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1 Introduction

An interest rate swap is an agreement to exchange a series of fixed interest payments for a series
of floating interest payments based on the future realizations of a short-term reference rate. End
users, including both financial institutions and nonfinancial firms, use these derivatives to manage
their exposure to interest-rate risk. With an estimated $115 trillion of outstanding notional value
as of 2020, the market for interest rate swaps is the largest derivatives market in the U.S.

From their advent in the 1980s until 2008, the fixed rates on swaps had always remained above
the corresponding rates on like-maturity government bonds. In other words, swap spreads—the
difference between swap rates and like-maturity government bond yields—had been uniformly
positive. However, beginning in the 2008 Global Financial Crisis (GFC), the fixed rates on long-
term (e.g., 30-year) swaps fell below government bond yields, resulting in negative long-term swap
spreads. Negative swap spreads seemingly represent a pure arbitrage opportunity, a puzzle in such
a large and liquid market (Boyarchenko et al., 2018). Negative swap spreads have been alternately
attributed to large increases in end-user demand for long-dated swaps or to rising balance-sheet
costs at the financial intermediaries that supply swaps.1 Of course, both demand and supply forces
may have contributed to the negative long-term swap spreads observed in recent years. And,
disentangling these forces can help us understand whether a given movement in spreads is due to
a shift in end-user demand or intermediary supply (or both).

In this paper, we develop a tractable theoretical framework to study the joint effects of end-user
demand and intermediary supply on swap spreads. We show how data on prices and intermediated
quantities can be used to separately identify end-users’ net demand for and intermediaries’ supply
of swaps. We can then decompose the observed variation in swap spreads into the contributions
of these two forces. We highlight a key determinant of long-dated swap spreads that has been
overlooked in the recent literature: intermediaries need to be compensated for the risk that spreads
may temporarily widen because of future shocks to demand or supply. We argue that compensation
for such demand-and-supply imbalance risk explains a significant fraction of the returns to swap
spread arbitrage. Thus, our paper hearkens back to the earlier literature pioneered by De Long
et al. (1990), emphasizing that “convergence risk” is a significant limit to arbitrage.

We begin by building an equilibrium model of the interest rate swap market in the tradition
of Vayanos and Vila (2021). In our model, the demand of end users such as pension funds and
nonfinancial firms to receive the fixed rate on long-term swaps is not naturally offset by opposing
demands from other end users. Since swaps are in zero net supply, this time-varying net end-user
demand must be absorbed in equilibrium by risk-averse and leverage-constrained intermediaries.
Motivated by the evidence in Siriwardane et al. (2021), we adopt a “segmented-markets” view
and assume that the relevant intermediaries are quite specialized in the swap market. In practice,
we associate the intermediaries in our model with swap desks at broker-dealers or swap traders
at fixed-income hedge funds. These specialized intermediaries hedge the interest-rate risk arising
from their swap positions in the Treasury market. As a result, they are only concerned with the

1See Klingler and Sundaresan (2019) and Jermann (2020) for, respectively, a demand and a supply perspective on
negative swap spreads.

1



relative valuation of swaps and Treasuries, namely, with the level of swap spreads and the short-
rate differential—i.e., the difference between the short-term floating rate referenced by the swap
and the short-term financing rate applicable to Treasuries.

In our model, intermediaries’ willingness and ability to intermediate between the swap and
Treasury markets is limited by two factors. First, intermediaries are risk averse, so the risk that
they may suffer short-term, mark-to-market losses limits their willingness to engage in the swap
spread trade. Second, intermediaries face a potentially binding balance-sheet constraint that can
limit their ability to undertake even riskless trades. Furthermore, the amount of capital interme-
diaries have to deploy fluctuates over time. Thus, relative to other Vayanos and Vila (2021)-style
models where intermediaries must absorb end-user demand shocks, our model adds an intermedi-
ary balance-sheet constraint and the possibility of independent intermediary supply shocks.

If the short-rate differential is non-zero, which is the case for swaps whose floating leg is tied
to the 3-month London Interbank Offer Rate (LIBOR), a non-zero swap spread is consistent with
the absence of arbitrage. Furthermore, when the short-rate differential fluctuates over time, swap
spread trades expose intermediaries to a form of fundamental risk. Prior to the 2008 GFC, our
model suggests that LIBOR swap spreads were positive because (i) the short-rate differential for
LIBOR swaps was always positive and (ii) intermediaries had to accommodate a net demand by
end users to pay the fixed swap rate and were “long” swap spreads.

While we allow for a non-zero short-rate differential to speak to the LIBOR swaps that have
historically dominated the market, we will regularly emphasize the case where the short-rate dif-
ferential is always zero, which is the case for swaps whose floating leg is tied to the Secured
Overnight Financing Rate (SOFR) for Treasuries. A non-zero SOFR swap spread represents a
failure of the Law of One Price (LoOP) and cannot survive in our model’s stable equilibrium in
the absence of intermediary balance-sheet constraints. However, the spreads on both long-dated
LIBOR swaps and SOFR swaps turned negative in late 2008 and have remained negative since.

How can we understand the highly negative SOFR swap spreads witnessed since 2008? The
potential for binding intermediary balance-sheet constraints opens the door to non-zero SOFR
swap spreads in as in Gârleanu and Pedersen (2011). When balance-sheet constraints bind, swap
spreads are driven by shocks to end-user demand and intermediary wealth, both of which affect the
tightness of intermediaries’ leverage constraint and hence their ability to supply swaps. Moreover,
our model suggests that convergence risk is a key determinant of long-dated swap spreads. Arbi-
traging long-dated swap spreads not only consumes scarce capital, but is also risky for specialized
intermediaries: future shocks to either demand or supply may lead spreads to widen in magni-
tude, triggering short-term losses for intermediaries. Intermediaries will require compensation for
bearing such demand-and-supply imbalance risk, which increases the magnitude of swap spreads,
particularly at longer maturities.2 The presence of convergence risk further implies that the size
of intermediaries’ positions in the swap spread trade should predict the returns to this trade, even
after controlling for intermediaries’ current balance sheet costs.

As discussed in the Treasury Borrowing Advisory Committee’s recent report on the swap

2This observation is related to the ideas in Du et al. (2022) who argue that asset price fluctuations stemming from
time variation in intermediary constraints command a positive risk premium.
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market (TBAC, 2021) and documented below, there are strong indications that there was a major
regime shift in end-user net demand in late 2008, with net demand swinging from a desire to
pay the fixed swap rate to a desire to receive the fixed swap rate. As a result, intermediaries’
net position in the swap spread trade and hence the compensation they require for holding this
position—both the compensation for consuming scarce capital and that for bearing convergence
risk—also likely flipped signs during the GFC. Seen through our model, this shift in end-user
demand and intermediaries’ net position explains why swap spreads turned negative in late 2008
and have remained negative since.

Naturally, demand shocks and supply shocks induce different co-movement patterns between
swap spreads and intermediaries’ swap positions in our model. Specifically, positive shocks to
end-user demand increase the magnitude of both swap spreads and intermediaries’ swap posi-
tions in equilibrium. By contrast, positive shocks to intermediaries’ supply of swaps—i.e., pos-
itive shocks to intermediaries’ wealth—decrease the magnitude of swap spreads but increase the
magnitude of swap positions. Under certain conditions, we show that our model admits a lin-
ear equilibrium in which swap spreads are an affine function of three exogenous state variables
that govern the short-rate differential, the level of end-user demand, and the level of intermediary
wealth, respectively. In this case, our model’s linear equilibrium has a representation as a struc-
tural vector auto-regression (VAR) in which demand and supply shocks can be identified using
sign restrictions on the responses of swap spreads and intermediary positions to these shocks.

To take our model to the data, we need a proxy for intermediaries’ net position in the swap
spread trade. Our proxy for intermediaries’ net position in the receive-fixed swap spread trade is
negative one times primary dealers’ net long position in Treasuries (−1×PD-UST-Nett). Equiva-
lently, by market clearing, our proxy for end-users’ net position in receive-fixed swaps is PD-UST-

Nett. The intuition is as follows. Dealers are critical intermediaries in the swap market (TBAC,
2021). However, they seek to have minimal net exposure to changes in the overall level of long-
term rates. As a result, dealers’ net position in Treasuries—especially in Treasuries maturing in
more than one year—is a hedge that partially mirrors their net position in interest rate swaps.

Admittedly, this proxy is far from perfect; a variety of factors other than the scale of their
net position in swaps affect dealers’ net Treasury position. For instance, dealers play a role in
intermediating Treasury auctions, absorbing some portion of new issuance into short-term inven-
tory and distributing these securities to end investors over time (Fleming and Rosenberg, 2008).
Furthermore, dealers use Treasuries to hedge their inventories of a variety of other fixed-income
instruments beyond swaps—e.g., corporate bonds. We discuss these issues in greater detail below,
but our overall conclusion is that PD-UST-Nett is a noisy proxy for the scale of end-users’ net posi-
tion. Since we use PD-UST-Nett as an independent variable in our regression specifications, such
measurement error will attenuate our findings, biasing us against finding a significant relationship
between PD-UST-Nett and swap spreads or swap spread trade returns.

To validate our use of PD-UST-Nett as proxy for end-users’ net position in receive-fixed swaps,
we begin by showing that long-dated swap spreads and PD-UST-Nett move inversely over time.
Furthermore, consistent with the regime change in end-user demand referenced above, both long-
dated swap spreads and PD-UST-Nett simultaneously flipped signs in early 2009. Specifically,
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PD-UST-Nett moved from negative to positive in early 2009 at the same time that swap spreads
went from positive to negative; see Panel A of Figure 1. In contemporaneous work, Du et al. (2022)
also document that primary dealers’ net Treasury position and swap spreads move inversely over
time, and they emphasize this regime change in early 2009.

Focusing on the post-GFC data, we next show that PD-UST-Nett negatively predicts the future
returns on long-dated swap spread positions, even controlling for balance-sheet costs. Specifically,
when PD-UST-Nett is higher, the future returns on long-dated swap spread positions tend to be
lower on average. Interpreted through the lens of our model, the idea is that a higher level of
PD-UST-Nett signals that end-users have a larger net position in receive-fixed swaps. To induce
risk averse intermediaries to take the short side of this trade—i.e., to take a large net position in
pay-fixed swap spread trade and bear the associated convergence risk, the expected returns on the
receive-fixed swap spread trade must decline. We show that this predictability is strongest when
we control for other factors—e.g., the gross quantity of Treasury issuance—that are unrelated to
the scale of dealers’ swap spread positions but that independently affect PD-UST-Nett.

Having validated PD-UST-Nett as a useful proxy for end-users’ net position, we estimate the
structural VAR implied by our linear model during the post-GFC period. Specifically, we set-
identify the parameters of our structural VAR using the sign restrictions approach of Uhlig (2005).
Using these VAR estimates, we then extract the latent underlying demand and supply factors from
swap spreads and PD-UST-Nett and decompose swap spreads into the respective contributions of
these factors. Looking over our entire post-GFC sample, we find that demand and supply shocks
play roughly equal roles in explaining the time-series variation in long-term swap spreads. At the
same time, our decomposition sheds light on whether a given historical movement in spreads was
due to a shift in demand, in supply, or in both. For instance, our decomposition suggests that a
large inward shift in intermediary supply from late-2014 until late-2015 pushed swap spreads far
into negative territory. This estimated inward supply shift coincides with a series of regulatory
changes that arguably increased the balance-sheet costs faced by intermediaries, including the
finalization of the Supplementary Leverage Ratio in September 2014 and the implementation of
the Volker Rule in July 2015 (Boyarchenko et al., 2020). However, the period of highly negative
swap spreads between late 2014 and 2018 cannot be solely attributed to the shift in intermediary
supply. Indeed, from mid-2016, our estimates suggest that rising end-user demand to receive the
fixed rate pushed swap spreads even further below zero.

Going further, this decomposition allows us to shed light on the primitive factors that drive
swap spreads by examining the time-series correlates of our estimated demand and supply fac-
tors. Echoing Feldhütter and Lando (2008) and Hanson (2014), our analysis suggests that hedging
demand from mortgage investors is the most significant driver of time variation in net end-user
demand for swaps. However, consistent with Klingler and Sundaresan (2019), asset-liability man-
agement by pension funds also plays a role in shaping the demand for swaps. We also find more
modest evidence that intermediary supply is greatest when the primary dealer capital ratio from
He et al. (2017) is high and when the option-implied volatility of long-term interest rates is low.

Finally, we examine the respective roles of end-user demand and intermediary supply in shap-
ing the expected returns to swap arbitrage. While demand and supply both play important roles in
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driving the variation in swap spreads, we should expect end-user demand to be a stronger predictor
of the returns to swap arbitrage than supply. Intuitively, positive demand shocks simultaneously
increase the compensation intermediaries require for committing their scarce balance sheet ca-
pacity to swap arbitrage as well as the required compensation for bearing swap spread risk. By
contrast, a negative supply shock—i.e., a negative shock to intermediaries’ wealth—reduces in-
termediaries’ exposure to swap spread risk and the associated risk premium while increasing the
required compensation for using scarce balance sheet. Because these two effects partially offset,
supply shocks have a smaller impact on the returns to swap arbitrage than demand shocks. We find
some evidence of this asymmetry in the data, providing further support for the demand-and-supply
imbalance risk channel.

While our model and empirical analysis focus on the interest rate swap market, our insights
are more general and our model could be readily applied to a host of other long-dated near-
arbitrage spreads, including deviations from covered interest rate parity (CIP) in foreign exchange
markets and the CDS-bond basis in credit markets. Indeed, we believe that our model—a lin-
ear, intermediary-based pricing model with separate shocks to end-user demand and intermediary
supply—is a useful contribution in its own right. This is because models with demand effects gen-
erally abstract away from intermediary wealth effects—i.e., supply shocks. Conversely, models
with wealth effects are generally non-linear and are often difficult to analyze.

Our model builds on Vayanos and Vila (2021) and, as a result, is related to the growing lit-
erature on demand factors in the government bond market; see Greenwood and Vayanos (2014),
Hanson (2014), Malkhozov et al. (2016), Haddad and Sraer (2020), Gourinchas et al. (2020), and
Greenwood et al. (2022), among others. We depart from this prior literature along two dimensions.
First, we consider long-maturity swap spreads rather than long-maturity bond yields. Second, we
allow for the variation in both end-user demand and intermediary supply in the swap market—in
this way, our work is related to the model of the government bond market developed in Kekre et al.
(2022)—and use our model to empirically disentangle these two forces.

Our work is also related to De Long et al. (1990), who show that noise trader demand shocks
can create a form of convergence risk that deters rational arbitrageurs from aggressively betting
against a LoOP violation. In their model, an equilibrium where the LoOP fails and arbitrage is
limited by convergence risk exists alongside a more standard equilibrium in which arbitrageurs en-
force the LoOP. By contrast, we show that LoOP violations do not have to rely on the unstable type
of equilibrium considered in De Long et al. (1990). LoOP violations arise in our model’s unique
stable equilibrium because intermediaries are subject to a binding balance-sheet constraint as in
Gârleanu and Pedersen (2011). Once these primitive LoOP violations arise, they are amplified by
convergence risk arising from demand and supply shocks.

Swap rates and Treasury yields have been extensively studied in the previous literature. One
strand of this literature calibrates dynamic term structure models to understand the dynamics of
swap spreads; see, for instance, Duffie and Singleton (1997), Lang et al. (1998), Collin-Dufresne
and Solnik (2001), Liu et al. (2006), Feldhütter and Lando (2008), and Augustin et al. (2021),
among others. Two recent papers that are important precursors to our study are Klingler and
Sundaresan (2019) and Jermann (2020) who focus on, respectively, the role of end-user demand
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and constrained intermediary supply in explaining the emergence of negative swap spreads during
the GFC. Klingler and Sundaresan (2019) argue that changes in pension underfunding lead to shifts
in the demand to receive the fixed swap rate and that the rise in aggregate underfunding during
the GFC helps explain the emergence of negative swap spreads. We find evidence consistent with
this channel. Jermann (2020) emphasizes the role of constrained intermediary supply and argues
that equilibrium swap spreads can be negative even if intermediaries do not have to absorb any net
end-user demand in the swap market.3 Our emphasis on intermediary balance sheet constraints
builds heavily on Jermann (2020). Relative to these important precursors, however, our framework
allows us to highlight, both theoretically and empirically, how shifts in both end-user demand
and intermediary supply contribute to movements in swap spreads and the negative swap spreads
observed since the GFC.

In contemporaneous work, Du et al. (2022) also draw a connection between the regime shift in
swap spreads and the regime shift in dealers’ net Treasury position after the 2008 Global Financial
Crisis. Taking swap yields as given, they use an affine term structure model to compute the yields
at which a leverage-constrained dealer should be willing to go net short or net long Treasuries: the
net-short yield is below the swap yield and the net-long yield is above. They note that Treasuries
yields moved from the net-short yield they compute to their net-long yield in late 2008 and early
2009—i.e., that swap spreads changed sign—at the same time PD-UST-Nett moved from negative
to positive. We believe the two papers are complementary. Our focus is on disentangling the
role of end-user demand and intermediary supply shocks in shaping the level of swap spreads and
documenting the importance of demand-and-supply imbalance risk. By contrast, Du et al. (2022)
are primarily interested in understanding the regime shift that occurred during the GFC.

Finally, our work is also related to Cohen et al. (2007), Chen et al. (2018), and Goldberg and
Nozawa (2021), who identify demand and supply shifts in shorting, index option, and corporate
bond markets, respectively. We also build on Cieslak and Pang (2021), who use sign restrictions
to identify latent factors that drive time-variation in asset prices.

The rest of the paper is organized as follows. Section 2 provides background on the interest rate
swap market. Section 3 presents a theoretical framework to study the impact of end-user demand
and intermediary supply on swap spreads and derives testable predictions. Section 4 describes our
data and presents our main empirical results. Section 5 concludes. An Internet Appendix presents
a range of additional theoretical and empirical results.

2 Background on interest rate swaps

This section provides background on the interest rate swap market. After explaining the mechanics
of these derivative contracts, we discuss the participants in the swap market, dividing them into
“end users” and specialized “intermediaries.” We then review the no-arbitrage logic that makes

3Jermann (2020) assumes intermediaries want to hold long-term Treasuries to capture a positive term premium,
only intermediaries can arbitrage between Treasuries and swaps, and intermediaries face greater balance sheet costs
from taking positions in Treasuries than swaps. Under these assumptions, equilibrium swap spreads can be negative
even if there is zero net end-user demand for swaps and intermediaries have zero net exposure to swap spreads.
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both non-zero SOFR swap spreads and negative LIBOR swap spreads so surprising. Finally, we
describe the major changes this market has undergone since the 2008 Global Financial Crisis.

2.1 Swap mechanics

An interest rate swap is an agreement between two counterparties to exchange a series of interest
payments over time based on some notional principal amount. In a plain-vanilla swap, the first
counterparty pays the second a series of pre-determined payments based on the fixed swap rate set
at the contract’s inception; the second counterparty pays the first a series of floating and initially
unknown payments based on the future realizations of some short-term reference rate. As a result,
the counterparty who is receiving (paying) the fixed rate acquires a financial exposure similar
to that obtained by borrowing (investing) cash at the short-term interest rate and taking a long
(short) position in long-term bonds. The fixed swap rate is set so that the swap has zero value
at inception. Thus, the fixed swap rate is akin to a par coupon yield derived from the underlying
reference curve. A par swap spread is the difference between the fixed swap rate and the par
coupon yield of a Treasury bond with the same maturity.

