let m ≡ m · 1 denote the number of messages received by the general in the
final communication. A pure strategy s1 :

(

N× {0, 1}N−1
)

∪(0, ∗) → {A,B}
for the general is a mapping giving his action when his machine has sent T1

rounds of messages and vector m of confirmations (with m < N −1) triggered
the communication breakdown. Note that T1 = 0 is a special case. It means
that the state of nature is a, so the general will never receive confirmations.
His action under these circumstances is given by s1(0, ∗) ∈ {A,B}.

We refer to this setting as the Hub and Spoke Electronic Mail Game
(Hub and Spoke EMG).
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3 Independent Message Failures

In this section, we suppose that failures of messages are independent. That
is, in any round of messages sent out by the general to his lieutenants, any
particular message will fail to reach its destination with probability ε, and
this event is independent of the outcomes of the messages sent to the other
lieutenants. Likewise, each message sent by a lieutenant fails to reach the
general with probability ε, independent of other message outcomes. Under
this specification of p(·) we have the following result.

Theorem 1. In the Hub and Spoke EMG, there is a unique Nash equilibrium:

all agents play A independently of the number of messages sent.

The theorem states that, as in Rubinstein’s two player EMG, players
are unable to coordinate on playing B, even when it is valuable to do so, and
when players have great depth of knowledge of the state.

Our proof relies on induction, but it is nevertheless instructive to see
why there is no equilibrium in which agents use intuitive strategies that call
for playing B after receipt of a threshold number of confirmations (the cutoff
strategies referenced in the introduction).

Suppose lieutenant i’s strategy calls for playing B when Ti ≥ T̄i is
displayed on its machine (which means that the lieutenant has sent and re-
ceived ≥ T̄i messages). What action should the general take if he has sent
a T̄ith message, but fails to receive a confirmation from this lieutenant? He
assigns the following conditional probabilities for Ti, the value displayed on
the lieutenant’s screen:

Ti =

{

T̄i − 1 with probability 1
2−ε

T̄i with probability 1−ε
2−ε

.

Thus, it is more likely that the lieutenant did not receive the final message.
Consequently, the general should take the safe action A. Since this logic applies
to any of the lieutenants, it follows that the general’s computer must display
at least T̄i + 1 before the general will be confident enough to play B.

Now suppose that the general’s strategy calls for playing B only if
T1 ≥ T̄1 is displayed on its machine. What action should a lieutenant take if he
has sent a (T̄1−1)th message to the general, but fails to receive a confirmation?
If he is particularly optimistic and assumes that all other lieutenants have
also received T̄1 − 1 messages and sent T̄1 − 1 confirmations, he assigns the
following conditional probabilities to possibilities for T1, the value displayed

9
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on the general’s screen:

T1 =

{

T̄1 − 1 with probability z ≡ 1−(1−ε)N−1

1−(1−ε)N−1+ε(1−ε)N−1

T̄1 with probability 1− z
.

Note that z > 1
2
(in particular, for small ε, z ≈ N−1

N
), so that the

lieutenant should take the safe action A. In the less optimistic scenario that
some lieutenant failed to send T1 − 1 messages, then with certainty T1 < T̄1,
and the lieutenant should again take the safe action A. It follows that the
lieutenant’s computer must display at least T̄1 before he will be confident
enough to play B.

These best response analyses can be interpreted as meaning that each
player favors conservative action, and each would like to have a later cutoff
than her counterpart. Hence, no cutoff point is acceptable for an equilibrium.
By contrast, in the following section we will show that with correlated signals,
this “battle for the later cutoff” is resolved, and players are content to attack
after receiving a minimum number of confirmations.

4 Correlated Message Failures

In this section, we suppose that failures of messages sent by the general are
correlated. We will demonstrate that with sufficiently high levels of correlation,
players will be able to coordinate their actions in equilibrium by playing cutoff
strategies.

For the T th round of messages sent out by the general, let the success
of messages be given by the random variable XT = (XT

2 , . . . , X
T
N), where

XT
2 , . . . , X

T
N are Bernoulli variables whose values are distributed according to

p(·). Let ρij be the correlation between variables XT
i and XT

j (which does not
depend on T ). We continue to assume that each message sent by a lieutenant
fails to reach the general with probability ε, independent of other message
outcomes.