Historically, the floating leg on most swaps was tied to the 3-month London Interbank Of-
fer Rate. LIBOR is an indicative, unsecured borrowing rate for major global banks and 3-month
LIBOR embeds some small amount of credit risk. In recent years, swaps tied to overnight unse-
cured interbank borrowing rates and overnight secured borrowing rates—which embed virtually
no credit risk—have been replacing LIBOR-based swaps and LIBOR was discontinued at the end
of 2021. Specifically, Overnight Index Swaps (OIS) are tied to the overnight unsecured interbank
borrowing rate and SOFR swaps are tied to the Secured Overnight Financing Rate—a rate based
on overnight repurchase agreements backed by Treasuries.

The swap market is the largest U.S. derivatives market with over $115 trillion of outstand-
ing notional value and an estimated gross market value of $2.3 trillion in 2020.4 The market
is extremely liquid with an average daily volume of roughly $500 billion in 2020.5 Based on
Bloomberg data, the typical bid-ask yield spread for 10-year swaps is 0.5 basis points whereas the
typical bid-ask spread for the on-the-run 10-year Treasury note is 0.25 basis points.

2.2 Swap market participants

It is useful to group swap market participants into “end users” and specialized “intermediaries.”
End users use swaps to manage their pre-existing exposures to interest-rate risk. To clear the
market, specialized intermediaries—primarily swap desks at broker-dealers and swap traders at
fixed-income hedge funds—must accommodate the net end-user demand to either receive or pay
the fixed swap rate. These intermediaries hedge the interest-rate risk associated with their swap
positions in the Treasury market (TBAC, 2021). As a result, intermediaries are only concerned

4See https://stats.bis.org/statx/srs/table/d5.1. Gross market value is the absolute value of the market value of all
outstanding receive-fixed swaps. There were $21 trillion of outstanding U.S. Treasures at 2020YE.

5See https://www.clarusft.com/2020-ccp-volumes-and-market-share-in-ird/. By way of comparison, SIFMA re-
ports that the average daily volume in Treasuries was roughly $600 billion in 2020.
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with the relative valuation of swaps and Treasuries—i.e., with the level of swap spreads and any
differential between the short-term rate referenced by swaps and the short-term Treasury financing
rate. In addition to the P&L on their swap spread positions, intermediaries must also weigh the
fact that these positions will consume their scarce risk-bearing capital.

Swap end users are agents who want long or short exposure to long-term bonds, but who for
regulatory, accounting, or other frictional reasons prefer to obtain this bond exposure using swaps
rather than Treasuries. As explained in the Treasury Borrowing Advisory Committee’s report on
the swap market (TBAC, 2021), there are several important groups of end users:

• Insurers and pensions use swaps to manage their exposure to interest-rate risk. Insurers and
pensions typically receive the fixed swap rate on net—using swaps to add duration—because
the duration of their liabilities exceeds that of their on-balance sheet assets. Klingler and
Sundaresan (2019) argue that pensions’ desire to receive fixed increases when they become
more underfunded.6 Furthermore, since the convexity of their liabilities exceeds that of their
assets, insurers and pensions enter into additional receive-fixed swaps when long-term rates
fall to dynamically manage their interest-rate exposure (Domanski et al., 2017).

• Commercial banks typically receive fixed on net (Begenau et al., 2020). Although banks
borrow short-term and lend long-term, banks are generally hurt by declining interest rates
because their loans reprice more quickly than their deposits (Driscoll and Judson, 2013;
Drechsler et al., 2021). To offset these pre-existing exposures, banks generally receive fixed.

• Non-financial corporations typically receive fixed on net to convert fixed-rate debt issues
into synthetic floating-rate funding.

• Relative-value mortgage investors pay the fixed swap rate on net. These investors—most
prominently Fannie Mae and Freddie Mac—attempt to exploit the fact that pass-through
mortgage-backed securities (MBS) sometimes trade cheap relative to a dynamic replicating
portfolio of swaps. Mortgage investors prefer to hedge MBS with swaps instead of Trea-
suries for regulatory and accounting reasons and because swaps have historically been a
more effective hedge. When long-term rates fall, expected mortgage prepayments rise, caus-
ing MBS duration to decline (i.e., MBS have negative convexity). This prompts mortgage
investors to enter receive-fixed swaps to reduce the size of their pay-fixed hedge positions
(Perli and Sack, 2003; Feldhütter and Lando, 2008; Hanson, 2014; Malkhozov et al., 2016).

• Mortgage servicers are institutions that earn a stream of fees to process mortgage payments;
they collect monthly mortgage-related payments from homeowners and pass them along to
MBS investors, local tax authorities, and property insurers. Mortgage servicers have an
exposure similar to the holder of an interest-only (IO) MBS strip, which typically has a
negative duration. To offset the negative duration of their assets, servicers are typically net
fixed receivers. Further, since IO strips are negatively convex just like pass-through MBS,
servicers tend to increase their receive-fixed positions when rates fall.

6To see the idea, recall that a pension’s underfunding is the difference between the value of its liabilities and its
assets: UF ≡ L−A . As a result, a pension’s dollar duration gap Dur-Gap ≡ DurL ·L−DurA ·A can be written
as Dur-Gap = (DurL −DurA) · L+DurA · UF , which is increasing in its underfunding, UF .
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• Fixed-income money managers use swaps to adjust the duration of their portfolios and
are typically net fixed payers. These investors typically hold cash bonds and prefer to use
pay-fixed swap positions to attain their duration targets.

In summary, most major groups of end users are typically net fixed receivers. The main net
fixed payers are relative-value mortgage investors and other money managers. Furthermore, due to
convexity-driven hedging, net end-user demand to receive fixed typically rises when rates decline.

2.3 No-arbitrage pricing of swaps

To begin, note that a non-zero SOFR swap spread constitutes a failure of the Law of One Price and
implies the existence of a feasible, zero-cost portfolio that generates a riskless stream of positive
cashflows at all dates prior to maturity. Specifically, if the SOFR swap spread is positive, entering
a receive-fixed SOFR swap and taking an offsetting short position in like-maturity Treasuries (and
investing the proceeds at SOFR) generates a stream of riskless cashflows equal to the swap spread.
Conversely, if the SOFR swap spread is negative, entering a pay-fixed SOFR swap and taking a
long position in Treasuries (financed at SOFR) generates a stream of riskless cashflows equal to
the negative one times the swap spread. Thus, absent frictions, no arbitrage logic implies that
SOFR swap spreads must be zero.

By contrast, since 3-month LIBOR exceeds the secured financing rate for Treasuries, a positive
spread on a LIBOR swap does not represent a failure of no arbitrage. This is because the cashflows
from receiving fixed on a LIBOR swap and shorting Treasuries can be negative if the LIBOR minus
SOFR short-rate differential is large enough. However, assuming that LIBOR exceeds SOFR in
all possible states, a negative LIBOR swap spread is a violation of no arbitrage. In this case,
paying fixed on a LIBOR swap and taking a long position in Treasuries is a zero-cost portfolio
with strictly positive cashflows in all possible states.

In sum, the negative LIBOR swap spreads and non-zero SOFR swap spreads witnessed since
2008 are inconsistent with frictionless, no-arbitrage pricing. Thus, it makes sense to build a model
where intermediaries face constraints that prevent them from eliminating these opportunities.

2.4 The evolution of the swap market

From the inception of the swap market in the 1980s until the height of the Global Financial Crisis
(GFC) in late 2008, LIBOR-based swap spreads had always been positive—i.e., swap yields had
always exceeded like-maturity Treasury yields. The most straightforward explanation for positive
swap spreads is that LIBOR always exceeds Treasury repo rates because (i) LIBOR is an unsecured
3-month bank borrowing rate that includes compensation for credit risk (Collin-Dufresne and
Solnik, 2001) and (ii) Treasury yields and repo rates are depressed by a money-like convenience
premium that is specific to these extremely safe and liquid assets (Feldhütter and Lando, 2008;
Krishnamurthy and Vissing-Jorgensen, 2012).

However, there is evidence that demand-and-supply forces played a role in supporting the level
of swap spreads before 2008. Pre-GFC, hedged mortgage investors played a dominant role in the
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swap market and there was generally net demand from end users to pay fixed (TBAC, 2021).
To accommodate this demand, dealers and fixed-income hedge funds were “ long swap spreads,”
receiving the fixed swap rate and taking offsetting short positions in Treasuries (Duarte et al.,
2006). Indeed, the 1998 Long Term Capital Management crisis revealed that many dealers and
hedge funds had substantial long positions in this swap spread trade (Lowenstein, 2000).

This pattern is illustrated in Panel A of Figure 1, which plots 30-year swap spreads alongside
primary dealers’ net position in U.S. Treasuries from 2001 to 2020. The figure shows that dealers
were net short Treasuries during the pre-2008 period when swap spread were positive. Our inter-
pretation is that this net short Treasury position was driven, to a significant extent, by dealers’ long
position in the swap spread trade: dealers were receiving the fixed swap rate on net and had a net
short position in Treasuries to hedge the resulting interest rate risk.

In late 2008, long-dated LIBOR swap spreads turned negative and have remained negative
since, leading to an apparent arbitrage. Spreads’ move into negative territory occurred against the
backdrop of three major changes in the swap market. First, there was a significant shift in the
end-user demand, with net end-user demand swinging from a desire to pay fixed to one to receive
fixed (TBAC, 2021). Second, intermediaries became far more concerned with husbanding their
capital. The resulting rise in the shadow value of intermediary capital has led to a noteworthy rise
in LoOP deviations in a number of intermediated markets. Finally, there was a substantial increase
in outstanding Treasury debt during the GFC and, historically, increases in Treasury supply have
tended to reduce the money-like convenience premium in Treasury yields and hence swap spreads.
We now detail these three forces in turn.

First, as shown in Panel A of Figure 1, primary dealers’ position in Treasuries swung from net
short to net long in early 2009—just around the time when 30-year swap spreads turned negative.
Our interpretation is that net end user demand swung from a desire to pay fixed to a desire to
receive fixed. Thus, dealers’ growing net long position in Treasuries was driven by the growing
short position dealers they were taking in the swap spread trade. What led to this swing in end-user
net demand at the height of the GFC? TBAC (2021) points to a large decline in the demand to pay
fixed from hedged mortgage investors.7 A complementary explanation comes from Klingler and
Sundaresan (2019) who argue that a rise in pension underfunding during the GFC led pensions to
increasingly receive fixed to manage their duration gaps.

Second, during the GFC, many intermediaries suffered large losses and became concerned with
husbanding their scarce risk-bearing capital. Motivated by a desire to safeguard financial stability
in the aftermath of the GFC, regulators have subjected large dealer banks to more stringent capital
regulations. Because it is expensive for dealer banks to finance themselves with equity instead
of debt (Boyarchenko et al., 2020), these heightened capital requirements have increased the cost
of intermediation. As a result, the shadow value of intermediary capital has increasingly been

7Following their placement into conservatorship in late 2008, Fannie Mae and Freddie Mac began shrinking the
size of their on-balance-sheet mortgage portfolios (Frame et al., 2015). The combined size of these “retained port-
folios” shrank from $1.5 trillion in 2008 (14% of outstanding residential mortgages) to $350 billion by 2020 (3% of
outstanding mortgages), leading to a significant reduction in this source of end-user demand to pay fixed. At the same
time, the Federal Reserve’s large-scale purchases of MBS—the Fed built its MBS holdings from zero in 2008:Q2 to
$1.9 trillion in 2014 (19% of outstanding mortgages)—had the effect of further removing MBS from the hands of
investors who were inclined to hedge their value using pay-fixed swaps.
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impounded into market prices since the GFC, leading to a rise in persistent deviations from the
LoOP in a range of intermediated markets.8 Most importantly, U.S. regulators introduced the
Supplementary Leverage Ratio (SLR) in early 2014 after six years of public discussion. The SLR
requires large dealer banks to have Tier 1 capital equal to 6% of their “total leverage exposure,”
defined as the sum of on-balance-sheet assets plus an adjustment for off-balance-sheet exposures.
Unlike traditional forms of risk-based capital regulation, the SLR depends only on the notional
scale of dealers’ exposures and not on their assessed risk. The SLR has become the binding capital
constraint for most large dealers (Duffie, 2017; Greenwood et al., 2017; Boyarchenko et al., 2020).

Finally, there was a substantial increase in outstanding Treasury debt following the onset of the
GFC. Specifically, the ratio of marketable Treasury debt to GDP rose from 31% at the end of 2007
to 59% at the end of 2010. Historically, increases in Treasury supply have tended to reduce swap
spreads, arguably because this reduces the money-like safety or liquidity premium commanded
by Treasuries (Cortes, 2003; Krishnamurthy and Vissing-Jorgensen, 2012). As a result, the large
post-GFC expansion in Treasury supply may have sated this special demand for Treasuries, largely
eliminating the convenience premium on Treasuries and leading to a decline in swap spreads.

3 Theory

In our model, end users demand long-term interest rate swaps that are supplied by risk-averse
and leverage-constrained intermediaries who specialize in the swap market. Fluctuations in swap
spreads reflect the interplay between end-user demand and intermediary supply. Because inter-
mediaries face binding leverage constraints, this remains true even if the short-rate differential is
always zero and non-zero swap spreads are a failure of the LoOP.

3.1 Setting

Time is discrete, infinite, and is indexed by t. We begin by considering a perpetual interest rate
swap and a perpetual Treasury bond that have the same duration. After exploring the determinants
of the resulting perpetual swap spread, we extend the model to consider the entire term structure
of swap spreads. To maintain tractability, we substitute log returns for ordinary returns throughout
and use the Campbell and Shiller (1988) linearization of log returns. These linearity-generating
modelling devices do not affect our economic conclusions.

The swap spread trade. Let ySt denote the log fixed rate on this perpetual swap at time t and
iSt the log short-term rate referenced by this swap—e.g., the London Interbank Offer Rate for a
LIBOR swap or the Secured Overnight Financing Rate for a SOFR swap. The log excess return

8See Gârleanu and Pedersen (2011) for a theoretical analysis of how binding intermediary leverage constraints can
lead to LoOP violations; Du et al. (2018) for a detailed study of one prominent post-GFC LoOP violation, namely the
deviations from covered interest parity observed in the foreign exchange market; and Siriwardane et al. (2021) for an
investigation of the commonalities in various LoOP violations.
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on a receive-fixed interest rate swap from t to t+ 1 is approximately

rSt+1 ≡
(
ySt − iSt

)
− δ

1− δ
(
ySt+1 − ySt

)
, (1)

where δ ∈ (0, 1) and 1/ (1− δ) represents the duration of the swap.9 The excess return on this
receive-fixed swap consists of a carry term ySt −iSt and a capital gain term− (δ/ (1− δ))

(
ySt+1 − ySt

)
that arises from any change in the swap rate from t to t + 1. Similarly, the log excess return on
a position in perpetual Treasury bonds of the same duration with log yield yTt that is financed
at the secured short-term financing rate applicable to Treasuries iTt —i.e., the rate on repurchase
agreements backed by Treasury bonds (SOFR)—is approximately

rTt+1 ≡
(
yTt − iTt

)
− δ

1− δ
(
yTt+1 − yTt

)
. (2)

The perpetual swap spread is defined as the difference between the fixed rate on perpetual
interest rate swaps and the yield on perpetual Treasury bonds: st ≡ ySt −yTt . The log excess return
from t to t+ 1 on the receive-fixed swap spread trade that receives the fixed swap rate and hedges
the associated interest-rate risk by going short Treasury bonds is

rst+1 ≡ rSt+1 − rTt+1 = (st −mt)−
δ

1− δ
(st+1 − st) , (3)

where mt ≡ iSt − iTt is the short-rate differential —i.e., the spread between the short-term rate
referenced by the swap iSt and the short-term Treasury financing rate iTt .10 Our focus is on relative
valuation of swaps and Treasuries—i.e., on the equilibrium level of swap spreads, st, and the
expected returns on the receive-fixed swap spread trade, Et[rst+1]. Thus, we think of iSt , iTt , and
the general level of long-term rates as summarized by yTt as being exogenously given and pinned
down by forces outside of our model.11

The short-rate differential, mt ≡ iSt − iTt , governs the fundamental component (if any) of
swap spreads. We posit that mt = m + zmt , where m ≡ E [mt] ≥ 0 is the unconditional mean
of the short rate differential and zmt is a mean-zero state variable that captures time-variation in
the short rate differential. A non-zero mt might either derive from the fact that (i) the short-term
interest rate referenced by the swap iSt contains compensation for credit risk—as with 3-month
LIBOR—or that (ii) short-term Treasury rates embed a special money-like convenience premium
relative to other money-market rates. In both cases, mt would fluctuate over time and we would
have mt ≡ iSt − iTt ≥ 0 almost surely, as indeed has been the case historically.

While we allow the cashflow fundamental mt ≡ iSt − iTt to differ from zero and to fluctuate

9Assuming this perpetuity makes a series of geometrically-declining fixed payments, the parameter δ is governed
by the rate at which the payments decline over time. This approximation appears in Campbell (2018) and is an
approximate generalization of the fact that the log-return on n-period zero-coupon bonds from t to t + 1 is exactly
r
(n)
t+1 = ny

(n)
t − (n− 1) y

(n−1)
t+1 where y(n)t denotes the log yield on n-period zero-coupon bonds at t.

10Naturally, the return on the pay-fixed swap spread trade that pays the fixed swap rate and hedges the associated
interest-rate risk by going long Treasury bonds is −rst+1.

11It would be easy to endogenize both swaps spreads and the general level of long-term rates merging our model
of swap spreads with a Vayanos and Vila (2021) style model of the term structure of interest rates. In that case, one
would need to clear the markets for both long-term Treasuries and for swaps.
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stochastically, we will often emphasize the case where mt = 0 for all t almost surely, as would be
the case for a SOFR swap. In this mt = 0 case and in the absence of balance-sheet frictions, the
equilibrium swap spread would be zero by the LoOP.

Swap market intermediaries. At time t, risk-averse and leverage-constrained intermediaries who
specialize in the swap market allocate their scarce capital wt between the swap spread arbitrage
trade and a risky outside investment opportunity. In practice, we associate these intermediaries
with swap desks at broker-dealers or swap traders at fixed-income hedge funds. Since our inter-
mediaries specialize in the swap market, it is natural to think of this outside investment oppor-
tunity as another relative-value fixed-income trade. The excess return on this outside investment
opportunity is rot+1, and we assume that its first two moments are exogenously given by Et

[
rot+1

]
= ro > 0 and Vart

[
rot+1

]
= σ2

o > 0.12

For simplicity, we assume an overlapping generations structure where date-t intermediaries
are born with capital equal to wt = w + zwt , where w ≡ E [wt] > 0 is the unconditional mean of
intermediary capital and zwt is an exogenous mean-zero state-variable that captures time-variation
in intermediary capital.13 Date-t intermediaries have mean-variance preferences over their one-
period ahead wealth wt, t+1 and their coefficient of absolute risk-aversion is α ≥ 0.

More formally, letting xt denote intermediaries’ position in the receive-fixed swap spread trade
and ot their position in the outside investment opportunity, date-t intermediaries solve:

max
xt, ot

{
Et [wt, t+1]−

α

2
Vart [wt, t+1]

}
, (4)

subject to the budget constraint

wt, t+1 = wt + xtr
s
t+1 + otr

o
t+1 (5)

and the leverage constraint
κx |xt|+ κo |ot| ≤ wt. (6)

Here κx, κo ≥ 0 are the capital requirements associated with the swap spread trade and the outside
investment opportunity, respectively. Specifically, in order to undertake a swap spread trade of no-
tional size |xt| intermediaries must commit κx |xt| of their scarce capital. For example, according
to Boyarchenko et al. (2020), a large U.S. dealer bank who is subject the Supplementary Leverage

12In Internet Appendix B.1 we also provide an alternative specification for the outside investment opportunity.
13This means that we are not modelling the mechanism through which initial losses on the swap spread trade

could be amplified because these losses reduce intermediaries’ net worth and tighten future leverage constraints as in
Brunnermeier and Pedersen (2009). We could model this amplification mechanism if we assumed that intermediary
wealth evolved endogenously according to wt+1 = wt + xtr

s
t+1 + otr

o
t+1. This extension would lead to non-linear

dynamics and would add significant complexity: st would depend on wt as in our model with exogenous wealth
shocks, but wt would also depend endogenously on st through the law of motion for intermediary wealth. Instead,
in line with a “segmented-market” view of intermediation, we think of the specialized intermediary as a swap desk
within a larger financial institution. In each period the swap desk is endowed with trading capital that depends on the
total capital of the financial institution. However, the profits and losses on the swap spread trade have only a negligible
effect on this total capital. Thus, we interpret zwt as shifts in the overall balance sheet strength of the intermediary
sector that are largely exogenous from the perspective of the specialized swap desk.
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Ratio requirement would have κx ≈ 6.4% for a swap spread trade.14

End-user demand for swaps. End users of interest rate swaps—such as insurers, pensions, and
mortgage investors—are agents who demand exposure to long-term interest rates, but who for
regulatory, accounting, or other frictional reasons prefer to obtain their desired exposure using
swaps as opposed to Treasuries or other “cash” assets. Intermediaries only need to accommodate
the net demand from end users to receive the fixed swap rate—i.e., the end-user demand to receive
fixed that is not offset by other end-user demand to pay fixed. Since end users can substitute
between swaps and Treasuries, we allow net end-user demand to receive fixed to be increasing in
swap spreads. Specifically, we assume net end-user demand to receive the fixed swap rate is

dt = d+ zdt + γst, (7)

where γ ≥ 0 and zdt is a mean-zero state variable that captures shifts in end-user demand.

Market clearing. Since interest rate swaps are in zero net supply, market clearing requires

xt + dt = 0. (8)

In particular, if the net demand from end users to receive the fixed swap rate is positive, dt > 0,
then in equilibrium intermediaries must take on a short position in the receive-fixed swap spread
trade (paying the fixed swap rate and going long Treasuries) equal to xt = −dt < 0. By contrast, if
there is net end-user demand to pay the fixed swap rate, intermediaries must take on a long position
in the receive-fixed swap spread trade (receiving the fixed swap rate and going short Treasuries).

3.2 Equilibrium swap spreads

We begin by providing a general characterization of swap spreads that is applicable in settings
where intermediary leverage constraints may only bind periodically and where end-user net de-
mand may change signs over time. In this general case, swap spreads will be a nonlinear function
of intermediary wealth wt and end-user net demand dt. This general characterization sheds light
on the long-run history of the swap market and the regime change it experienced during the 2008
Global Financial Crisis. We then provide an affine characterization of swap spreads that is valid
in settings where (i) the leverage constraint is always binding and (ii) the sign of end-user demand
is constant over time. This case is particularly helpful in understanding the post-Global Financial
Crisis (GFC) period that is the focus of our empirical analysis.

14This slightly exceeds the nominal 6% SLR capital requirement because the assessed “total leverage exposure” of
the swap spread trade is roughly 107% of the trade’s notional size.
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3.2.1 General characterization

Letting ψt ≥ 0 denote the Lagrange multiplier associated with the leverage constraint (6) and
assuming Covt[rst+1, r

o
t+1] = 0 for simplicity, intermediaries’ first-order condition for xt is

Et[rst+1] = αVt · xt + κxsgn (xt) · ψt, (9)

where Vt ≡ Vart[rst+1] =
(

δ
1−δ

)2 Vart[st+1] is the conditional variance of rst+1.15 Similarly, the first
order condition for ot is

ro = ασ2
o · ot + κosgn (ot) · ψt. (10)

Since ro > 0 and ψt ≥ 0, we must have ot ≥ 0, implying that the Lagrange multiplier is

ψt =
ασ2

o

κo

(
ro
ασ2

o

− ot
)
≥ 0. (11)

Thus, the shadow value of intermediary capital is proportional to the difference between the uncon-
strained investment in the outside opportunity, ro/ (ασ2

o), and intermediaries’ current investment,
ot. Combining the leverage constraint in (6) and (10), we have

ψt = ψ (wt, |xt|) = max

{
0,
ασ2

o

κ2o

(
κo

ro
ασ2

o

+ κx |xt| − wt
)}

. (12)

Naturally, the shadow value of intermediary capital is greater when intermediary capital wt is
lower and when the scale of intermediaries’ position in the swap spread trade |xt| is larger.

Combining (3), (9), and (12), and imposing market clearing (8), we find that the equilibrium
expected return on the receive-fixed swap spread trade, Et[rst+1], satisfies:

Et[rst+1]︷ ︸︸ ︷
(st −mt)−

δ

1− δ
(Et [st+1]− st) =

Compensation for using

scarce capital︷ ︸︸ ︷
(−κx)sgn (dt) · ψ (wt, |dt|) +

Compensation

for risk︷ ︸︸ ︷
(−α)Vt · dt . (13)

Since in equilibrium intermediaries must take positions that are equal in size and opposite in
sign to those of end users, the equilibrium expected return on a receive-fixed swap spread position,
Et[rst+1], has the opposite sign of the net end-user demand to receive the fixed rate, dt. For instance,
if the net demand to receive fixed is negative—as was arguably the case prior to the GFC—then we
must have Et[rst+1] > 0 to induce intermediaries to take the required long position in the receive-
fixed swap spread trade. By contrast, if the net demand to receive fixed is positive—as seems to
have been the case since the GFC—then we must have Et[rst+1] < 0 to induce intermediaries to
take the required short position in the receive-fixed spread trade.

Equation (13) also highlights the two key forces that shape the equilibrium expected returns
on the swap spread trade: compensation for using scarce intermediary capital and compensation

15We assume Covt[rst+1, r
o
t+1] = 0 for simplicity. Relaxing this assumption adds hedging terms proportional to

Covt[rst+1, r
o
t+1], which complicate the resulting expressions without qualitatively changing our conclusions.
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for risk. When κx > 0, constrained intermediaries will require compensation for committing their
scarce capital to the swap spread trade even if this trade is completely riskless. And, being risk-
averse, specialized intermediaries will require additional compensation for bearing the risk that
they may suffer losses due to unexpected changes in swap spreads.

Iterating (13) forward and assuming limk→∞ δ
kEt [st+k] = 0—as would be the case in any

stationary environment—we find that the equilibrium level of swap spreads is

st =

Expected short-rate differentials︷ ︸︸ ︷
(1− δ)

∑∞

k=0
δkEt [mt+k] +

Expected compensation for using scarce capital︷ ︸︸ ︷
(1− δ)

∑∞

k=0
δkEt [(−κx) sgn (dt+k)ψ (wt+k, |dt+k|)]

+(1− δ)
∑∞

k=0
δkEt [(−α)Vt+kdt+k]︸ ︷︷ ︸

Expected compensation for risk

. (14)

The first term on the right-hand side of (14) is the fundamental component of swap spreads. Re-
calling that mt ≡ iSt − iTt , this is simply the expected future difference between the short-term rate
referenced by the swap (iSt ) and the secured Treasury financing rate (iTt ) averaged over the lifetime
of the swap. Under the assumption that mt > 0 almost surely as would be the case for LIBOR-
based swaps, this fundamental term pushes towards having positive swap spreads. However, this
term is zero for SOFR swaps where mt ≡ 0.

The second term is the expected future compensation for consuming scarce intermediary cap-
ital over the life of the swap. Since ψt = ψ (wt, |dt|) ≥ 0, this term has the opposite sign of net
end-user demand (dt). For instance, if the net demand to receive the fixed swap rate is positive,
this term pushes towards having negative swap spreads.

The third and final term is the expected future compensation for bearing the risk associated
with swap spread volatility over the life of the swap. Like the second term, this final term has the
opposite sign of net end-user demand to receive fixed.

This general characterization shows that our main conclusions do not rely on the assumption
that intermediaries’ leverage constraints are always binding. Even if leverage constraints are not
binding at time t (i.e., if ψt = 0), the mere potential for them to bind in the future makes swap
spread trades risky for intermediaries and they will only accommodate end-user demand for long-
term swaps if they are compensated for this risk. Furthermore, even away from the constraint,
fluctuations in intermediary capital and end-user demand will shape the likelihood that the con-
straint will bind in the future and hence the level of spreads. Thus, in a model with occasionally
binding leverage constraints and where end-user demand can change sign, shifts in demand dt and
intermediary capital wt will have qualitatively similar effects on swap spreads as here.

3.2.2 An affine equilibrium

To derive an affine equilibrium that we can readily take to the post-GFC data, we assume that at
all dates we almost surely have

0 < dt <
1

κx
wt <

κo
κx

ro
ασ2

o

+ dt. (15)
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The first inequality (0 < dt) means that end-user net demand to receive the fixed swap rate is
always positive. This sign restriction is consistent with the prime dealers’ net positioning in long-
term Treasuries and the negative swap spreads that have been observed since 2008; see Panel A
of Figure 1. The second inequality (κxdt < wt) says that intermediaries always have sufficient
capital to accommodate end-user demand in the swap market. This assumption is only required
when end-user demand is perfectly inelastic (γ = 0), and in that case ensures market clearing.
The third inequality (wt < κo · ro/ (ασ2

o) +κx ·dt) ensures that intermediaries’ leverage constraint
(6) always binds—i.e., that we always have ψt > 0—and rules out the nonlinearities that arise if
leverage constraints only bind occasionally.

Further, we assume an autoregressive process for the three state variables governing the short
rate differential (zmt ), end-user demand (zdt ), and intermediary wealth (zwt ). Specifically, we as-
sume the vector of state variables zt = [zmt , z

d
t , z

w
t ]′ follows

zt+1 = %zt + εt+1, (16)

where % = diag (ρm, ρd, ρw) is a diagonal matrix of the AR(1) coefficients ρm, ρd, ρw ∈ [0, 1)

and εt+1 = [εmt+1, ε
d
t+1, ε

w
t+1]

′ is the vector of structural shocks. For simplicity, we assume the
three structural shocks are orthogonal to each other: Vart[εt+1] = diag (σ2

m, σ
2
d, σ

2
w), where σ2

i ≡
Var
[
εit+1

]
for i = m,w, d.16

We conjecture that equilibrium swap spreads st are an affine function of the state vector zt:

st = A0 + Amz
m
t + Adz

d
t + Awz

w
t . (17)

Under assumptions (15) and (16) and assuming that spreads take the conjectured affine form in
(17), V = Vart[rst+1] is constant over time and condition (13) becomes

Et[rst+1]︷ ︸︸ ︷
(st −mt)−

δ

1− δ
(Et [st+1]− st) = (−κx) ·

ψt︷ ︸︸ ︷
ασ2

o

κ2o

(
κo

ro
ασ2

o

+ κxdt − wt
)

+ (−α)V · dt. (18)

A rational expectations equilibrium of our model is a fixed point of an operator which gives
the price-impact coefficients Am, Ad, and Aw that clear the swap market when intermediaries
believe the risk of the swap spread arbitrage trade is determined by some initial set of price-impact
coefficients. And, this can be recast as a scalar fixed-point problem involving V =Vart[rst+1].
Combining the conjectured affine form (17), the end-user demand curve (7), and the equilibrium
condition (18), we obtain the following result:

16Technically, there is a small amount of formal tension between assumptions (15) and (16). Thus, to be perfectly
rigorous, our affine solution is best viewed as a linear approximation to a non-linear model where the state variables
evolve according to (16) and where conditions (15) hold with a probability that is very near, but strictly less than,
1. Specifically, for (15) to hold almost surely, the state variables zdt and zwt must have a bounded support as, e.g., in
Gromb and Vayanos (2002). However, the homoskedastic AR(1) process in equation (16) does not generate a bounded
support. To restrict the supports of zdt and zwt in the required way, we would need to introduce heteroskedasticity—
e.g., we could work in continuous time with the heteroskedastic square-root processes introduced in Cox et al. (1985).
However, because the swap risk premium in (13) depends on the product of Vt and dt, introducing heteroskedasticity
would then imply that spreads are a non-linear function of the state variables.
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Theorem 1 In the affine equilibrium that may exist when assumptions (15) and (16) hold, we have

A0 =
m− κx ασ

2
o

κ2o

[
κo

ro
ασ2

o
+ κxd− w

]
− αV d

1 + αγ

[(
κx
κo

)2
σ2
o + V

] , (19a)

Am =
1

1−ρmδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] > 0, (19b)

Ad = −
α

[(
κx
κo

)2
σ2
o + V

]
1−ρdδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] ≤ 0, (19c)

Aw =

1
κx
α
(
κx
κo

)2
σ2
o

1−ρwδ
1−δ + αγ

[(
κx
κo

)2
σ2
o + V

] ≥ 0, (19d)

and

V =

(
δ

1− δ

)2 (
A2
mσ

2
m + A2

dσ
2
d + A2

wσ
2
w

)
≥ 0. (20)

Equations (19b)-(19d) and (20) together define a higher-order polynomial equation in V . When

either γ > 0 or ασ2
d = 0, a solution to this equation always exists. When γ = 0 and ασ2

d > 0, a

solution only exists if intermediary risk aversion α is below a threshold α∗ > 0. When ασ2
d = 0,

the equilibrium is unique. When ασ2
d > 0, there are generally multiple solutions corresponding to

multiple affine equilibria. However, there is at most one equilibrium solution that is (i) stable in

the sense that it is robust to small perturbations in intermediaries’ beliefs about the price impact

of demand shocks and (ii) does not diverge in the limit where demand risk vanishes (σ2
d → 0).

To provide intuition for Theorem 1, we consider a number of special cases.
With a positive short-term interest rate differential (mt > 0 for all t) and risk-neutral and

unconstrained intermediaries (α = κx = 0), the model has a unique equilibrium with positive
swap spreads. In this case, the swap spread is simply the expected short-rate differential averaged
over the life of the swap. Moreover, if short-rate differentials vary over time (σ2

m > 0) and risk-
averse but unconstrained intermediaries must absorb end-user demand shocks (α > 0, κx = 0,
and σ2

d > 0), these demand shocks will shift the required compensation for bearing swap spread
risk. This means that spreads will also reflect the expected risk compensation over the life of the
swap. In either case, short rate differentials are akin to cash flow fundamentals: they do not induce
LoOP violations and have standard effects on swap spreads.

Therefore, to illustrate the more novel forces at work in our model, we assume the short rate
differential is always zero (mt = 0 for all t) in the following examples. That is, we consider
SOFR swaps where the LoOP offers the stark prediction that swap spreads should always be zero.
We also assume intermediaries are risk averse (α > 0), there are shocks to intermediary wealth
(σ2
w > 0), and end-user demand is completely inelastic (γ = 0).
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When end-user demand is stochastic (σ2
d > 0) but swap spread trades do not consume scarce

capital (κx = 0), the model can have two affine equilibria: (i) a “zero-volatility” equilibrium
in which SOFR swap spreads are always zero and (ii) a “high-volatility” equilibrium in which
SOFR swap spreads are driven by fluctuations in end-user demand. This special case is similar
to De Long et al. (1990). When demand is stochastic, the perceived risk of the swap spread
trade depends on how intermediaries believe spreads will react to future demand shocks, opening
the door to multiple equilibrium solutions.17 For example, if intermediaries believe that future
demand shocks will have an impact on swap spreads, they will perceive the swap spread trade as
being risky. As a result, intermediaries will only absorb demand shocks if they are compensated by
spread changes and positive expected returns, making their initial belief self-fulfilling. Conversely,
if intermediaries believe demand shocks will have no impact on spreads, they will perceive the
swap spread trade as being riskless. As a result, intermediaries will elastically absorb demand
shocks even though spreads are always zero. However, only the equilibrium in which SOFR
swap spreads are always zero is (i) stable in the sense that it is robust to small perturbations in
intermediaries’ beliefs about the price impact of demand shocks and (ii) does not diverge in the
limit where demand risk vanishes (σ2

d → 0). Thus, there is a clear sense in which the equilibrium
where LoOP holds is the natural outcome in this case.

When swap spread trades consume scarce intermediary capital (κx > 0) but there is no de-
mand risk (σ2

d = 0), the model has a unique affine equilibrium in which fluctuations in SOFR
swap spreads are driven by time-variation in intermediary capital. Intuitively, the shadow value of
capital is positive (ψt > 0) and, since intermediaries’ (constant) swap spread positions consume
scarce capital (κx > 0), swap spreads are non-zero and the LoOP fails.

With both demand risk (σ2
d > 0) and balance-sheet frictions (κx > 0), the model can have two

affine equilibria—one with low swap spread volatility and one with higher volatility—but only the
low-volatility equilibrium is stable. However, this low-volatility equilibrium is no longer trivial.
In this equilibrium, intermediaries understand that binding leverage constraints will prevent them
from enforcing LoOP, leading to non-zero SOFR swap spreads. As a result, shocks to end-user
demand and intermediary wealth will impact future spreads, creating demand-supply imbalance
risk for which risk-averse intermediaries must be compensated. Thus, unlike in De Long et al.
(1990), LoOP violations and arbitrage risk arise even in our model’s stable equilibrium.

Finally, our conclusions hold with a few modifications when end-user demand is elastic (γ >
0). When demand is elastic an equilibrium always exists. And, while there can be multiple
equilibria when σ2

d > 0 , there is a unique equilibrium that is both stable and that does not diverge
in the limit where σ2

d → 0.18

In conclusion, our model features multiplicity due to the possibility of self-fulfilling conjec-
tures about the price-impact of demand shocks. In what follows, we assume an equilibrium exists

17When σ2
m = 0, κx = 0, and σ2

d > 0, the system of equations reduces to a quadratic equation in V . The stable
solution is V = 0 and the other solution has V > 0. More generally, when γ = 0 and σ2

d > 0, the system reduces to
a quadratic in V , which has real roots so long as α is not too large.