For player 1, we define ST̄ ,m̄
1 , the cutoff strategy with cutoff T̄ and threshold

m̄ as:

sT̄ ,m̄
1 (T1,m) =















B for T1 ≥ T̄ + 1
B for T1 = T̄ , m ≥ m̄
A for T1 = T̄ , m < m̄
A for T1 < T̄ .
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For players i ∈ {2 . . . N}, we define sT̄i , the cutoff strategy with cutoff T̄ as:

sT̄i (Ti) =

{

B for Ti ≥ T̄

A for Ti < T̄ .

A cutoff equilibrium is an equilibrium in which players employ cutoff
strategies. For each lieutenant, a cutoff strategy simply specifies the minimum
number of messages he must send in order to play B, while a cutoff strategy
for the general specifies both the number of (rounds of) messages he must
send, as well as the minimum number of confirmations he must receive in the
final communication.

To prove our theorem, we assume the following (sufficient) condition,
which stipulates that the probability of message failure be sufficiently small
relative to the proportion M

M+L
(which reflects potential gains from collective

action vs. losses from miscoordination.)

Condition 1. ε < M
M+L

We now have following result.

Theorem 2. Fix ε, the failure probability for a message from any lieutenant to

the general, and assume that condition 1 holds. Consider all distributions p(·)
where, in expectation, any single message from the general fails with probability

ε; that is, E[Xi] = 1 − ε. There exists ρ ∈ (0, 1) such that for every p(·) with

ρij ≥ ρ for all i, j, we have that (ST̄ ,1
1 , ST̄

2 , S
T̄
3 , . . . , S

T̄
N ) is an equilibrium in

cutoff strategies for any T̄ ≥ 1.

Theorem 2 states that there is a multiplicity of equilibria in cutoff
strategies, provided the correlation between failures of messages sent by the
general is sufficiently high. In each of these equilibria, players use a common
cutoff, and the threshold for the number of confirmations the general must
receive in the final communication is 1. Observe that there is also a “bab-
bling” equilibrium in which agents always play A, which can be interpreted as
corresponding to T = ∞.

This result stands in contrast to that from the previous section. Why
are the players now able to coordinate on action B after receiving a minimum
number of confirmations, but were unable to do so when message failures were
independent? The correlation generates a natural asymmetry that breaks the
“battle for the later cutoff.”

Consider the uncertainty lieutenant i faces when his machine has sent
Ti > 0 messages. He knows that the communication breakdown could have

11
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resulted from one or more messages not making it through to the general
(including possibly the lieutenant’s own message), and that it is much less
likely that all N − 1 messages made it through and in fact it was the general’s
confirmation that was lost. Thus, in a sense i is sending a “weak” message:
communication most likely ceased because he or one of the other lieutenants
sent a message that failed to make it through to the general.

On the other hand, consider the general’s decision when his machine
has sent T1 messages and he has received at least one confirmation in the final
round. The general can be sure that at least one message made it through
to a lieutenant. If the general’s outgoing messages are (positively) correlated,
conditional on a particular message arriving the general is more confident of
his other messages’ arrivals than he would have been if message failures were
independent. With sufficiently high correlation, the general is highly confident
that all of his messages arrived, and that the missing message(s) are instead
the result of failures of confirmations from the lieutenants. In this sense, the
general is sending a comparatively “strong” message, and prefers to use a
cutoff equal to his counterparts’.

When correlation is high, there are no equilibria in cutoff strategies
other than those described in Theorem 2. To see this, first note that strategy
profiles where the general uses a different cutoff from the lieutenants can easily
be ruled out, as one of the sides will be playing the risky action (tragically)
early. There are also no cutoff equilibria where the general uses a threshold
other than m̄ = 1; with sufficient correlation, the general’s optimal action for
m > 1 must be the same as the optimal action for m = 1.

The equilibria in Theorem 2 can be Pareto ranked; welfare is decreasing
in cutoff. Each of these equilibria Pareto dominates the no-communication
equilibrium (“T = ∞”). The best equilibrium is that where lieutenants require
at least one message and the general at least one confirmation in order to play
B.

While arguably an improvement over the no-communication result when
messages are independent, valuable coordination in this environment is still
partial compared to the payoff-dominant equilbrium when agents have com-
mon knowledge of the state. In our setting, message failures prior to the cutoff
prompt all agents to play the safe action A. Separately, inopportune message
failures near the cutoff can result in some players incurring costs as they play
B, while others do not. However, with small ε, in the most efficient equilib-
rium in cutoff strategies, both of these occur with low probability. It can be
shown, using an argument similar to one in Gray (1978), that in the class of
communication protocols that involve a finite number of imperfect messages
in expectation, no protocol can lead to perfect coordination in both states of
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the world. In this sense, we can be satisfied with an outcome where agents
coordinate on B when the state is b and on A when the state is a all but a
small fraction of the time.