18When γ > 0, the fixed-point problem is equivalent to finding the roots of a 7th-order polynomial in V in the
general case where α > 0, κx > 0 , σ2

d > 0, σ2
w > 0, and σ2

m > 0. This reduces to 5th-order polynomial when
σ2
m = 0. We can show that this polynomial always has at least one real root and it only has one root that is both stable

and remains in the limit where σ2
d → 0.
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(e.g., it is sufficient to assume γ > 0) and we focus on the unique equilibrium that is stable and
does not diverge when demand risk vanishes. In this equilibrium, swap spreads are less volatile
and demand shocks have a smaller price impact as compared to the other candidate equilibria.
Nevertheless, spreads are non-zero, which reflects the combined effects of short rate differentials,
binding leverage constraints, and demand-and-supply imbalance risk.

3.3 Predictions

Since the post-GFC period will be the main focus of our empirical analysis, in this section we
highlight the predictions that emerge in the affine equilibrium that obtains when end-users always
demand to receive fixed on net and intermediaries’ leverage constraint always binds—i.e., when
condition (15) holds. Furthermore, we assume that α, κx, σ2

d, σ
2
w > 0 and γ ≥ 0.

3.3.1 Average level of swap spreads

Our model pinpoints the forces that determine the time-series average level of swap spreads.

Proposition 1 The time-series average level of long-term swap spreads is given by

A0 = m− κx ·

E[ψt]︷ ︸︸ ︷
ασ2

o

κ2o

[
κo

ro
ασ2

o

+ κxE [dt]− w
]
− αV ·

E[dt]︷ ︸︸ ︷(
d+ γA0

)
,

Since E [ψt] > 0 and E [dt] > 0 by condition (15), long-term swap spreads are negative on average

(A0 < 0) if the average short rate differential satisfies m < m∗ for some constant m∗ > 0 that is

given in the Appendix.

Just as in (14), the time-series average level of swap spreads (A0) is determined by three
forces: the average short rate differential (m), the average compensation for committing scarce
capital to the swap spread trade (−κx · E [ψt] ), and the average compensation for bearing swap
spread risk (−αV · E [dt]). The average spread is increasing in the average short rate differential,
m, which is positive and non-negligible for LIBOR swaps, is negligible for OIS swaps, and is zero
for SOFR swaps. Since condition (15) implies E [ψt] > 0 and E [dt] > 0, the other two forces—
compensation for committing scarce capital and compensation for risk—push swap spreads into
negative territory on average. Thus, our model predicts negative average spreads for long-dated
OIS and SOFR swaps in the post-GFC era. Relative to those, the short rate differential will push
the average level of long-dated LIBOR swap spreads towards positive territory. However, so long
as m is not too large, balance sheet and risk considerations will dominate, and long-dated LIBOR
swap spreads will also be negative on average.

3.3.2 Expected returns on the swap spread trade

Our model emphasizes that two distinct forces—compensation for consuming scarce intermediary
capital and compensation for bearing swap spread risk—drive the expected returns on the swap
spread trade. Specifically, (18) implies the following result:
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Proposition 2 The expected return on the received-fixed swap spread trade is Et[rst+1] = −κx ·
ψt−αV ·dt, where ψt = (ασ2

o/κ
2
o) (κoro/ (ασ2

o) + κxdt − wt) is the shadow value of intermediary

capital. Thus, Et[rst+1] is decreasing in end-user demand dt (i.e., increasing in intermediaries’

position xt), even controlling for the shadow value of capital ψt.

In equilibrium, the expected returns on the swap spread trade must compensate intermediaries
for the opportunity cost of committing their scarce capital to this trade (−κx · ψt < 0) as well as
for bearing swap spread risk (−αV · dt < 0). As end-user demand dt to receive fixed increases,
the expected return on the receive-fixed spread trade needs to become more negative to induce in-
termediaries to take a larger short position in this trade. Furthermore, since intermediaries require
compensation for bearing swap spread risk, this is true even after controlling for fluctuations in
the compensation that they require for using their scarce capital.

The model also characterizes the effects that shifts in the three underlying structural factors—
the short rate differential (zmt ), end-user demand (zdt ), and intermediary capital (zwt )—have on
expected returns Et[rst+1]. Using Theorem 1, we obtain the following results:

Proposition 3 The expected return on the receive-fixed swap spread trade is

Et[rst+1] = B0 +Bmz
m
t +Bdz

d
t +Bwz

w
t , (21)

whereB0 = A0−m < 0, Bm = 1−δρm
1−δ Am−1 ≤ 0, Bd = 1−ρdδ

1−δ Ad < 0 , andBw = 1−ρwδ
1−δ Aw > 0.

Furthermore, Bm = 0 when γ = 0 but Bm < 0 when γ > 0.

To see the intuition, it is easiest to flip the sign and think about the expected returns on the
pay-fixed swap spread position (−Et[rst+1]) that intermediaries hold in equilibrium. To begin,
Proposition 3 says that the expected returns on this pay-fixed spread trade are positive on av-
erage (−B0 = −E[rst+1] > 0). Next, outward shifts in end-user demand to receive fixed raise
the expected returns on the pay-fixed spread trade because they raise both the shadow value of
intermediary capital and the required compensation for bearing swap spread risk:

−Bd = −
∂Et[rst+1]

∂zdt
= κx ×

∂ψt/∂z
d
t>0︷ ︸︸ ︷

ασ2
o

κ2o
κx(1 + γAd) + αV ×

∂dt/∂zdt>0︷ ︸︸ ︷
(1 + γAd) > 0.

By contrast, shifts in intermediary wealth move the shadow value of intermediary capital and
the compensation for risk in opposite directions. However, the former effect always dominates,
implying that wealth shocks decrease the expected returns on the pay-fixed spread trade:

−Bw = −
∂Et[rst+1]

∂zwt
= κx ×

∂ψt/∂z
w
t <0︷ ︸︸ ︷

ασ2
o

κ2o
(κxγAw − 1) + αV ×

∂dt/∂zwt >0︷︸︸︷
γAw < 0.

Finally, when end-user demand is inelastic (γ = 0), changes in the short-rate differential mt do
not alter Et[rst+1] even though they impact swap cash flows (Bm = 0). However, when end-user
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demand is elastic (γ > 0), increases in mt raise swap spreads and hence end-user demand to
receive fixed. As a result, an increase in mt must be accompanied by higher expected return on
the pay-fixed spread trade to induce intermediaries to accommodate this demand (−Bm > 0).

3.3.3 Swap spreads and the outside investment opportunity

Swap intermediaries allocate their scarce capital between the swap spread trade and a risky outside
investment opportunity—e.g., another relative-value fixed-income trade. As a result, the equilib-
rium shadow value of intermediary capital and, hence, swap spreads depend on the expected return
and risk of this outside investment opportunity. In particular, we have:

Proposition 4 Equilibrium swap spreads depend on the expected return (ro) of intermediaries’

outside investment opportunity. In particular, when dt > 0 we have ∂E [st] /∂ro = −κx ·
∂E [ψt] /∂ro < 0, implying that swap spreads st are decreasing in ro. When γ > 0, the scale

of intermediaries’ positions |xt| = |dt| is also decreasing in ro.

Intuitively, the average shadow value of intermediary capital is increasing in ro—that is,
∂E [ψt] /∂ro > 0. Thus, when intermediaries are short swap spreads in equilibrium, a rise in
ro must be associated with a decline in E [st] = A0. This means that fluctuations in the expected
returns on the outside investment opportunity will induce supply shocks similar to those due to
fluctuations in the amount of intermediary capital wt.19 This link between swap spreads and ro
does not rely on the idea that swap intermediaries—the marginal investors in swap market—are
also marginal in the outside investment opportunity. In this way, our model has a segmented-
markets flavor and contrasts with more integrated-market models where a single set of intermedi-
aries is marginal in a large number of asset classes (He and Krishnamurthy, 2013; Adrian et al.,
2014; He et al., 2017).

3.3.4 Identification of demand and supply shocks

Our affine model provides sign restrictions that can help us identify the structural demand (εdt ) and
supply (εwt ) shocks using data on the short rate differential (mt), the level of swap spreads (st),
and end-users’ net position in swaps (dt). In particular, we obtain the following result:

Proposition 5 The short rate differential mt, the long-term swap spread st, and end users’ net

position in receive-fixed swaps dt can be written as

yt︷ ︸︸ ︷ mt

st

dt

 =

a︷ ︸︸ ︷ m

A0(
d+ γA0

)
+

A︷ ︸︸ ︷ 1 0 0

Am Ad Aw

γAm (1 + γAd) γAw


zt︷ ︸︸ ︷ zmt

zdt

zwt

. (22)

Combined with (16), the structural VAR representation of the model’s equilibrium is

yt+1 =
(
I−A%A−1

)
a + A%A−1yt + Aεt+1, (23)

19The model can be easily extended so that fluctuations in ψt stem from exogenous movements in r̄o,t = Et[rot+1].
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where I is the 3 × 3 identity matrix and εt+1 = [εmt+1, ε
d
t+1, ε

w
t+1]

′. We have Am > 0, Ad < 0,

Aw > 0, and (1 + γAd) > 0. Moreover, assuming γ > 0, we also have γAm > 0 and γAw > 0.

Proposition 5 implies that the matrix A of structural VAR coefficients can be identified using
a combination of sign and zero restrictions. To see the intuition most simply, suppose that mt = 0

always. Condition (15) then implies that we always have st < 0 and we can think of |st| > 0 as
the price that end users pay intermediaries to supply receive-fixed swaps. Rewriting (7) and (18),
end-users’ inverse demand function for receive-fixed swaps is

|st|Demand = γ−1
(
d+ zdt − dt

)
, (24)

and intermediaries’ inverse supply function for receive-fixed swaps is

|st|Supply = (1− δ)

|Et[rst+1]|︷ ︸︸ ︷κx · ασ2
o

κ2o

(
κo

ro
ασ2

o

+ κxdt − w − zwt
)

︸ ︷︷ ︸
ψt

+αV · dt

+ δEt [|st+1|] . (25)

Thus, end-user demand is downward-sloping (∂ |st|Demand /∂dt < 0) and, holding Et [|st+1|] fixed,
intermediaries’ supply is upward-sloping (∂ |st|Supply /∂dt > 0). Equilibrium occurs where these
two curves intersect in the (dt, |st|) space.

An increase in zdt shifts end-users’ demand curve outward. Since intermediaries’ supply curve
is upward sloping, this increase in zdt is associated with a rise in both dt and |st|. Similarly, an
increase in zwt shifts intermediaries’ supply curve outward. Since end-user demand is downward
sloping, this increase in zwt is associated with a rise in dt and a decline in |st|. In our empirical
work, we use this textbook supply-and-demand logic to set-identify the structural demand (εdt )
and supply (εwt ) shocks. Specifically, if there are positive (negative) innovations to both dt and
|st|, then there must have been a positive (negative) shock to end-user demand (εdt ). Conversely, if
there is positive (negative) innovation to dt and a negative (positive) innovation to |st|, there must
have been a positive (negative) shock to intermediary supply (εwt ).

3.4 The term structure of swap spreads

Thus far, we have modeled the spread on a single perpetual long-term swap. To derive predictions
for the full term structure of swap spreads, in Internet Appendix B.2 we extend our model by
introducing a series of n-period zero-coupon swaps alongside this perpetual swap.20 As above,
intermediaries must accommodate non-zero end-user demand for the perpetual swap. To close
the model in a simple way, we take the limit as net end-user demand for each of these zero-
coupon swaps goes to zero from above—i.e., we consider the case where end-users have a positive,

20The floating-rate payments on a zero-coupon swap are made periodically over time, but there is just a single
pre-determined fixed-rate payment at the maturity of the swap. A zero-coupon swap spread is the difference between
this zero-coupon swap yield and the zero-coupon Treasury yield with the same maturity.
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but infinitesimal demand to receive fixed on all zero-coupon swaps. As a result, this extension
does not change intermediaries’ portfolios, so our prior results for the perpetual swap spread (st)
are unchanged by construction. For simplicity, we further assume that swap spread trades of all
maturities consume the same amount of intermediary capital per unit of notional exposure.

Using this approach, we can derive the full term structure of swap spreads {s(n)t }Nn=1 from
intermediaries’ first-order conditions. Specifically, we generalize (14) to obtain the following
expression for n-period swap spreads:

s
(n)
t =

Expected short-rate differentials︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[mt+k] +

Expected compensation for using scarce capital︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[(−κx)ψt+k] (26)

+

Expected compensation for risk︷ ︸︸ ︷
n−1

∑n−1

k=0
(−α) Et[C(n−k)dt+k],

where rs(n)t+1 ≡ ns
(n)
t − (n− 1) s

(n−1)
t+1 −mt is the excess return on an n-period swap spread trade

and C(n) ≡ Covt[r
s(n)
t+1 , r

s
t+1] = (n− 1) δ

1−δCovt[s
(n−1)
t+1 , st+1] is the covariance between the returns

on the n-period spread trade and the perpetual spread trade. The n-period swap spread equals
the expected short-rate differential, the expected compensation for consuming scarce intermediary
capital, and the expected compensation for bearing swap spread risk, each averaged over the next
n periods. Relative to (14), the only substantive change is that the compensation for risk now
depends on how the returns on this zero-coupon swap will covary with those on perpetual swaps
over time. Furthermore, under assumptions (15) and (16), n-period spreads take the affine form

s
(n)
t = A

(n)
0 + A(n)

m zmt + A
(n)
d zdt + A(n)

w zwt , (27)

that we characterize in Internet Appendix B.2.
Spreads on 1-period swaps are an interesting and important special case. In particular, since

1-period swaps are riskless contracts, we have C(1) = 0 and the 1-period swap spread depends
only the current short rate differential and the current shadow value of intermediary capital:

s
(1)
t = mt − κxψt. (28)

Combining (26) and (28), we can write the n-period spread as the expected 1-period spread aver-
aged over time plus a term reflecting compensation for risk:

s
(n)
t =

Future expected short-term spreads︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[s

(1)
t+k] +

Expected compensation for risk︷ ︸︸ ︷
n−1

∑n−1

k=0
(−α) Et[C(n−k)dt+k]. (29)

Using this extension, we derive several properties of the term structure of swap spreads in
Internet Appendix B.2. We provide the following characterization of the “global” slope of the
swap spread curve, defined as the difference between the spread on the perpetual swap (st) and the
spread on 1-period swaps (s(1)t ).
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Proposition 6 The global slope of the swap spread curve is given by

st − s(1)t = (A0 − A(1)
0 ) + (Am − A(1)

m )zmt + (Ad − A(1)
d )zdt + (Aw − A(1)

w )zwt . (30)

We haveA0−A(1)
0 = E[st−s(1)t ] = −αV E [dt] < 0; i.e., the term structure of swap spreads slopes

downward on average. Furthermore, Am − A(1)
m < 0 and Aw − A(1)

w < 0, so increases in short-

rate differentials and intermediary wealth each make the spread curve more downward-sloping.

Finally, Ad − A(1)
d < 0 as long as swap spread risk V is sufficiently large:

δ

1− δ
(1− ρd)

(
κx
κo

)2

σ2
o < V . (31)

Proposition 6 states that, when end-user demand to receive the fixed swap rate is positive
(E [dt] > 0), long-maturity swap spreads are lower than short-maturity spreads on average. This
downward-sloping spread curve reflects the average compensation for risk that swap intermedi-
aries earn for supplying receive-fixed swaps (E[st − s(1)t ] = −αV E [dt] < 0). Thus, when m > 0

as in the case of LIBOR-based swaps, the model allows for positive average spreads on short-
maturity swaps and negative average spreads on long-maturity swaps.

Proposition 6 says that shocks to both short-rate differentials (mt) and intermediary wealth
(wt) push up short-dated spreads more than long-dated spreads. The intuition follows from the
expectations-hypothesis style logic of (29). Specifically, shocks to mt and wt largely impact
longer-dated swap spreads by shifting the expected path of 1-period swap spreads. (Indeed, when
demand is inelastic (γ = 0), shocks to mt and wt only shift the first term in (29).) Since both
shocks are mean-reverting, they are expected to have a transient impact on 1-period spreads. As a
result, these shocks have a larger impact on short-dated spreads than on longer-dated spreads. By
contrast, demand shocks necessarily impact both terms in (29). However, so long as swap spread
risk is sufficiently high, demand shocks primarily impact long-dated swap spreads by shifting the
expected compensation for bearing swap spread risk, implying that demand shocks have a greater
impact on long-dated spreads.

Because the slope of the swap spread curve depends on the compensation for bearing swap
spread risk, it has predictive power for the term structure of returns on swap spread positions.
Specifically, we obtain the following result, which is the swap spread analog of the Fama and Bliss
(1987) and Campbell and Shiller (1991) result that long-term bonds are expected to outperform
short-term bonds when the yield curve is steep:

Proposition 7 If swap spread risk V is sufficiently large, a larger slope of the swap spread curve

predicts that longer-maturity swap spread trades will outperform short-maturity trades. Specifi-

cally, the slope coefficient from the forecasting regression

rst+1 − r
s(1)
t+1 = a+ b · (st − s(1)t ) + et+1, (32)

satisfies b > 0 so long as (31) holds.

Intuitively, when V is large, both Et[rst+1−r
s(1)
t+1 ] and st−s(1)t are decreasing in end-user demand
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dt. Indeed, Et[rst+1− r
s(1)
t+1 ] is always decreasing in dt since Et[rst+1− r

s(1)
t+1 ] = −αV dt. As a result,

there is a positive time-series association between st − s(1)t and Et[rst+1 − r
s(1)
t+1 ]. Furthermore, this

forecasting relationship disappears if dt and, hence, the compensation for risk are constant over
time—i.e., if γ = σ2

d = 0.
The Internet Appendix B.2 also provides a range of additional results on the term structure

of swap spreads. In particular, we can also characterize the local behavior of the swap spread
curve—i.e., how s

(n)
t − s

(n−1)
t behaves as a function of n—in the limit where end-user demand

is completely inelastic (γ = 0). We find that A(n)
0 is decreasing in maturity n—i.e., on average,

the swap spread curve is locally downward-sloping at all maturities. When m = E[mt] ≥ 0 is
sufficiently small, A(n)

0 < 0 for all n. When m is sufficiently large, A(n)
0 > 0 for all n. In the

intermediate case where m is moderately positive, A(n)
0 > 0 for small n and A(n)

0 < 0 for larger n.
A

(n)
m reflects variation in the expected future short rate differentials (mt) over the life of the swap

and, thus, is positive and locally downward-sloping across maturities n. A(n)
w reflects variation in

the impact of intermediary wealth on expected future balance sheet costs (−κxψt) over the life of
the swap and, thus, is positive and locally downward-sloping across maturities n. A(n)

d is negative
for all maturities n and reflects both the (i) expected balance sheet costs and (ii) compensation for
risk over the life of the swap. When the volatility of swap spreads is sufficiently low, (i) dominates
and A(n)

d is an increasing function of maturity n. When the volatility of swap spreads is higher, (ii)
dominates. In this case, A(n)

d is downward-sloping across maturities n when ρd is sufficiently high
and is a U-shaped function of maturity n when ρd is lower. By continuity, this characterization
remains valid so long as the demand elasticity γ is not too large.

4 Evidence

4.1 Data and measurement

We use two main types of time-series data in our empirical analysis: data on swap spreads and
data that we use to proxy for intermediaries’ net positions in the swap spread trade. Our main
dataset is weekly and runs from July 2001 to June 2020.

Swap spreads. We obtain fixed rates for plain-vanilla LIBOR swaps, OIS swaps, and SOFR
swaps from Bloomberg and constant maturity Treasury yields from the Federal Reserve’s H.15
Statistical Release. We have data on LIBOR swap rates over our full sample, but data on OIS and
SOFR swap rates only become available in September 2012 and December 2018, respectively.
We compute swap spreads as the difference between the fixed swap rate and the constant maturity
Treasury yield with the same maturity. We obtain 3-month LIBOR, the 3-month OIS rate, and the
rate on 3-month Treasury general collateral repurchase agreements (GC repo) from Bloomberg.

Following Boyarchenko et al. (2020), we compute the h-week cumulative returns on the spread
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trade involving n-year LIBOR swaps as:

r
s(n)
t→t+h =

h−1∑
k=0

Carry

[

︷ ︸︸ ︷
1

52
(s

(n)
t+k − (iLIBORt+k − iREPOt+k ))−

Mark-to-market loss︷ ︸︸ ︷
DV 01

(n)
t+k × (s

(n)
t+k+1 − s

(n)
t+k)], (33)

where s(n)t in the n-year LIBOR swap spread, iLIBORt − iREPOt is the difference between 3-month
LIBOR and GC repo, and DV 01

(n)
t is the dollar value of a basis point for this trade—i.e., the

sensitivity of the position’s mark-to-market value to changes in the swap spread.21 The term in
square brackets in (33) is just the 1-week spread trade return from week t+k to t+k+1. As in (3),
this weekly return is the sum of a carry component that is known at t + k and a mark-to-market
component that depends on the change in swap spreads from t + k to t + k + 1. The h-week
cumulative return from t to t + h, rs(n)t→t+h, is simply the sum of the next h weekly returns after
time t. We focus on h = 13-week and h = 52-week returns in our empirical tests—i.e., 3- and
12-month returns.

We primarily focus on the 30-year LIBOR swap spread. The 30-year swap spread corresponds
closely to the long-term arbitrage spread in our model. Specifically, intermediaries who take
spread positions using 30-year swaps both consume scarce capital and face the risk of suffering
significant short-term mark-to-market losses if spreads move against them. Moreover, 30-year
LIBOR swaps are a major source of duration for end users in the swap market (Klingler and Sun-
daresan, 2019). However, we also examine shorter-dated swap spreads and the associated spread
trade returns.

Intermediaries’ swap spread positions. Data on intermediaries’ positions in the swap spread
trade are not directly available. However, we can use primary dealers’ net position in Treasury
securities to proxy for the scale of their net swap spread trade position. Broker-dealers are critical
intermediaries in the swap market (TBAC, 2021). However, dealers have minimal net exposure to
changes in the overall level of long-term interest rates.22 In particular, while dealers accommodate
net end-user demand to either receive or pay the fixed swap rate, they typically take offsetting
positions in Treasuries to hedge the resulting interest-rate risk. Thus, primary dealers’ net position
in Treasuries—especially those maturing in more than one year—is a hedge that partially mirrors
their net position in receive-fixed interest rate swaps.

To construct our measure of primary dealers’ net position, we download weekly data on pri-

21The DV01 for a n-year swap spread trade is the n-year annuity factor (divided by 10, 000). Assuming the fixed
swap leg is paid semi-annually, DV 01

(n)
t ≡ (1/2)

∑2n
i=1(1 + Y

(n)
t /2)−i where Y (n)

t is the n-year swap yield. It is
easy to show that this is identical to the modified duration of an n-year par coupon bond:

DV 01
(n)
t =

1

1 + Y
(n)
t /2

(
2n∑
i=1

(i/2) (Y
(n)
t /2)

(1 + Y
(n)
t /2)i

+
n

(1 + Y
(n)
t /2)2n

)
=

1

Y
(n)
t

(1 + Y
(n)
t /2)2n − 1

(1 + Y
(n)
t /2)2n

.

Technically, the DV 01s for the Treasury and swap legs of the spread trade will differ slightly because the Treasury
and swap yields differ. Accounting for this small discrepancy has almost no impact on our results, so we have chosen
to use the simpler definition of returns in (33).

22For instance, O’Brien and Berkowitz (2007) show that the variation in dealers’ trading revenues from interest-rate
risk exposure is small relative to the variation in total trading revenues, which also includes fees and spreads.
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mary dealers’ aggregate positions in Treasury securities from the Federal Reserve Bank of New
York’s website. These weekly aggregates are derived from Form A of the FR2004 reports (the Pri-
mary Government Securities Dealers Reports), which primary dealers are required to file with the
Federal Reserve and detail dealers’ positions as of market-close each Wednesday. Form FR2004
underwent a significant revision in July 2001, which is why our main sample begins at that time.
Dealers’ net Treasury position, denoted PD-UST-Nett, is calculated as the difference between the
market values of dealers’ long and short Treasury positions. We focus on nominal coupon-bearing
Treasury securities—which are most likely to be tied to swap spread positions—and exclude Trea-
sury bills, TIPS, and FRNs. We will sometimes write x̂t = −1×PD-UST-Nett to emphasize that
−1×PD-UST-Nett is our proxy for the scale of dealers’ net position in the receive-fixed swap
spread trade. By market clearing, this means that d̂t = PD-UST-Nett is our proxy for end-user’s
net demand to receive the fixed swap rate.

Consistent with the logic of our measurement approach, primary dealers’ net Treasury po-
sitions do not appear to be tightly linked to their net exposure to interest-rate risk. To demon-
strate this, we obtain the value-weighted (by book equity) average of primary dealers’ interest-rate
Value-at-Risk from Anderson and Liu (2021). The correlation between weekly changes in primary
dealers’ net Treasury position and changes in their interest-rate Value-at-Risk is just 0.05 between
2001 and 2018 and 0.08 between 2009 and 2018. The fact that there is little relationship between
dealers’ net Treasury position and their interest-rate Value-at-Risk suggests that these Treasury po-
sitions largely hedge interest-rate exposures stemming from their positions in interest rate swaps
and other fixed-income instruments.

That said, we recognize that PD-UST-Nett is a noisy proxy for the scale of dealers’ swap
spread positions; a variety of other factors also affect dealers’ net Treasury position. For instance,
primary dealers play a role in intermediating Treasury auctions, absorbing some portion of new
Treasury issuance into short-term inventory and distributing these securities to end investors over
time (Fleming and Rosenberg, 2008). In recent years, the effective quantity of Treasury issuance
that dealers must intermediate has also been impacted by the Federal Reserve’s Large-Scale Asset
Purchase policies (i.e., Quantitative Easing), which are regularly implemented by adjusting the
amount that Federal Reserve purchases at auction. Furthermore, dealers use Treasuries to hedge
their inventories of a variety of other fixed-income instruments beyond swaps, especially their
corporate bonds inventories. However, since we typically use PD-UST-Nett as an independent
variable in our regression specifications, measurement error will generally attenuate our findings,
biasing us against finding a significant relationship between PD-UST-Nett and swap spreads or
swap spread trade returns. Indeed, our results are strongest when we control for other factors—
e.g., the gross quantity of Treasury issuance—that are unrelated to the scale of dealers’ swap
spread positions but that independently affect PD-UST-Nett.

Additional data. In addition to data on their Treasury positions, we collect data on primary deal-
ers’ net positions in corporate debt securities from the FR2004 reports. We also collect the amount
of Treasuries collateralizing financing agreements where a primary dealer is the cash lender—
i.e., dealers’ “Treasury securities in” through financing arrangements—from the FR2004 report.
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These financing arrangements include reverse repos, securities borrowing, and securities received
as margin collateral. Through these arrangements primary dealers play a key role in allowing other
investors—notably hedge funds—to finance their Treasury positions (He et al., 2022). We use the
amount of cash primary dealers lend against Treasuries as a noisy proxy for the scale of hedge
funds’ swap spread positions. We also obtain data on monthly Treasury issuance from SIFMA
and weekly data on the Federal Reserve’s Treasury holdings from the H.4.1 release.

We gather data on a variety of additional market prices. From Bloomberg, we obtain the
spread on 10-year U.S. Treasury credit default swaps (CDS), the VIX SP500 option-implied eq-
uity volatility index, and the VXTY option-implied 10-year Treasury futures volatility index. We
download the Adrian et al. (2013) estimate of the term premium component of 10-year Treasury
yields from the Federal Reserve Bank of New York’s website. We obtain Hu et al. (2013)’s mea-
sure of yield curve noise—the root mean-squared yield error from fitting a Svensson (1994) model
to the cross-section of Treasuries on each date—from Jun Pan’s website.

Finally, we collect proxies for several factors that are thought to shift end-users’ demand for
or intermediaries’ supply of swaps. First, we obtain the modified duration of the Barclays U.S.
MBS index from Datastream. The duration of outstanding MBS is a proxy for relative-value
mortgage investors’ desire to pay the fixed swap rate. However, as discussed in Section 4.5, MBS
duration may also proxy for a variety of related “convexity-driven” hedging motives. Second, we
compute Klingler and Sundaresan (2019)’s measure of aggregate defined-benefit pension under-
funding, which affects pensions’ demand to receive the fixed rate on long-dated swaps. Specifi-
cally, using quarterly data from the Financial Accounts of the United States, we compute Pension-

UFRt = (Pension-Sponsor-Claimst/Pension-Assett) where Pension-Sponsor-Claimst is the total
claims of private and public defined-benefit pensions on their sponsors and Pension-Assett is total
defined-benefit pension assets. Third, we obtain the monthly gross issuance of domestic public
bonds by U.S. non-financial corporations from the Federal Reserve Board, which is a proxy for
non-financial corporations demand to receive the fixed rate. Finally, as a proxy for intermediaries’
wealth, we obtain primary dealers’ equity capital ratio—the ratio of market equity to the sum of
market equity and book debt—from He et al. (2017).

4.2 The emergence of negative swap spreads

Consistent with the logic of the general model in Section 3.2.1, Panel A of Figure 1 shows that 30-
year LIBOR swap spreads and primary dealers’ net Treasury positions simultaneously switched
signs in early 2009. Specifically, (14) says that, absent a large short-rate differential (mt), swap
spreads should have the opposite sign of d̂t = −x̂t =PD-UST-Nett. Indeed, 30-year LIBOR swap
spreads averaged 45 basis points from 2001 to 2008 and primary dealers’ net short position in
Treasuries averaged $96 billion. By contrast, 30-year LIBOR swap spreads have been consistently
negative since 2009, averaging −25 basis points from 2009 to 2020. And, during this 2009–2020
period primary dealers’ net long position in Treasuries averaged $59 billion. In contemporaneous
work, Du et al. (2022) also document that primary dealers’ net Treasury position and swap spreads
move inversely over time and they emphasize this regime change in early 2009.
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Panel B of Figure 1 shows the evolution of the 30-year OIS and SOFR swap spreads. These
two spreads are highly correlated with the 30-year LIBOR swap spread, but are even more negative
on average because the underlying short-rate differentials are negligible.23 Almost by definition, a
non-zero SOFR swap spread represents a violation of LoOP.

Panel C of Figure 1 shows that the term structure of swap spreads changed considerably in
2009. While the term structure of spreads was fairly flat before the GFC, it has become steeply
downward-sloping since 2009. Specifically, the average difference between 30-year and 10-year
spreads was negligible prior to 2009 but has averaged −29 basis points between 2009 and 2020,
with 30-year swap spreads being consistently more negative than 10-year spreads.

This post-2008 combination of negative long-term swap spreads, a downward-sloping swap
spread curve, and dealers’ net long position in Treasuries is consistent with our models’ predictions
in a regime where leverage-constrained and risk-averse intermediaries must enter into a pay-fixed
swap spread trade to accommodate net end-user demand to receive fixed. Thus, in what follows,
we focus on the post-2008 period, examining the specific predictions that pertain to this regime.

4.3 Swap spread risk

We begin by testing our model’s prediction that intermediaries’ exposure to swap-spread risk
shapes the equilibrium expected returns on the swap spread trade. Specifically, Proposition 2 says
that Et[rst+1] = −κx · ψt − αV · dt —i.e., Et[rst+1] consists of two terms. First, Et[rst+1] is shaped
by the cost of consuming scarce intermediary capital (−κx ·ψt), which obtains even if the trade is
riskless. Second, Et[rst+1] depends on the required compensation for bearing mark-to-market risk
(−αV · dt ), which is proportional to the scale of intermediaries’ net position in the swap spread
trade (dt). Thus, our theory predicts that the scale of intermediaries’ swap spread positions should
predict returns even when controlling for the shadow value of intermediary capital (ψt).

We test this implication by running predictive regressions that relate the future h-week returns
on the received-fixed 30-year swap spread trade rs(30)t→t+h on primary dealers’ current net Treasury
position and the 3-month OIS swap spread (ST-OIS-Spreadt), which we use as a proxy for the
current shadow value of intermediary capital:24

r
s(30)
t→t+h = α+β1· PD-UST-Nett+β2· PD-UST-Creditt+γ1·ST-OIS-Spreadt+ γ ′2xt+εt→t+h. (34)

We estimate these specifications for h = 13- and 52-week returns (i.e., 3- and 12-month returns).25

These regressions also include controls for factors that arguably have an independent effect on
primary dealers’ inventory of Treasuries, namely the 12-month moving average of monthly gross

23The floating legs of OIS and SOFR swaps reference short-term rates that are virtually free of credit risk.
24This choice is motivated by the model. From (28), the shadow value is proportional to the negative of the short-

dated SOFR swap spread—i.e., the swap spread with no interest-rate differential. Because data on SOFR swaps is
only available for a small part of our sample, we use the closely related short-dated OIS spread.

25Since these regressions use overlapping h-week returns, the residuals will be serially correlated over time. To
draw proper inferences, we compute Newey and West (1987) standard errors allowing for serial correlation at up to
d1.5× heweeks. We assess statistical significance using the fixed-b asymptotic theory of Kiefer and Vogelsang (2005)
which yields more conservative p-values and has better finite-sample properties than traditional Gaussian asymptotic
theory.
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Treasury issuance, the Federal Reserve’s Treasury holdings, and primary dealers’ net position in
corporate debt securities; see Fleming and Rosenberg (2008). Changes in these factors may alter
PD-UST-Nett even holding fixed the scale of dealers swap spread positions, making it a noisy
proxy for dealers’ swap spread positions. Thus, the purpose of these controls is to isolate the
residual component of PD-UST-Nett that is most informative about dealers’ swap spread positions.

As can be seen by comparing Panels A and B of Table 1, without controls, dealers’ net position
strongly predicts swap spread returns at both 3-month and 12-month horizons in the sample from
2009m1 to 2018m6, but not when the sample is extended to 2020m6. From mid-2018 until the
end of 2019 Treasury issuance increased due to the Tax Cuts and Jobs Act of 2017 and the Fed-
eral Reserve started to reduce the Treasury holdings it had accumulated through the Quantitative
Easing policies it had pursued since 2009. And 2020 then witnessed a surge in Treasury issuance
due to the vast scale of the fiscal policy response to the COVID-19 pandemic and a resumption
of large-scale Treasury purchases by the Fed. Adding controls that aim to capture these factors
restores the significance of primary dealers’ net position in the sample from 2009m1 to 2020m6,
and also increases its significance in the sample from 2009m1 to 2018m6.

Recalling that PD-UST-Nett = −x̂t = d̂t > 0 in the post-GFC regime, the negative coefficient
on PD-UST-Nett means that dealers earn larger expected returns on their pay-fixed spread trades
when they have greater exposure to this trade. Thus, the results in Table 1 align with the predictions
from Proposition 2. The R2 of the predictive regression for 3-month returns without additional
controls reaches 13.2% in the sample from 2009m1 to 2018m6.

Institutions other than primary dealers—particularly, fixed-income hedge funds—also func-
tion as intermediaries in the swap market and engage in swap spread trades. This fact motivates
the addition of a second proxy for intermediaries’ swap positions to our forecasting regression:
the quantity of short-term credit collateralized by Treasuries that primary dealers extend to other
institutions referred to as “Treasury securities in” and denoted by PD-UST-Creditt. The idea is that
these financing arrangements, in part, reflect the swap spread trades of hedge funds. This second
proxy also predicts swap spread returns, albeit less strongly than primary dealers’ own position.

Focusing on the sample from 2009m1 to 2018m6, Panel A of Table 2 shows that primary
dealers’ net position in long-dated Treasuries—those maturing in 11 or more years—predicts the
returns to the 30-year swap spread trade. Panel B of Table 2 shows that primary dealers’ net
Treasury position also predicts the returns to the 10-year swap spread trade. However, when we
forecast the returns on the 10-year spread trade, our forecasting variables attract coefficients that
are smaller in absolute magnitude and the statistical significance is not quite as strong as when
forecasting returns on the 30-year spread trade. This diminished predictive power is consistent
with the premise that the 30-year swap spread trade is subject to greater swap spread risk.

4.4 Term structure

Our analysis thus far has primarily focused on the long end of the swap market. We have focused
on long-dated swaps for several reasons. First, long-dated swap spread trades are subject to greater
risk and, as a result, long-maturity swap spreads are more informative about the swap spread risk
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channel that we emphasize. Second, short-dated and long-dated swap spreads may be driven by
different factors in a way that is not captured by our simple three-factor term structure model. For
instance, on the demand side, end-user demand for short-dated swaps may be driven by a differ-
ent set of factors from those than drive demand for long-dated swaps. (We pursue an extension
along these lines below.) Relatedly, on the supply side, intermediaries face a number of different
balance sheet constraints, each with its own potentially time-varying shadow value (Siriwardane
et al., 2021). And, while some balance sheet constraints like the Supplemental Leverage Ratio ap-
ply equally to all swap spread positions irrespective of their maturity and risk, other balance sheet
constraints—e.g., margin requirements—are typically less stringent for shorter-dated maturities
(Boyarchenko et al., 2020). In other words, in reality, there may be multiple demand factors and
multiple supply constraints, each playing a more or less important role at different points along
the curve. That said, it is instructive to ask whether the term structure of spreads is consistent with
the predictions of our simple term structure model.

The average term structure of swap spreads. Figure 2 shows the average term structures of
LIBOR, OIS, and SOFR spreads, starting from 2009 or the date for which data become available.
All three term structures are monotonically downward-sloping on average. Further, for all matu-
rities, average OIS and SOFR swap spreads are lower than like-maturity LIBOR swap spreads. In
particular, short-dated LIBOR swap spreads are positive on average, whereas short-dated OIS and
SOFR swap spreads are negative on average.

These patterns fit well with Propositions 1 and 6. Intermediaries require compensation for
committing their scarce capital to positions in the pay-fixed swap spread trade and for bearing
the risk associated with these positions. Since short-date differentials for OIS and SOFR swaps
are negligible, our model predicts negative average OIS and SOFR swap spreads for all maturi-
ties. And, since longer maturity swaps are associated with greater convergence risk and a greater
expected return compensation, the term structure of OIS and SOFR swap spread should slope
downward on average. Relative to OIS and SOFR swaps, the difference between LIBOR and repo
rates pushes up the average level of LIBOR swap spreads. Thus, we would expect to see positive
spreads on short-dated LIBOR swaps and negative spreads on long-dated LIBOR swaps.