4.1 Examples

Example 1. Perfect Correlation

Suppose that when the general sends a message, it will reach all lieu-
tenants with probability 1−ε and will reach no lieutenants with probability ε.
Messages from lieutenants independently fail to reach their destination each
with probability ε. This scenario could arise when the source of messages from
the general is subject to “system failure,” as might happen, for example, if the
general’s radio breaks, or if a common message is sent out but is garbled and
uniformly uninterpretable.

Since this is a special case of Theorem 2, we know that players may
coordinate by using cutoff strategies. A lieutenant who has not received a mes-
sage knows with certainty that his fellow lieutenants have also not received this
confirmation. Conditional on communication breakdown, each lieutenant as-
signs high likelihood to one of their messages not making it through to the
general, rather than all N − 1 messages making it through and the general’s
message not making it back. Hence, the lieutenants must indeed match the
general’s cutoff in equilibrium. Importantly, the general too can infer much
about the information sets of the lieutenants, regardless of the number of
messages he receives in the final round of communication. With a single con-
firmation, he can be sure that his message made it through to at least one
player, and hence to all other players—a perfectly strong signal. Knowing his
counterparts received the final message, he can safely play the risky action B,
even when those final messages are just sufficient for the lieutenants to meet
their requirements for playing B.

Example 2. Independent Messages with Chance of “System Failure”

Suppose when the general sends messages, there is a probability γ of
“system failure” in which case no messages go out. If there is no system failure,
messages are independent and fail with probability δ, where δ is chosen so
that E[XT

i ] = ε for all T ≥ 1, i ∈ {2, . . . , N}. By Theorem 2, as we increase
the probability of system failure (up to ε) and correspondingly reduce δ, we
will eventually enter a region where players can coordinate on attacking in
equilibrium.
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This result suggests that the general should consider connecting with
his lieutenants via a “long-but-weak” common cable and then “short-and-
strong” individual cables instead of via a “short-and-strong” common cable
followed by “long-but-weak” individual cables. That is, the general should
invest in a communication channel that gets a clear, common message as close
to his followers as possible.

Example 3. An Odd Equilibrium

Theorem 2 characterizes the set of all cutoff equilibria when correlation
is high. However, there are also less intuitive equilibria where the players
coordinate on attacking only when receiving specific subsets of messages. We
provide one such example.

As in Example 1, assume perfect correlation of failures in the general’s
outbound messages. Let s1(T,m) = B iff T is odd and m > 0 or T is even
and m = 0 , and let si(T ) = B iff T is odd. We claim that these strategies
constitute an equilibrium. First, as ρ = 1, lieutenants clearly must play A
when T is even. When T is odd, lieutenants find it likely that at least one
(but importantly, not all) of their signals was lost en route to the general, and
hence play B.

As for the general, when T is odd and m > 0 he knows that all lieu-
tenants will play B, so he should do so as well. When T is even and m > 0 he
knows that all lieutenants will play A, so again he should do likewise. When
T > 0 and m = 0 the general believes that the communication breakdown
is most likely due to his message being lost and that lieutenants will play
si(T − 1). Hence, he should also play si(T − 1).

5 Conclusion

In this paper we have examined collective action among multiple players who
communicate over faulty channels. Our contribution is the illustration of a new
way in which the multiplicity of channels may lead to coordination. Namely,
when message failures are correlated, players may utilize the multiple chan-
nels to infer information about missing confirmations in a way that facilitates
action. In our setting, this induced information mitigates pessimism about
message receipts for one player at a key decision point and increases his con-
fidence that he may safely take action. This breaks a battle of conservatism
that would otherwise cause the game to unravel so that players never take
risky action, even when it is mutually profitable to do so.
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One limitation of our finding is that it holds only for specific regions
of our parameters. In particular, we require that either the probability of
messages breaking down is small, or alternatively that losses due to miscoor-
dination are not too large relative to the gains from successful coordination
(Condition 1). Furthermore, the degree of correlation that ensures the possi-
bility of coordination depends on the number of players N .9 These features of
our result limit its applicability. How much correlation is necessary to permit
coordination? The answer is that it depends.