Fama-Bliss style forecasting regressions. Assuming that intermediaries face significant swap
spread risk, Proposition 7 says that long-dated swap spread trades are expected to outperform
short-dated trades when the swap spread curve is steep. Intuitively, greater end-user demand to
receive fixed pushes down the expected returns on long-dated spread trades relative to those on
short-dated spread trades—i.e., Et[rst+1 − r

s(1)
t+1 ] = −αV dt. And, assuming that spread risk is

sufficiently large, the slope of the spread curve (st − s(1)t ) is also decreasing in end-user demand,
giving rise to a positive relationship between Et[rst+1−r

s(1)
t+1 ] and (st−s(1)t ). In this way, Proposition

7 allows us to further highlight the importance of swap spread risk.
We test Proposition 7 using an analogue of the regression specification from Fama and Bliss

(1987) applied to swap spread trades. Specifically, for two maturities n > n′, we estimate

r
s(n)
t→t+h − r

s(n′)
t→t+h = α + β · (s(n)t − s

(n′)
t ) + εt→t+h, (35)
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and our model predicts that β > 0. As reported in Table 3, the slope of the swap spread curve
is a significant predictor of excess returns on longer-dated swap spread trades over shorter-dated
trades in both the 2009m1 to 2020m6 sample (Panel A) and 2009m1 to 2018m6 sample (Panel B)
and for a variety of different maturity pairs n > n′. This result supports a risk-based explanation
of swap spreads and, in particular, is consistent with our model’s prediction that long-term swap
spreads should reflect compensation for demand-and-supply imbalance risk.

4.5 Demand and supply decomposition

Having validated PD-UST-Nett as a useful proxy for intermediaries’ net position in the receive-
fixed swap spread trade, we now use a structural vector auto-regression (SVAR) to disentangle the
effects of end-user demand and intermediary supply on the level of 30-year swap spreads. Lever-
aging Proposition 5, we set-identify our structural VAR using the sign restrictions approach of
Uhlig (2005). We then estimate the latent underlying demand and supply factors and decompose
swap spreads into contributions from these two factors. We shed light on the primitive factors that
drive swap spreads by examining the time-series correlates of our estimated demand and supply
factors. Finally, we look at the respective roles of end-user demand and intermediary supply in
shaping the expected returns to swap arbitrage. To avoid the need to introduce exogenous controls
in our SVAR, for simplicity, we focus on the 2009m1 to 2018m6 sample in this exercise.

Estimation approach. We begin with the reduced-form representation of the VAR implied by our
structural model. Specifically, we consider a bivariate VAR involving 30-year swap spreads (s(30)t )
and end-users’ net position in receive-fixed swaps proxied using primary dealers’ net position in
Treasuries (d̂t = −x̂t = PD-UST-Nett):

yt︷ ︸︸ ︷[
s
(30)
t

d̂t

]
= c +

L∑
l=1

Cl

yt−l︷ ︸︸ ︷[
s
(30)
t−l

d̂t−l

]
+

ξt︷ ︸︸ ︷[
ξs

(30)

t

ξd̂t

]
. (36)

Equation (36) corresponds to our structural model assuming (i) the short-rate differential is always
zero (i.e., mt = 0) and (ii) allowing for a more general lag structure in the autoregression—i.e.,
our model assumes L = 1 for simplicity. Naturally, the shocks ξt in this reduced-form VAR each
reflect a combination of structural shocks to both end-user demand and intermediary supply and,
thus, do not have clear-cut economic interpretations.

For parsimony, we omit the short-rate differential mt from (36). As discussed below, adding
mt to the VAR has minimal impact on our results. We select a lag length of L = 2 weeks in (36)
by minimizing the Akaike Information Criterion (AIC). Our results are robust to alternate choices
of L as well as to the inclusion of a deterministic time trend.

Following Proposition 5, we posit that the reduced-form VAR in (36) results from (i) a mapping
from a set of unobserved structural demand and supply factors to these observable equilibrium
outcomes and (ii) a dynamic law of motion for the structural factors. Specifically, the assumed
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mapping from latent structural factors to observable outcomes is

yt︷ ︸︸ ︷[
s
(30)
t

d̂t

]
= a + A

zt︷ ︸︸ ︷[
zdt

zwt

]
. (37)

And, the assumed law of motion for the structural factors is

zt︷ ︸︸ ︷[
zdt

zwt

]
=

L∑
l=1

Dl

zt−l︷ ︸︸ ︷[
zdt−l
zwt−l

]
+

εt︷ ︸︸ ︷[
εdt

εwt

]
, (38)

where εt is a vector of orthogonal structural shocks that each have unit variance—i.e., Vart−1[εt] =

Var[εt] = I.26 Combining (37) and (38), we obtain a bivariate structural VAR that we can take to
the data:

yt =

(
I−

L∑
l=1

ADlA
−1

)
a +

L∑
l=1

(ADlA
−1)yt−l + Aεt, (39)

which corresponds to (23) in the model.
We set identify this structural VAR by imposing the sign restrictions from Proposition 5 on the

A matrix that maps structural shocks εt into reduced-form shocks ξt. Specifically, we assume the
four elements of A satisfy the following sign restrictions:

ξt︷ ︸︸ ︷[
ξs

(30)

t

ξd̂t

]
=

A︷ ︸︸ ︷[
− +

+ +

] εt︷ ︸︸ ︷[
εdt

εwt

]
. (40)

Intuitively, if there are positive (negative) reduced-form innovations to both |s(30)t | and d̂t, there
must have been a positive (negative) shock to end-user demand (εdt ). Conversely, if there is nega-
tive (positive) innovation to |s(30)t | and a positive (negative) innovation to d̂t, there must have been
a positive (negative) shock to intermediary supply (εwt ).27

We set identify A using the pure sign restrictions approach of Uhlig (2005). Since Var[εt] = I

—i.e., the structural shocks are assumed to be orthogonal and we are only attempting to identify
their impact “up to scale”—the observed variance of reduced-form shocks, Var[ξt] = AA′, pro-
vides us with three restrictions on the four elements of A. The sign restrictions in (40) do not allow
us to point identify A. However, they provide a partial identification, ruling out many candidates
that satisfy AA′ = Var[ ξt] and leaving us with an identified set of As. Following Fry and Pagan
(2005, 2011) and Cieslak and Pang (2021), we select the A in this set that is closest to the median
value in the set. To estimate the latent structural demand and supply factors, we invert (37) using

26The assumption that the demand and supply shocks are orthogonal is necessary for our identification approach
and is useful for these shocks to have a straightforward interpretation. While imperfect, the assumption that demand
and supply shocks are orthogonal is reasonable for the swap market because the institutions that typically receive
the fixed rate—end users such as pension funds—and those that pay the fixed rate—intermediaries such as broker-
dealers—have very different investment objectives and face different institutional constraints.

27These statements follow from inverting (40) and using the sign restrictions on A to sign the elements of A−1.
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this “closest-to-median” matrix. Letting Â denote the closest-to-median value of A, our estimated
factors are ẑt = Â−1 (yt − â), where â = (I−

∑L
l=1 Ĉl)

−1ĉ.28

In Internet Appendix C, we also consider a tri-variate VAR which adds the LIBOR-repo spread
and corresponds to our model when there is a non-zero short-rate differential (mt 6= 0). The struc-
tural shocks in this tri-variate VAR are identified using the sign and zero restrictions implied by
Proposition 5. Including the short-rate differential in the VAR has almost no impact on our esti-
mates of the latent demand and supply factors. Furthermore, our estimates suggest that the short-
rate differential explains very little of the time-series variation in 30-year swap spread observed
since 2009; see Figure A-2 of the Internet Appendix. The finding that the short-rate differen-
tial plays only a small role in explaining 30-year swap spreads is consistent with our model that
predicts that transient fluctuations in mt—e.g., due to a temporary rise in concerns about the cred-
itworthiness of large banks—should play only a minor role in explaining movements in long-dated
swap spreads.29 Consequently, we use the more parsimonious specification (36) as our baseline
approach.

Estimated structural decomposition. We begin by reporting and interpreting our closest-to-
median estimate, Â. Since we can only identify the structural shocks “up to scale,” our estimate
Â corresponds to AΣ1/2 in our model. Our closest-to-median estimate is given by:

Â =

[
σdAd σwAw

σd (1 + γAd) γσwAw

]
=

[
−2.24 2.26

7.07 7.04

]
. (41)

Using the estimated coefficients from our structural VAR, we can use our model to back out
some interesting economic parameters. First, taking the ratio of the estimated impact of a 1-
standard deviation shock to zwt on the equilibrium quantity (γσwAw) to the corresponding impact
on prices (σwAw), we obtain an IV-like estimate of the elasticity of end-user demand (γ). Specif-
ically, our structural VAR estimates suggest that γ = 7.04/2.26 = 3.1—i.e., each basis point
increase in swap spreads raises net end-user demand to receive fixed by $3.1 billion.

Using this estimate of γ and the estimated impact of demand shocks on quantities and spreads,
we infer that σd = σd (1 + γAd) − γ × σdAd = 7.07 − 3.1 × −2.24 = 14. Thus, at a weekly
horizon, we estimate that a 1-standard deviation shock to end-user demand is $14 billion. This
then implies that a $1 billion shock to end-user demand to receive fixed reduces 30-year swap
spreads by 0.16 basis points—i.e., Ad = Adσd/σd = −2.24/14 = −0.16.

Several caveats are in order. First, dealers are only one set of intermediaries in the swap
market, the other important set being hedge funds. Thus, it seems safe to conclude that these dollar
estimates are a lower-bound on the relevant market-wide quantities which sum across all relevant

28This closest-to-median A corresponds to a particular matrix in the identified set and has a structural interpretation.
Working with the closest-to-median A is preferred to working with the median value of A in the identified set because
the latter lacks a structural interpretation. However, the demand and supply factors implied by the closest-to-median
A are almost identical to the median factors across all As in the set, thus satisfying the specification check for this
partial identification technique suggested by Fry and Pagan (2005, 2011). See Figure A-1 of the Internet Appendix.

29This finding is consistent with the fact that long-dated LIBOR, OIS, and SOFR swap spreads are very highly
correlated in both levels and changes. By contrast, spreads on short-dated LIBOR swaps—which are sensitive to
movements in the LIBOR-repo spread—are not highly correlated with those on short-dated OIS and SOFR swaps.
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swap intermediaries. Second, we have arrived at these interpretations by taking our stylized model
and our identification approach rather literally. For instance, our model and identification approach
assume that the structural shocks to demand and supply are orthogonal. This assumption is both
conventional and clarifying, but there is little reason to think this is a perfect description of reality.
Nonetheless, our estimates seem to be quantitatively plausible, lending credence to our approach.

Next, Figure 3 shows our estimated structural decomposition of swap spreads from 2009m1 to
2018m6 as in (37). Specifically, using Â and ẑt, we decompose s(30)t − E[s

(30)
t ] into the sum of

contributions from end-user demand (Âdẑdt ) and intermediary supply (Âwẑwt ).30 Figure 3 shows
that end-user demand and intermediary supply both play important roles in explaining the time-
series variation in swap spreads. For instance, our decomposition suggests that a large outward
shift in intermediary supply reduced the magnitude of (negative) swap spreads starting in late-
2012. This outward supply shift is consistent with an easing of financial conditions following the
crest of the Eurozone crisis. Then, a large inward shift in supply from late-2014 until late-2015
pushed swap spreads far into negative territory. This estimated inward supply shift coincides with a
series of regulatory changes that arguably increased intermediaries’ balance-sheet costs, including
the finalization of the Supplementary Leverage Ratio in September 2014 and the implementation
of the Volker Rule in July 2015 (Boyarchenko et al., 2020). However, we also find that the period
of highly negative swap spreads between late 2014 and 2018 cannot be solely attributed to a
contraction in intermediary supply. Indeed, from mid-2016, our estimates suggest that rising end-
user demand to receive the fixed rate pushed swap spreads even further below zero.

The forecast error variance decomposition from our structural VAR—the estimated contribu-
tions of the two structural shocks to swap spread innovations at various horizons—confirms that
both demand and supply shocks play an important role in driving spreads. Demand and supply
shocks each explain roughly 50% of the innovations to 30-year swap spreads at a weekly horizon.
Our finding that both demand and supply shocks play an important role in driving swap spreads
contrasts with Goldberg and Nozawa (2021) who find that, in the corporate bond market, interme-
diary supply shocks play a dominant role in driving variation in market liquidity. Interestingly, our
estimates suggest that supply shocks have a more persistent effect on swap spreads compared to
demand shocks. And, as a result, the contribution of supply shocks to the innovations to 30-year
swap spreads increases to roughly 65% at an annual horizon.31

Drivers of demand and supply. An advantage of our identification approach using sign restric-
tions is that we do not need to specify proxies for demand and supply shifters ex ante. Nonetheless,
it is instructive to investigate which of the demand and supply shifters that have been suggested in
the prior literature are most strongly associated with our estimated factors.

30We can also decompose s(30)t −E[s
(30)
t ] into the sum of contributions from past end-user demand shocks (εdt ) and

from past intermediary supply shocks (εwt ). This alternative decomposition can differ from our baseline decomposition
because off-diagonal autoregressive coefficients in the VAR can cause demand shocks to propagate to supply and vice
versa. In our application, we find that these two decompositions are very similar.

31This more persistent effect of supply shocks can be seen by comparing the impulse responses of spreads to
demand and supply shocks in Figure A-1 of the Internet Appendix. Our estimates imply that, in addition to their
direct effect, supply shocks lead to a small but persistent shift in demand, which contributes to the persistence of their
effect on spreads.
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We begin by exploring factors that prior literature suggests may shift end-users’ demand for
swaps. First, Feldhütter and Lando (2008), Hanson (2014), Malkhozov et al. (2016), and TBAC
(2021) argue that the desire of hedged mortgage investors and mortgage servicers to receive the
fixed swap rate increases when long-term interest rates fall. A decline in rates increases expected
mortgage prepayments, reducing the duration of outstanding mortgages. In response, hedged
investors then want to receive the fixed swap rate to add back duration to their portfolios. This view
predicts that end-user demand to receive fixed is negatively related to the duration of outstanding
MBS. Second, insurers and pension funds receive fixed to manage the gap between the duration of
their liabilities and the duration of their on-balance sheet assets (TBAC, 2021). And, Klingler and
Sundaresan (2019) argue that pension funds’ demand to receive fixed increases as they become
more underfunded. Third, the bond issuance of corporates, whom TBAC (2021) also identifies as
receivers of fixed, could influence their demand for swaps.

Columns (1), (4), (7), and (10) in Table 4 report regressions of the 30-year swap spread (s(30)t ),
the contribution of the demand factor to the spread (Âdẑdt ), the contribution of the supply factor to
the spread (Âwẑwt ), and PD-UST-Nett , respectively, on MBS duration, the pension underfunding
measure, and the 3-month moving average of corporate bond issuance.32 We find that all three
variables are related to our demand factor to a varying degree, with MBS duration having the
most statistically significant relationship with both the 30-year swap spread and its demand-driven
component. This result echoes earlier findings of Feldhütter and Lando (2008) and Hanson (2014)
that hedging demand from MBS investors is an important driver of the swap spreads. To illustrate
this result, Figure 4 shows the time series of MBS duration and the demand factor: the series
are almost mirror images of each other. However, the importance of the MBS variable in these
regressions does not imply that MBS investors play an exclusive role in the swap market. Doman-
ski et al. (2017) argue that insurers and pension funds also engage in convexity-driven hedging:
when interest rates fall, they add duration by receiving the fixed swap rate to offset the increasing
mismatch between their assets and liabilities. Thus, the MBS duration variable may also capture
demand from insurers and pension funds.

Turning to supply, our theory suggests that intermediaries’ supply of swaps should be posi-
tively related to their equity capital. However, as shown in Table 4, we find only a weak relation-
ship between the supply-driven component of swap spreads and primary dealers’ equity capital
ratio of He et al. (2017). That said, this ratio is not designed to measure intermediaries’ regulatory
capital in relation to its required level. As a result, it may not fully capture changes in balance
sheet costs that stem from changes in required regulatory capital such as those that occurred in
2014. Additionally, while this ratio captures changes in the capital of large dealer banks, it need
not capture changes in the capital of hedge funds.

Finally, we relate our estimated end-user demand and intermediary supply factors to general
conditions in the Treasury market. To this end, columns (3), (6), (9), and (12) in Table 4 report
regressions of the 30-year swap spread, the contribution of the demand factor to the spread (Âdẑdt ),
the contribution of the supply factor to the spread (Âwẑwt ), and PD-UST-Nett , respectively, on the

32The raw pension underfunding variable is only available at a quarterly frequency. We create a weekly version of
this variable by interpolating linearly between the quarter-ending values.
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10-year U.S. sovereign credit default swap spread, the estimated term premium component of 10-
year Treasury yields from Adrian et al. (2013), the VXTY option-implied Treasury yield volatility
index, the VIX option-implied equity volatility index, and the Hu et al. (2013) yield curve noise
measure which captures illiquidity in the Treasury market.

A noteworthy pattern that emerges from these regressions is the strong positive relationship
between the term premium and the demand-driven component of the swap spread, which reflects
the positive relationship between the term premium and swap spreads and the strong negative re-
lationship between the term premium and d̂t = PD-UST-Nett. This pattern is consistent with the
role played by MBS investors in the swap market. As discussed above, MBS duration is negatively
related to the demand to receive fixed. In turn, Hanson (2014) and Malkhozov et al. (2016) show
that MBS duration positively predicts Treasury returns. The close connection between the demand
factor, MBS duration, and term premium is illustrated on Figure 4.33

Demand and supply as return predictors. Proposition 3 states that higher (lower) end-user de-
mand for receiving fixed and lower (higher) intermediary supply of pay-fixed swaps are associated
with higher (lower) expected returns on the short position in the swap arbitrage trade. To gauge the
respective effects of end-user demand and intermediary supply, we regress swap arbitrage returns
on our demand and supply factors:

r
s(30)
t→t+h = α + β1 · Demandt + β2 · Supplyt + εt→t+h (42)

As reported in Panel A of Table 5, the demand factor strongly predicts returns to the 30-year
swap spread trade at both 3-month and 12-month horizons. As reported in Panel B, demand
also predicts returns to 10-year swap spread trade, albeit with lower statistical significance. The
negative sign of the estimated β1 coefficient implies that a higher level of the demand factor
corresponds to higher expected returns on the short position in the swap arbitrage trade, in line
with our model’s prediction. The R2 of the predictive regression for 3-month returns on the 30-
year swap spread trade reaches 13.0%, similar to that in Table 1.

By contrast, the supply factor is not statistically significant in the predictive regressions. Our
theoretical framework helps explain the fact that supply is not a strong predictor of returns to
swap arbitrage at short-horizons even though it makes an important contribution to variation in
the level of swap spreads. First, note that, in contrast to demand shocks, supply shocks move the
shadow value of intermediary capital and compensation for bearing swap spread risk in opposite
directions. This mitigates the effect of supply shifts on expected returns at short horizons. At the
same time, as discussed above, the effect of supply shocks on expected returns is persistent. Thus,
even though they have smaller effects on expected returns at short-horizons, supply shifts have a
substantial effect on the average expected return over the life of the swap which determines the
level of swap spreads.34

33While we offer a different demand-and-supply based interpretation, this observation is related to Du et al. (2022)
who note that PD-UST-Nett is low when the yield curve is steep. By contrast, the model in Jermann (2020) makes
the opposite prediction of what we find in the data. In his model, a higher term premium should be associated with
higher values of PD-UST-Nett and lower (more negative) values of s(30)t .

34Our demand and supply factors are a rotation of s(30)t and PD-Net-USTt. Thus, the predictive power of these
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Maturity-specific demand factors. In Internet Appendix B.3, we extend our theory to allow end-
users’ demand to receive fixed to be driven by two separate factors: a factor controlling demand
for shorter-dated swaps and a factor controlling demand for longer-dated swaps. As before, we
assume that a single group of risk-averse and leverage-constrained swap intermediaries absorbs the
net end user demand at each maturity, hedging the resulting interest-rate risk by taking offsetting
positions in like-maturity Treasuries. The spreads on n-year swap spreads take the form

s
(n)
t = A

(n)
0 + A(n)

m zmt + A
(n)
d,Sz

d,S
t + A

(n)
d,Lz

d,L
t + A(n)

w zwt , (43)

where zd,St and zd,Lt are the short- and long-dated demand factors.
As explained in Internet Appendix C, we set identify the short-dated demand factor, the long-

dated demand factor, and supply shocks in a structural VAR that includes the 5-year swap spread
(s(5)t ), the 30-year swap spread (s(30)t ), primary dealers’ net position in Treasuries with maturities
of 6 years or less (d̂St = −x̂St ), and primary dealers’ net position in Treasuries with maturities over
6 years (d̂Lt = −x̂Lt ). We achieve set identification by imposing a set of sign and monotonicity
restrictions implied by our theory. Specifically, since our theory does not make unambiguous
predictions about how zd,St and zd,Lt should impact the shape of the swap spread curve, our key
identifying assumption is simply that shocks to short-dated (long-dated) end-user demand has a
greater impact on primary dealers’ net position in short-dated (long-dated) Treasuries.

Our estimated short-dated demand factor explains 39% of the residual variation in 5-year swap
spreads and only 6% of the variation in the 30-year swap spread at a 1-year horizon. By contrast,
the long-dated demand factor explains only 3% of the 1-year residual variation in 5-year spreads
and 70% of the variation in 30-year spreads.

To shed light on the underlying drivers of end-user demand for short- and long-dated swaps,
Table A-1 of the Internet Appendix reports regressions of 3-month changes in our two estimated
demand factors on changes in MBS duration, the Klingler and Sundaresan (2019) pension under-
funding measure, and corporate bond issuance. Our results suggest that MBS duration and other
related convexity-driven flows play a major role in driving the demand for both short- and long-
maturity swaps. However, consistent with the argument in Klingler and Sundaresan (2019), we
find that pension underfunding primarily influences the demand for long-dated swaps.

5 Conclusion

We develop a tractable model in which long-term swap spreads are shaped by end users’ net de-
mand for and constrained intermediaries supply of swaps. Even if swaps are completely redundant,

two sets of factors is the same by construction. Interestingly, as shown in columns (2) and (4), PD-Net-USTt contains
incremental information about expected returns beyond that contained in s(30)t . Why is this the case? First, fluctua-
tions in the short-rate differential (mt) mean that long-term LIBOR swap spreads are not a sufficient statistic for the
expected long-run returns on the swap spread trade. Second, even if mt ≡ 0, PD-Net-USTt will contain incremental
information about 1-period-ahead returns so long as demand and supply shocks have different persistences. If supply
shocks are more persistent, we would expect PD-Net-USTt to attract a negative coefficient in this bivariate regression.
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non-zero spreads arise when constrained intermediaries must accommodate end-user demand for
swaps in equilibrium. Long-term swap spreads reflect both compensation for using scarce inter-
mediary capital and compensation for bearing convergence risk—i.e., the risk that spreads will
move against intermediaries due to an unexpected future imbalance between demand and supply.

We find that a proxy for intermediated quantities in the swap market—primary dealers’ net
position in U.S. Treasuries—flipped sign at the height of the GFC, at the same time when long-
term swap spreads turned negative. Consistent with the importance of convergence risk, this proxy
for intermediated quantities predicts the excess returns on long-dated swap spread trades. Using
this quantity proxy, we identify shifts in end-user demand and intermediary supply, and find that
both contribute significantly to the volatility of long-term swap spreads, while only demand is
powerful in forecasting short-term returns on swap spread arbitrage.

While we have applied our framework to study long-dated swap spreads, in the future it could
be used to explore other long-dated near-arbitrage spreads, including deviations from covered
interest rate parity and the CDS-bond basis.
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Table 1: Forecasting returns to the 30-year swap spread trade from 2009m1 to 2020m6: This
table reports slope coefficients from regressions of the form

r
s(30)
t→t+h = α+ β1 · PD-UST-Nett + β2 · PD-UST-Creditt + γ1 · ST-OIS-Spreadt + γ ′2xt + εt→t+h.

We regress the returns to the 30-year swap spread trade on Primary Dealers’ net position in nomi-
nal coupon-bearing Treasury securities (PD-UST-Nett), Primary Dealers’ outstanding balances of
Treasury securities in through financing arrangements (PD-UST-Creditt), the spread between the
3-month OIS rate and the 3-month T-bill rate (ST-OIS-Spreadt), and controls. Controls include the
Federal Reserve’s holdings of coupon-bearing Treasury securities, the 12-month moving average
of the gross issuance of coupon-bearing Treasuries, and Primary Dealers’ net position in corporate
bonds. The holding period is equal to h = 13 weeks (3 months) in columns 1 to 4 and to h = 52
weeks (12 months) in columns 5 to 8. Data are weekly and run from January 2009 to June 2020 in
Panel A and from January 2009 to June 2018 in Panel B. Newey and West (1987) t-statistics com-
puted with 20 lags for 3-month return regressions and 78 lags for 12-month return regressions are
reported in parentheses. We compute the associated p-values using the fixed-b asymptotic theory
of Kiefer and Vogelsang (2005). ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and
10% levels, respectively.

h = 3-month returns h = 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Sample from 2009m1 to 2020m6

PD-UST-Nett 0.172 -1.064 0.243 -0.837 -1.747 -5.039∗∗∗ -1.226 -4.053∗∗

(0.47) (1.47) (0.62) (1.12) (1.57) (3.33) (1.04) (2.81)

PD-UST-Creditt -0.169 -0.392∗∗∗ -1.243∗∗ -1.703∗∗∗

(1.09) (2.78) (3.06) (5.00)

ST-OIS-Spreadt 0.833 0.362 0.163 0.853 -17.155 -26.064∗∗ -22.096 -23.931∗∗

(0.22) (0.09) (0.04) (0.23) (1.18) (2.45) (1.70) (2.61)

Controls No Yes No Yes No Yes No Yes
Adjusted R2 -0.001 0.043 0.010 0.086 0.075 0.141 0.231 0.327
N 599 599 599 599 599 599 599 599

Panel B: Sample from 2009m1 to 2018m6

PD-UST-Nett -1.580∗∗∗ -3.036∗∗∗ -1.610∗∗∗ -2.901∗∗∗ -4.965∗∗ -7.437∗∗∗ -5.142∗∗∗ -6.752∗∗∗

(3.75) (4.53) (3.79) (4.39) (2.72) (4.19) (3.45) (5.72)

PD-UST-Creditt -0.200 -0.294∗∗ -1.179∗ -1.491∗∗∗

(1.11) (2.41) (2.18) (5.49)

ST-OIS-Spreadt 8.064∗∗ 4.933 7.438∗∗ 4.473 -1.440 -15.183 -5.133 -17.518
(2.20) (1.57) (2.14) (1.47) (0.07) (1.14) (0.31) (1.60)

Controls No Yes No Yes No Yes No Yes
Adjusted R2 0.132 0.178 0.149 0.205 0.216 0.379 0.348 0.526
N 495 495 495 495 495 495 495 495
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Table 2: Forecasting returns to 30-year and 10-year swap spread trades from 2009m1 to
2018m6: This table reports the slope coefficients from regressions of the form

r
s(n)
t→t+h = α+ β1 · PD-UST-Nett + β2 · PD-UST-Creditt + γ1 · ST-OIS-Spreadt + γ ′2xt + εt→t+h

for n = 10 and 30. We regress returns to swap spread trades on Primary Dealers’ net position
in nominal coupon-bearing Treasury securities (PD-UST-Nett), Primary Dealers’ outstanding bal-
ances of Treasury securities in through financing arrangements (PD-UST-Creditt), and the spread
between the 3-month OIS rate and the 3-month T-bill rate (ST-OIS-Spreadt). Returns are for the
n = 30-year swap spread trade in Panel A and for the n = 10-year swap spread trade in Panel
B, and the holding period is equal to h = 13 weeks (3 months) in columns 1 to 4 and to h = 52
weeks (12 months) in columns 5 to 8. Data are weekly and run from January 2009 to June 2018.
Newey and West (1987) t-statistics computed with 20 lags for 3-month return regressions and 78
lags for 12-month return regressions are reported in parentheses. We compute the associated p-
values using the fixed-b asymptotic theory of Kiefer and Vogelsang (2005). ∗∗∗, ∗∗, and ∗ denote
statistical significance at the 1%, 5%, and 10% levels, respectively.

h = 3-month returns h = 12-month returns

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Returns on the 30-year swap spread trade, rs(30)t→t+h

PD-UST-Nett -1.580∗∗∗ -1.610∗∗∗ -4.965∗∗∗ -5.142∗∗∗

(3.75) (3.79) (2.72) (3.45)

PD-UST11+-Nett -7.286∗∗∗ -7.930∗∗∗ -13.117 -16.262∗

(3.52) (4.05) (1.59) (2.24)

PD-UST-Creditt -0.200 -0.263 -1.179∗ -1.283∗∗

(1.11) (1.50) (2.18) (2.46)

ST-OIS-Spreadt 8.064∗∗ 7.438∗∗ 9.096∗∗ 8.482∗∗ -1.440 -5.133 -2.057 -5.058
(2.20) (2.14) (2.30) (2.33) (0.07) (0.31) (0.11) (0.30)

Adjusted R2 0.132 0.149 0.134 0.164 0.216 0.348 0.076 0.228
N 495 495 495 495 495 495 495 495

Panel B: Returns on the 10-year swap spread trade, rs(10)t→t+h

PD-UST-Nett -0.207 -0.227 -0.964 -1.017∗

(0.94) (1.38) (1.66) (2.34)

PD-UST11+-Nett -1.519∗∗ -1.890∗∗∗ -1.637 -2.523
(2.20) (3.71) (0.78) (1.36)

PD-UST-Creditt -0.134∗∗ -0.151∗∗∗ -0.348∗∗ -0.361∗∗

(2.73) (3.13) (3.25) (2.68)

ST-OIS-Spreadt 1.806 1.385 2.164 1.810 -1.012 -2.103 -1.492 -2.337
(1.31) (1.18) (1.60) (1.68) (0.24) (0.65) (0.35) (0.70)

Adjusted R2 0.027 0.097 0.052 0.138 0.113 0.267 0.021 0.182
N 495 495 495 495 495 495 495 495

46



Table 3: Fama-Bliss style forecasting regressions: This table reports the slope coefficients from
regressions of the form

r
s(n)
t→t+h − r

s(n′)
t→t+h = α + β · (s(n)t − s

(n′)
t ) + εt→t+h,

where n > n′. In words, we regress the excess returns on a longer-dated swap spread trade over
a shorter-dated trade (rs(n) − rs(n′)) on the corresponding difference between longer- and shorter-
dated swap spreads (s(n)t − s

(n′)
t ). The holding period is equal to h = 13 weeks (3 months) in

columns 1 to 3 and to h = 52 weeks (12 months) in columns 4 to 6. Data are weekly and run from
January 2009 to June 2020 in Panel A and from January 2009 to June 2018 in Panel B. Newey
and West (1987) t-statistics computed with 20 lags for 3-month return regressions and 78 lags
for 12-month return regressions are reported in parentheses. We compute the associated p-values
using the fixed-b asymptotic theory of Kiefer and Vogelsang (2005). ∗∗∗, ∗∗, and ∗ denote statistical
significance at the 1%, 5%, and 10% levels, respectively.

h = 3-month returns h = 12-month returns

(1) (2) (3) (4) (5) (6)
rs(30) − rs(1) rs(10) − rs(1) rs(30) − rs(10) rs(30) − rs(1) rs(10) − rs(1) rs(30) − rs(10)

Panel A: Sample from 2009m1 to 2020m6

s
(30)
t − s(1)t 2.550∗∗∗ 12.577∗∗∗

(3.03) (4.97)

s
(10)
t − s(1)t 1.343∗∗∗ 2.988∗∗

(3.58) (2.51)

s
(30)
t − s(10)t 5.674∗∗∗ 21.333∗∗∗

(4.05) (6.58)

Adjusted R2 0.077 0.101 0.140 0.422 0.163 0.454
N 599 599 599 599 599 599

Panel B: Sample from 2009m1 to 2018m6

s
(30)
t − s(1)t 2.061∗∗ 11.143∗∗∗

(2.33) (4.36)

s
(10)
t − s(1)t 1.284∗∗∗ 2.940∗

(3.19) (2.30)

s
(30)
t − s(10)t 4.726∗∗∗ 18.623∗∗∗

(3.12) (5.62)

Adjusted R2 0.063 0.098 0.120 0.381 0.168 0.384
N 495 495 495 495 495 495
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Table 4: Demand and supply drivers of 30-year swap spreads from 2009m1 to 2018m6: This
table reports the slope coefficients from regressions of, respectively, the 30-year swap spread
(columns 1 to 3), the demand contribution to spreads (columns 4 to 6), the supply contribution
to spreads (columns 7 to 9), and PD-UST-Nett (columns 10 to 12) on the modified duration of
the Barclays U.S. MBS index (MBS-Durationt), the Klingler and Sundaresan (2019) pension un-
derfunding factor (Pension-UFRt), corporate bond issuance (Corp-Issuancet), primary dealers’
equity capital ratio (PD-Capitalt) from He et al. (2017), the 10-year U.S. sovereign credit default
swap spread (UST-CDS-Spreadt), the Adrian et al. (2013) term premium (Term-Prem-ACMt), the
VXTY Treasury volatility index (UST-Implied-Volt), the VIX volatility index (SP-Implied-Volt),
and the Hu et al. (2013) yield curve fitting error (UST-Curve-Noiset). Variables are in levels in
Panel A and in 13-week changes in Panel B. Data are weekly and run from January 2009 to June
2018. Newey and West (1987) t-statistics are reported in parentheses and are computed with 78
lags in Panel A and with 20 lags in Panel B. We compute the associated p-values using the fixed-b
asymptotic theory of Kiefer and Vogelsang (2005). ∗∗∗, ∗∗, and ∗ denote statistical significance at
the 1%, 5%, and 10% levels, respectively.

s
(30)
t s

(30)
t : Demand contrib. s

(30)
t : Supply contribution PD-UST-Nett

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Panel A: Levels

MBS-Durationt 5.557∗ 2.844 2.713∗ -0.547
(2.24) (1.70) (2.23) (0.11)

Pension-UFRt -1.991 -1.138 -0.853 0.943
(1.30) (1.11) (1.09) (0.30)

Corp-Issuancet -0.250 -0.286∗ 0.036 1.014∗

(1.88) (2.37) (0.59) (2.33)

PD-Capitalt -0.026 -1.477 1.451 9.167∗

(0.02) (1.13) (1.66) (2.05)

UST-CDS-Spreadt -0.204 -0.167 -0.037 0.412
(1.23) (1.83) (0.38) (1.50)

Term-Prem-ACMt 10.663∗ 9.782∗∗∗ 0.881 -28.127∗∗∗

(2.20) (3.88) (0.34) (5.55)

UST-Implied-Volt -3.383 -1.235 -2.148∗ -2.777
(1.79) (1.11) (2.21) (0.98)

SP-Implied-Volt 0.143 0.091 0.052 -0.127
(0.31) (0.36) (0.21) (0.22)

UST-Curve-Noiset -0.336 -0.206 -0.129 0.248
(0.38) (0.39) (0.29) (0.20)

Adjusted R2 0.283 -0.002 0.234 0.211 0.040 0.476 0.288 0.067 0.170 0.165 0.136 0.582
N 495 495 495 495 495 495 495 495 495 495 495 495

Panel B: 3-month changes

∆13MBS-Durationt 3.728∗∗∗ 3.062∗∗∗ 0.665 -7.594∗∗

(5.01) (4.93) (1.08) (2.44)

∆13Pension-UFRt -1.057 -1.415∗∗ 0.359 5.579∗∗∗

(1.46) (2.61) (1.00) (3.14)

∆13Corp-Issuancet -0.114∗∗ -0.088∗∗ -0.025 0.200
(2.36) (2.14) (0.90) (1.23)

∆13PD-Capitalt 4.362∗∗∗ 5.523∗∗∗ -1.161 -21.032∗∗∗

(2.76) (5.94) (1.14) (5.90)

∆13UST-CDS-Spreadt -0.146 -0.055 -0.091 -0.112
(1.56) (0.93) (1.42) (0.45)

∆13Term-Prem-ACMt 3.509 5.736∗∗∗ -2.227 -25.016∗∗∗

(1.11) (2.80) (1.04) (2.91)

∆13UST-Implied-Volt 0.937 0.221 0.716 1.526
(1.17) (0.31) (1.52) (0.53)

∆13SP-Implied-Volt -0.003 -0.048 0.045 0.293
(0.01) (0.29) (0.45) (0.44)

∆13UST-Curve-Noiset 0.554 0.483 0.071 -1.304
(0.65) (0.75) (0.20) (0.68)

Adjusted R2 0.196 0.085 0.058 0.290 0.234 0.115 0.022 0.014 0.062 0.179 0.219 0.133
N 482 482 482 482 482 482 482 482 482 482 482 482

48



Table 5: Forecasting swap spread trade returns using the demand and supply factors: This
table reports the slope coefficients from regressions of the form

r
s(n)
t→t+h = α + β1 · Demandt + β2 · Supplyt + εt→t+h

for n = 10 and 30 years. In words, we regress the returns to the n-year swap spread trade
on the estimated demand factor (Demandt) and the supply factor (Supplyt). We also report the
coefficients from the corresponding regressions on PD-UST-Nett and s(30)t which have the same
R2 by construction. Returns are for the 30-year swap spread trade in Panel A and for the 10-year
swap spread trade in Panel B. The holding period is equal to h = 13 weeks (3 months) in columns
1 and 2 and to h = 52 weeks (12 months) in columns 3 and 4. Data are weekly and run from
January 2009 to June 2018. Newey and West (1987) t-statistics computed with 20 lags for 3-
month return regressions and 78 lags for 12-month return regressions are reported in parentheses.
We compute the associated p-values using the fixed-b asymptotic theory of Kiefer and Vogelsang
(2005). ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

h = 3-month returns h = 12-month returns

(1) (2) (3) (4)