The most important limitation of this finding is the specific nature of
the network structure. We have assumed a single informed agent, the general,
who communicates with other agents, but these agents do not communicate
with each other. Furthermore, the general only reconfirms when receiving
confirmations from all agents. These assumptions may be plausible in instances
where there is a natural leader who seeks to coordinate a group of followers.
The real advantage to using the hub and spoke model, however, is that it
offers a convenient, tractible model for studying how agents may benefit from
message failure correlation. By demonstrating the no-coordination result in a
setting with independent messages, we are able to isolate correlation as the
pivotal factor that leads to coordination. The result is robust in the sense that
we do not rely on a specific distribution of message failures; any distribution
with sufficiently high correlation permits coordination.

While we certainly do not purport (or believe) that correlated message
failures universally facilitate collective action or otherwise increase welfare, we
emphasize that our finding demonstrates their potential. Correlation should
be acknowledged as one feature of a communication mechanism that may piv-
otally dictate feasibility of coordination. Since this seemingly subtle feature
can mean the difference between reasonably efficient coordination and none at
all, it underscores the need for a deeper understanding of what classes of com-
munication protocols best facilitate coordination, and suggests opportunities
for further research.

9Suppose we fix M,L, ε and select p such that the correlation between any two outbound
messages from the general is fixed at ρ̄ < 1. As the number of players increases, one even-
tually arrives at a network structure where the only equilibrium is one in which all players
select A. Hence, the degree of correlation necessary for coordination critically depends on
N .

15

Coles and Shorrer: Correlation in the Multiplayer Electronic Mail Game



Appendix A: When Threshold for Successful

Attack is < N .

In this appendix we investigate outcomes when the threshold participation
level for collective action to be successful is less than the number of players N .
We model this two different ways: one where the general seeks to coordinate
separately with each lieutenant, and another where there are three players,
but success is assured provided at least two attack. In each of these settings,
partial coordination can be sustained in equilibrium. The intuition here is
clear: when a big army undertakes a small operation so that only part of its
power is needed, a lieutenant can count on at least partial support even when
the communication is faulty. Additionally, as this fact reduces the risk from
joining the operation, other lieutenants will likewise join, further reducing the
likelihood of loss.

Example A1. Pairwise Coordination

Suppose that instead of the payoff structure from Section 2, now when
the general chooses to play B, successful coordination with some of the lieu-
tenants yields gains, while failed coordination with others incurs losses. Total
payoff for the general is given by gains net of the losses.

We preserve the information structure, independent message distribu-
tion, and strategy sets of Section 3, altering only the payoffs. As in Sec-
tion 2, after communication, each agent plays A or B. For each pair (1, i ∈
{2, . . . , N}), payoffs are calculated as follows. An agent who plays A receives
payoff 0. If both agents coordinate on B and the state is b, then each receives
payoff M . If only one agent plays B when the state is b, that agent receives
−L. Playing B when the state is a likewise yields −L. For each lieutenant i,
this is all he will receive. The general’s total payoff is the sum of the payoffs
from each pairwise coordination effort. We refer to this setting as the Hub
and Spoke Electronic Mail Game with Pairwise Coordination.

Notice that now the general may be willing to play B if he expects only
a subset of the N − 1 peripheral players to play B. The lieutenants, however,
will only play B if it is likely that the general will also play B.

To prove the result in this example, we assume the following (sufficient)
condition.

Condition A1. M(N − 2)− L > 0

Condition A1 has the following interpretation: If the general manages
to coordinate with all the lieutenants except one, his payoff is positive.
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We have the following proposition:

Proposition A1. In the Hub and Spoke EMG with Pairwise Coordination,

for sufficiently small ε, ∃m̄ < N − 1 such that (sT̄ ,m̄
1 , sT̄2 , s

T̄
3 , . . . , s

T̄
N) is an

equilibrium in cutoff strategies for any T̄ ≥ 0.

Proposition A1 states that as in the Hub and Spoke EMG with corre-
lated message failures, players may coordinate via cutoff strategies. But unlike
with correlated messages where the threshold number of confirmations in the
final communication for the general was 1, in this case the threshold may be
higher, and is dictated by the number of lieutenants who, if they coordinate,
will offset the losses from failed coordination attempts with the others.

Why can players coordinate on playing B, but not in the setting of
Section 3? When communication stops, each lieutenant is uncertain if his
final message made it through. However, he knows that it is highly likely that
most of the final messages from the lieutenants did make it through to the
general. For small ε, given that one message failed, it is unlikely that even
two messages failed. Hence the lieutenants send a “strong” signal, because
multiple signals need to break down for the general to miss his threshold.
Upon sending T messages, each lieutenant i is confident that enough messages
have gotten through to trigger an attack by the general, so the lieutenants are
content with matching the general’s cutoff.

Example A2. Threshold for Successful Attack < N

Let N = 3, and consider a model identical to that in Section 3, except
that now only two agents need attack to ensure success. That is, assume each
agent who attacks (plays B) receives payoff M if the state is good (b) and at
least one other agent has attacked. An agent receives −L if she alone plays B
when the state is good, or if she plays B and the state is bad. Agents receive
0 from playing A.

We claim that for small ε and not-too-large L, the following cutoff
strategies constitute an equilibrium:

s1(T1,m) = B iff T1 ≥ 1
si(Ti) = B iff Ti ≥ 1.
We begin by showing that si is a best response for the lieutenants.

WLOG we inspect s2. Clearly, if T2 ≥ 1, then T1 ≥ 1 and attacking is optimal.
If T2 = 0, then the conditional probability player 2 assigns to the state being
good is small (namely (1−q)ε

q+(1−q)ε
, which is less than 1/2 and approaches zero

when epsilon approaches zero). Therefore, A is his best response.
We now inspect S1. If T1 > 1 or T1 = 1 and m > 0, player 1 assigns

probability 1 to a lieutenant playing B, so B is optimal. If T1 = 1 and
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m = 0 we have Pr{s2(T2) = s3(T3) = A | T1, m} = ε2

ε2+2ε2(1−ε)+(1−ε)2ε2
while

Pr{∃i s.t. si(Ti) = B | T1, m} = 2ε2(1−ε)+(1−ε)2ε2

ε2+2ε2(1−ε)+(1−ε)2ε2
. For small ε, the likelihood

of at least one other player attacking is roughly 3/4. Therefore, provided L is
not too large, B is optimal. The case T1 = 0 is trivial.

Appendix B: Proofs

Proof of Theorem 1

Let (s1, . . . , sN) be a pure strategy Nash equilibrium. We will show by
induction on T that s1(T,m) = si(T ) = A ∀T,m, i = 2 . . . N . Our proof also
establishes that even when considering mixed strategy equilibria, this is the
unique Nash equilibrium in the Hub and Spoke EMG.

Observe first that in any equilibrium, we must have s1(0, ∗) = A, since
A yields a payoff of zero for the general, while B yields −L.

If lieutenant i has Ti = 0, then he did not receive any messages. It could
be that the state of nature is a and no message was sent, which occurs with
probability 1−q, or that a message was sent and was lost en route, which occurs
with probability qε. In the first case, by assumption, the general plays A. If
lieutenant i plays A, then regardless of what s1(1,m) is, his expected payoff

is 0. If he plays B, his payoff is at most −L(1−q)+Mqε

1−q+qε
. Comparing these, we see

that it is strictly better for player i to play A; that is, si(0) = A ∀ i = 2 . . . n+1.
Now suppose that we have shown that in equilibrium, for all T < t we

have s1(T,m) = si(T ) = A ∀ m, i = 2 . . .N . Let us calculate the general’s
optimal action when T1 = t. In this case, the general has sent t messages, but
did not receive a confirmation from one or more lieutenants. Let i designate
one of these lieutenants. The general then assigns the following conditional
probabilities:

Ti =

{

t− 1 with probability 1
2−ε

t with probability 1−ε
2−ε

.

When Ti = t − 1, i plays A. Thus, if the general chooses B, he gets
at most M 1−ε

2−ε
− L 1

2−ε
. If he chooses A, he receives 0. Because L > M and

1
2−ε

> 1−ε
2−ε

, his best option is A. Thus, s1(t,m) = A ∀ m.
We now calculate the optimal action for lieutenant i when Ti = t.

Suppose the lieutenant optimistically believes all the other lieutenants also
received t messages (and sent t confirmations). Then i is uncertain if the
general received all N − 1 messages (so that T1 = t + 1), or if at least one
message failed to make it through (so that T = t ). Player i assigns the
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following conditional probabilities:

T1 =

{

t with probability z ≡ 1−(1−ε)N−1

1−(1−ε)N−1+ε(1−ε)N−1

t + 1 with probability 1− z
.

When T1 = t, 1 plays A. Thus, if i chooses B, his payoff is at most
−Lz + M(1 − z). (If we include the less optimistic cases where the other
lieutenants receive fewer than t messages then prob(T1 = t) > z and our
payoff bound is lower still.) If he chooses A, his payoff is 0. Because L > M
and z > 1

2
, A is his best option. That is, si(t) = A ∀ i = 2 . . .N.

Note that in our analysis each best response was unique, so that “always
play A” is the unique equilibrium in the Hub and Spoke EMG. �

Proof of Theorem 2

We start by stating some basic properties that will be useful throughout
the proof. In the following four inequalities, random variable Xi is an indicator
for the arrival a message from the general to lieutenant i (in any round of
confirmations sent by the general.) At all periods, we have:

1. P{Xi = Xj = 1} ≥ ρε(1− ε) + (1− ε)2

2. P{Xi = Xj = 0} ≥ ρε(1− ε) + ε2

3. P{Xi 6= Xj} ≤ 2(1− ρ)ε(1− ε)

4. P (1) + P (0) = P{X2 = X3 = ... = XN} ≥ 1 − P{∃i, j Xi 6= Xj} ≥

1−
N
∑

i=3

P{X2 6= Xi} ≥ 1− 2(N − 2)(1− ρ)ε(1− ε) →
ρ→1

1

We now turn to proving the theorem. We first show that the strategy of the
general (player 1) is a best response to the strategies of the lieutenants.

First, T1 > T̄ ⇒ Ti ≥ T̄ , so in this case, B is player 1’s best response.
Similarly, T1 < T̄ ⇒ Ti < T̄ , so A is 1’s best response in this case.

When T1 = T̄ and m = 0, player 1 cannot be sure whether the lieu-
tenants all received the T̄ th message and a confirmation failed to return (the
“good” case, in which the player 1 should play B) or at least one lieutenant
failed to receive a message (the “bad” case, in which the player 1 should play
A). The probability of the bad case, conditional on the information known

to 1, is at least P (0)
P (0)+P (1)εN−1 , which converges to 1

1+(1−ε)εN−2 > 1
2
as ρ→ 1.

Hence, A is 1’s best response for high enough ρ.
When T1 = T̄ and m > 0, player 1 again cannot be sure whether the

lieutenants all received the T̄ th message and a confirmation failed to return
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(the good case) or at least one lieutenant failed to receive a message (the bad

case). Here, the probability of the good case is ≥ P (1)εN−1−m(1−ε)m

P (1)εN−1−m(1−ε)m+1−P (0)−P (1)
,

and this expression approaches 1 as ρ→ 1, so player 1 should play B. Hence,
the general’s stated strategy is a best response to the strategies of the lieu-
tenants.

We now turn to the strategies of the lieutenants. WLOG, we analyze
lieutenant 2’s strategy. Since T2 > T̄ ⇒ T1 > T̄ and Ti ≥ T̄ ∀i, we have that
B is the best response in this case. Similarly, T2 < T̄ − 1 ⇒ Ti ≤ T̄ − 1 ∀i, so
in this case A is 2’s best response.

When T2 = T̄ − 1, lieutenant 2 cannot be sure whether his fellow
lieutenants all got a T̄ th message and not all confirmations were lost en route
to the general (the good case), or else if some other lieutenant did not get
a T̄ th message, or else if his fellow lieutenants all got a T̄ th message, but
none of the confirmations made it back to the general (the bad cases). To
create a (loose) lower bound on the probability of the bad case, we assume
the “extreme” scenario in which 2 believes the general’s T̄ th message was sent.
The probability of the bad cases is at least P (0)

P (0)+[1−P (0)−P (1)]
, which approaches

1 as ρ→ 1, so that A is 2’s best response for large enough ρ.
Finally, when T2 = T̄ lieutenant 2 cannot be sure whether his fellow

lieutenants all got a T̄ th message and at least one confirmation was lost en
route to the general (the good case) or else if some lieutenant did not get
a T̄ th mesage, or else if his fellow lieutenants all got a T̄ th message but all
confirmations were lost en route to the general (the bad cases). The probability
of the good case is at least

P (1)·[(1−εN−1)−(1−ε)N−1+(1−ε)N−1P (0)]
P (1)·[(1−εN−1)−(1−ε)N−1+(1−ε)N−1P (0)]+[1−P (0)−P (1)]+P (1)εN−1 →

ρ→1

(1−εN−1)−(1−ε)N

(1−εN−1)−(1−ε)N+εN−1 .

The next series of expressions demonstrates that, provided Condition 1 holds,
B is indeed 2’s best response (for large enough ρ):

α := (1−εN−1)−(1−ε)N

(1−εN−1)−(1−ε)N+εN−1 = 1−εN−1
−(1−ε)N

1−(1−ε)N
= 1− εN−1

1−(1−ε)N
=

1− εN−1

ε[1+(1−ǫ)+(1−ǫ)2+...+(1−ǫ)N−1]
≥ 1− ǫN−2 ≥ 1− ǫ ⇒

αM − (1− α)L > 0 ⇐⇒ 1− α < M
M+L

.

So, as 1− α ≤ ǫ a sufficient condition is ǫ < M
M+L

.
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Finally, note that the convergence was derived using only the bounds
given in the beginning. Thus, we can find a ρ < 1 that suffices uniformly
(independent of p). �

Proof of Proposition A1

We first find a threshold m̄ such that ∀ T , the cutoff strategy with
cutoff T and threshold m̄ is a best response for player 1 to the strategies of
players 2 . . . n+ 1.

Suppose the general’s machine displays T1, with m < N − 1 messages
received in the final communication. If T1 ≥ T + 1, then the general can be
sure that each lieutenant i has Ti ≥ T, so that each will choose action B. Thus
B is the best response. If T1 < T , then each lieutenant player i has Ti < T, so
that each will choose action A. Here, A is the best response.

Now suppose that T1 = T . In this case, since 1 has received m con-
firmations, he is certain that at least m lieutenants have T . For each of the
(N − 1) − m remaining lieutenants, the general is unsure if his final com-
munication was lost en route, or if it was received and the confirmation was
lost. He assigns conditional probabilities 1

2−ε
and 1−ε

2−ε
to these two possibili-

ties. Thus, playing B will yield payoff mM + ((N − 1)−m)[−L 1
2−ε

+M 1−ε
2−ε

].
This payoff is increasing and linear in m. When m = 0, the payoff is negative
and by condition A1, the payoff is positive when m = N − 2. Hence, setting

m̂ ≡ (N − 1)
[

1− (2−ε)M
M+L

]

, the value of m for which this payoff is zero, we

must have m̂ ∈ (0, N − 2). Let m̄ be ⌈m̂⌉. Then when m ≥ m̄, B is the best
action, and when m < m̄, the zero payoff action A is preferable.

Thus, cutoff strategy with cutoff T and threshold m̄ is the best response
to Si, i = 2 . . .N .

We now show that each lieutenant i’s strategy is a best response to the
strategies of the others (where the general uses a cutoff strategy with cutoff T
and threshold m̄.)

If Ti ≥ T + 1, then T1 ≥ T + 1, in which case the general will play B.
Thus, i’s best response is B. If Ti < t − 1, then the general has T1 < t and
will play A. Thus, A is the best response.

Suppose Ti = T − 1. Then the only way the general could have T1 = T
is if i’s (T − 1)th message made it through, all other players received a (T −
1)th message and sent successful confirmations to the general, and it was the
confirmation sent from 1 to i that did not make it back. If player i is optimistic
and assumes his fellow lieutenants all also received their (T −1)th message, he

assigns conditional probabilities z ≡ ε(1−ε)N−1

ε(1−ε)N−1+1−(1−ε)N−1 to T1 = T and 1− z
to T1 = T − 1. When T1 = T − 1, player 1 chooses A. Thus, player i choosing
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B in this scenario yields a payoff of at most Mz − L(1 − z). But z < 1
2
for

any ε (and in the less optimistic scenarios, this conditional probability is lower
still), so the safe, zero payoff choice A is preferred when Ti = T − 1.

Now suppose Ti = T . For lieutenant i to prefer to attack, he must
find it sufficiently likely that the general either has T1 = t + 1, or else has
T1 = t and m ≥ m̄. As ε → 0, the conditional probability that the general
has T1 = T and m ≥ m̄ goes to one, since with high likelihood the source of
failure stems from a single lieutenant’s T th confirmation failing to get through
to the general. Hence, for sufficiently small ε, each lieutenant selects B when
Ti = T , and the proof is complete. �
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