Panel A: Returns on the 30-year swap spread trade, rs(30)t→t+h

Demandt -13.752∗∗∗ -55.944∗∗∗

(3.51) (6.06)

Supplyt -1.646 9.666
(0.37) (0.71)

PD-UST-Nett -1.096∗∗∗ -3.304∗∗

(2.75) (2.86)

s
(30)
t 2.677∗ 14.531∗∗∗

(1.92) (3.93)

Adjusted R2 0.130 0.130 0.508 0.508
N 495 495 495 495

Panel B: Returns on the 10-year swap spread trade, rs(10)t→t+h

Demandt -2.684∗ -11.707∗∗∗

(1.93) (4.41)

Supplyt 2.063 3.356
(1.03) (0.85)

PD-UST-Nett -0.046 -0.597
(0.23) (1.44)

s
(30)
t 1.053∗∗ 3.337∗∗∗

(2.46) (4.56)

Adjusted R2 0.069 0.069 0.317 0.317
N 495 495 495 495
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Figure 1: Swap spreads and primary dealer’s net Treasury position: Panel A shows the 30-year
LIBOR swap spread and primary dealers’ net position in coupon-bearing Treasury securities (PD-
UST-Nett). Panel B shows 30-year SOFR, 30-year OIS, and 30-year LIBOR swap spreads. Panel
C shows 2-year LIBOR, 10-year LIBOR, and 30-year LIBOR swap spreads. Data are weekly and
run from July 2001 to June 2020.
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Figure 2: Term structures of swap spreads: This figure shows average LIBOR, OIS, and SOFR
swap spreads at 1-, 2-, 3-, 5-, 10-, 20 and 30-year maturities for subsamples starting in January
2009 (Panel A), January 2013 (Panel B) and January 2019 (Panel C), and ending in June 2020.
Data are weekly.
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Figure 3: Swap spread historical decomposition: This figure shows the 30-year swap spread
minus its sample average (Swap spread), and the respective contributions of the demand factor
(Demand contribution) and the supply factor (Supply contribution) in s(30)t −E[s

(30)
t ] = Âdẑ

d
t +

Âwẑ
w
t . The underlying data are weekly and run from January 2009 to June 2018.
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Figure 4: Swap demand and MBS duration: This figure shows the the modified duration of the
Barclays U.S. MBS index (MBS duration), the Adrian et al. (2013) term premium (Term premium)
and the swap demand factor (Demand factor). Data are weekly and run from January 2009 to June
2018.
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A Proofs and derivations for the baseline model
Proof of Theorem 1. We write the conjectured form of swap spreads from (17) as

st = A0 + a′szt,

where as = [Am, Ad, Aw]′. We can also generalize our affine equilibrium to a generic VAR(1) data-generating
process zt+1 = %zt +εt+1, where % and Vart[εt+1] = Σ are potentially non-diagonal. Doing so yields the following
fixed-point condition for as:

as=

F(as)︷ ︸︸ ︷[
(1−δ)−1 (I−δ%′) + αγ

((
κx
κo

)2

σ2
o+V (as)

)
I

]−1 [
em−κx

ασ2
o

κ2o
(κxed−ew)−αV (as) ed

]
, (A-1)

where I denotes the 3× 3 identity matrix, em = (1, 0, 0)
′, ed = (0, 1, 0)

′, ew = (0, 0, 1)
′, and

V (as) =

(
δ

1− δ

)2

a′sΣas (A-2)

is the conditional variance of st. Letting a∗s = F (a∗s) denote a solution to this fixed-point problem, we then have

A∗0 =
m− κx ασ

2
o

κ2
o

(
κo

ro
ασ2

o
+ κxd− w

)
− αV (a∗s) d

1 + αγ

[(
κx

κo

)2
σ2
o + V (a∗s)

] . (A-3)

In the special case where % and Σ are diagonal, equations (A-1) and (A-3) simplify to the expressions given in
(19b)-(20).

To understand the relevant cases for equilibrium existence and multiplicity, we rewrite (20) to emphasize the
dependence of the Ai coefficients given in (19b) on (19d) on V :

V = F (V ) ≡
(

δ

1− δ

)2 [
σ2
d (Ad [V ])

2
+ σ2

m (Am [V ])
2

+ σ2
w (Aw [V ])

2
]

. (A-4)

Thus, the system of equations a∗s = F (a∗s) collapses to a scalar fixed-point problem in V ≥ 0. An equilibrium is
stable if it is robust to small perturbations in intermediaries’ beliefs about volatility. Formally, an equilibrium with
volatility V ∗ = F (V ∗) is stable if and only if F ′ (V ∗) < 1—i.e., if the function F (V ) crosses the 45-degree line
from above at V = V ∗.

We first consider the case where γ = 0. When γ = 0, Am [V ] and Aw [V ] are positive constants. If, in
addition, ασ2

d = 0, then σ2
d (Ad [V ])

2
= 0, so F (V ) is constant, and there exists exactly one valid solution to (A-

4) and it is stable. However, when ασ2
d > 0, |Ad [V ]| is linearly increasing in V , with limV→0 |Ad [V ]| > 0 and

limV→∞ |Ad [V ]| =∞, so F (V ) is a quadratic function of V . In this case, it is easy to show that (i) there are either
zero or two real roots both of which are non-negative, (ii) the two real roots exist if and only if intermediary risk
aversion α is below a threshold α∗ > 0, and (iii) the solution with lower volatility is always stable (i.e., F ′ (V ∗) < 1
at this solution) whereas the solution with higher volatility equilibrium is unstable (i.e., F ′ (V ∗) > 1 at this solution).

Staying with the case where γ = 0 and ασ2
d > 0, we next discuss the equilibrium a∗s coefficients in a few special

cases to better understand the intuition. In particular:

1. If κx = 0 and mt = σm = 0, we have A∗m = A∗d = A∗w = 0 in the unique stable equilibrium. However,
there is an unstable equilibrium with A∗d < 0. This is analogous to the unstable equilibrium in De Long et al.
(1990) where LoOP fails because all arbitrageurs think it will fail in the future. However, this equilibrium is
not robust to small perturbations in intermediary beliefs.

2. If κx = 0 and σm > 0, we have A∗m > 0, A∗d < 0, and A∗w = 0 in the unique stable equilibrium. This is just a
standard Vayanos and Vila (2021)-style equilibrium with random net supply and a risky fundamental (i.e., the
short-rate differential).

3. If κx > 0, σw > 0, and mt = σm = 0, we have A∗m = 0, A∗d < 0, and A∗w > 0 in the unique stable
equilibrium. This is just a standard Vayanos and Vila (2021)-style equilibrium with random supply and a
stochastic shadow value of intermediary capital which functions like a risky fundamental.

4. Finally, if κx > 0, σw > 0, and σm > 0, we have A∗m > 0, A∗d < 0, and A∗w > 0 in the unique stable
equilibrium.
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We next consider the case where γ > 0. When γ > 0, Am [V ] and Aw [V ] are decreasing and have finite
limits when V → 0 and V → ∞. In particular, limV→0Am [V ], limV→0Aw [V ] > 0, and limV→∞Am [V ] =
limV→∞Aw [V ] = 0. On the other hand, |Ad [V ]| is increasing in V and has limits limV→0 |Ad [V ]| > 0 and
limV→∞ |Ad [V ]| = 1/γ <∞. Thus, the RHS of (A-4) must cross the 45-degree line at least once from above as we
increase V from zero to∞. Therefore, when γ > 0 a stable equilibrium in which V ≥ 0 always exists.

If γ > 0 and ασ2
d = 0, this solution is unique. When γ > 0 and ασ2

d > 0, however, we can have multiple
equilibria as above. In fact, when we also have κx > 0, σ2

w > 0, and σ2
m > 0, the fixed-point problem (A-4) is

equivalent to finding the roots of a 7th-order polynomial in V . (For SOFR swaps, where σ2
m = 0, this reduces to a

5th-order polynomial). We have shown above that this polynomial always has at least one positive real root that is
stable. And, while there can be multiple solutions that are positive and stable in this case, all solutions but the smallest
solution diverge in the limit where σ2

d → 0—i.e., we have V ∗ → ∞ as σ2
d → 0 for these solutions. By contrast, the

smallest solution remains finite in the limit where σ2
d → 0.

Proof of Proposition 1. Let m∗ = κx
((
ασ2

o

)
/κ2o
) [
κo
(
ro/

(
ασ2

o

))
+ κxd− w

]
+ αV d. From (19a), it is imme-

diate that A0 < 0 as long as m < m∗.

Proof of Proposition 2. From (9), market clearing, and (15), we have Et[r
Spread
t+1 ] = −κx · ψt − αV · dt. The

expression for ψt follows from (12) and (15).

Proof of Proposition 3. The results on the Bi, i = {m, d,w}, coefficients follow directly from the the definition of
swap returns and the equilibrium coefficients (19b)-(19a).

Proof of Proposition 4. From (19a), ∂E[st] /∂r̄o = −κx · ∂E[ψt] /∂r̄o = ∂A0/∂r̄o < 0 since an increase in r̄o
lowers the numerator of A0 but does not affect the denominator. When γ > 0, we have |E [xt]| = |E [dt]| = d̄+ γA0,
which is also decreasing in r̄o.

Proof of Proposition 5. Equation (22) follows from the definition of mt, (7), and (17). Equation (23) follows from
combining (22) with (16).
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B Additional theoretical results

B.1 Alternate specification for the outside investment opportunity
Assume that instead of the risky outside investment opportunity with expected return r̄o and variance σ2

o, intermedi-
aries have access to a riskless outside arbitrage opportunity with a certain 1-period return. However, we assume that
this riskless arbitrage return is decreasing in the amount of swap intermediary capital committed to this outside op-
portunity. As before we assume that swap intermediaries are subject to a leverage constraint: the more intermediaries
invest in the swap spread trade the less they can invest in the riskless outside arbitrage opportunity.

Intermediaries’ optimization problem can be written as

max
xt, at

{
Et [wt, t+1]− α

2
Vart [wt, t+1]

}
, (A-5)

subject to the budget constraint
wt, t+1 = wt + xtr

s
t+1 + atr

a
t+1 (A-6)

and the leverage constraint
κx |xt|+ κa |at| ≤ wt, (A-7)

where rst+1 is given by (3) while
rat+1 ≡ r̄a − λaat, (A-8)

with r̄a, λa > 0. This latter assumption can be microfounded by assuming that intermediaries exploit an arbitrage
opportunity across two segmented markets and that their position in the long-short arbitrage affects the return on the
arbitrage strategy in the spirit of Gromb and Vayanos (2002) and Kondor (2009).

As before, letting ψt ≥ 0 denote the Lagrange multiplier associated with the leverage constraint (A-7), interme-
diaries’ first-order condition for xt is

Et[rst+1] = κxsgn (xt) · ψt + αVt · xt, (A-9)

where Vt ≡ Vart[rst+1] =
(

δ
1−δ

)2
Vart[st+1] is the conditional variance of rst+1. Similarly, the first order condition

for at is
rat+1 = r̄a − λaat = κasgn (at) · ψt. (A-10)

Since r̄a > 0 and ψt ≥ 0, we must have at ≥ 0, implying that the Lanrange multiplier is

0 ≤ ψt =
λa
κa

(
r̄a
λa
− at

)
= max

{
0,
λa
κ2a

(
κa
r̄a
λa

+ κx |xt| − wt
)}

. (A-11)

This is isomorphic to the expression in our baseline model setting r̄o = r̄a, κo = κa, and ασ2
o = λa. In sum, there

are alternative microfoundations that yield similar specifications for intermediaries’ supply of swaps.

B.2 Term structure model
B.2.1 Model
Since it features a single long-term perpetual swap, our baseline model does not deliver specific implications for the
full term structure of swap spreads. In order to study this term structure in a simple fashion, we introduce a series
of n-period zero-coupon swaps alongside the perpetual swap. We then take the limit as net end-user demand for
these zero-coupon swaps goes to zero. Using this approach, we can derive the spreads on these non-traded n-period
zero-coupon swaps from intermediaries’ first order conditions.
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A position in the n-period swap spread trade receives the fixed rate on an n-period zero-coupon swap and hedges
the associated interest rate risk by going short n-period zero-coupon Treasury bonds. As a result, the return on this
n-period receive-fixed spread trade is

r
s(n)
t+1 = ns

(n)
t − (n− 1) s

(n−1)
t+1 −mt, (A-12)

where s(n)t ≡ yS(n)t −yT (n)
t —i.e., the n-period zero-coupon swap spread is defined as the between the n-period swap

yield, yS(n)t , and the n-period Treasury yield, yT (n)
t .35

General analysis. Intermediaries maximize

max
ot,xt,{x(n)

t }Nn=1

Et [wt,t+1]− α

2
Vart [wt,t+1] , (A-13)

subject to the budget constraint

wt,t+1 = wt + xtr
s
t+1 +

∑N

n=1
x
(n)
t r

s(n)
t+1 + otr

o
t+1 (A-14)

and the leverage constraint

κx |xt|+ κx
∑N

n=1
|x(n)t |+ κo |ot| ≤ wt. (A-15)

In other words, we now allow intermediaries to take positions in the perpetual long-term swap as well as in n-period
zero-coupon swaps for n = 1, ..., N .36

The first-order condition for the position in n-period swaps (x(n)t ) is

Et[r
s(n)
t+1 ] = αCovt[r

s(n)
t+1 , wt,t+1] + κxsgn(x

(n)
t ) · ψt. (A-16)

The first-order conditions for the position in the perpetual swap (xt) and the outside investment opportunity (ot) are

Et[rst+1] = αCovt[rst+1, wt,t+1] + κxsgn (xt) · ψt and (A-17)
ro = ασ2

o · ot + κosgn (ot) · ψt. (A-18)

Since ro > 0 and ψt ≥ 0, we must have ot ≥ 0, and in turn we have

ψt = ψ

(
wt, |xt|+

∑N

n=1
|x(n)t |

)
= max

{
0,
ασ2

o

κ2o

(
κo

ro
ασ2

o

+ κx

(
|xt|+

∑N

n=1
|x(n)t |

)
− wt

)}
.

To compute equilibrium swap spreads, we impose market clearing, setting xt = −dt and x(n)t = −d(n)t for all
n. To close the model a parsimonious way, we assume the same demand process for the perpetual swap dt introduced
above in (7) and then take the limit as d(n)t approaches zero from one side. Taking this one-sided limit as positions in
the n-maturity swaps grow small is necessary to preserve the terms relating to balance sheet costs.37

Taking this limit, we obtain

Et[r
(n)
t+1]︷ ︸︸ ︷

ns
(n)
t − (n− 1)Et[s

(n−1)
t+1 ]−mt = −αCovt[r

s(n)
t+1 , r

s
t+1]dt − sgn(d

(n)
t )κxψt. (A-19)

where C(n)t ≡ Covt[r
s(n)
t+1 , r

s
t+1] = (n− 1) δ

1−δCovt[s
(n−1)
t+1 , st+1] is the risk of n-period swaps captured by their

return co-movement with the return on the long-maturity swap, and we have used the fact that under our assumptions

35The return on an n-period zero coupon swap from t to t+1 is rS(n)t+1 ≡ ny
S(n)
t −(n− 1) y

S(n−1)
t+1 −iSt where yS(n)t

is the n-period zero-coupon swap yield at time t. Similarly, the excess return on an n-period zero-coupon Treasury is
r
T (n)
t+1 ≡ ny

T (n)
t − (n− 1) y

T (n−1)
t+1 − iTt where yT (n)

t is the n-period zero-coupon Treasury yield at time t. Thus, the
return on the n-period swap spread arbitrage trade takes the form given above.

36A simplifying assumption here is that all swap spread arbitrage positions have the same margin requirement
κx irrespective of maturity n. Allowing these margin requirements to vary by maturity would introduce additional
complexity without qualitatively changing our results.

37There are other ways we could close the model. Specifically, we could set dt ≡ 0 and specify a demand process
for the set of swap maturities {d(n)t }Nn=1. This approach would allow us to consider separate shocks to the demand
for swaps with different maturities. We have opted to close the model in a more parsimonious way here since we
are primarily interested in how the general level of demand for long-term swaps impacts the term structure of swap
spreads. However, below we will extend our model to allow for multiple demand factors.
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the equilibrium Lagrange multiplier at time t is a function of only wt and |dt|, i.e., ψ (wt, |dt|). This expression
naturally generalizes equation (13). Iterating this equation forward, we obtain the following expression the n -period
swap spread

s
(n)
t =

Expected short-rate differentials︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[mt+k] +

Expected compensation for using scarce capital︷ ︸︸ ︷
n−1

∑n−1

k=0
Et[(−κx) sgn(d

(n−k)
t )ψ (wt+k, |dt+k|)] (A-20)

+n−1
∑n−1

k=0
Et[(−α) C(n−k)t+k dt+k]︸ ︷︷ ︸ ,

Expected compensation for risk

which generalizes equation (14).
Consider the spreads on 1-period swaps, s(1)t . Since the return on a 1-period swap spread trade is riskless, we

have C(1)t = 0 implying that
s
(1)
t = mt + (−κx) sgn(d

(1)
t )ψ (wt, |dt|) . (A-21)

Thus, the short-dated spread is the sum of the current short-rate differential (mt) and a term that is proportional to
the current shadow cost of intermediary capital (ψt ≥ 0). If the net demand to receive fixed is always positive for all
maturities n—i.e., sgn(d

(n)
t ) = sgn(dt) = 1 for all t and n, then s(1)t = mt−κxψt and s(n)t = n−1

∑n−1
k=0 Et[s

(1)
t+k]+

n−1
∑n−1
k=0 Et[(−α) C(n−k)t+k dt+k]. In this case, the short-term swap spread s(1)t plays a role that is analogous to that

played by short-term interest rates in traditional term structure models.
Assume that mt ≡ 0 for all t as is the case for a SOFR swap, so that any frictionless model would predict that

s
(n)
t = 0 for all n and t by the LoOP. Naturally, this obtains in our model in the limit where κx = 0. However, when
κx > 0, swap spreads will no longer be zero due to the potential for binding intermediary capital constraints. Indeed,
the current short-term spread (s(1)t ) reveals the current shadow value of intermediary capital (ψt) up to a constant of
proportionality. If mt ≡ 0, short-dated spreads will be zero at t only if the constraint is slack at t (ψt = 0).

Now consider the spreads on swaps with n ≥ 2 periods and continue to assume that mt ≡ 0 for all t. Crucially,
s
(n)
t can still be non-zero for n ≥ 2 and will be impacted by supply and demand even when ψt = 0 today In order

to have s(n)t 6= 0 for n > 1, we only need to have Et[ψt+k] > 0 for some k ≤ n − 1—i.e., the constraint must be
expected to bind sometime over the life of the swap.

Furthermore, even if the constraint is slack at time t, the expected returns from t to t+ 1 for spread arbitrage on
long-dated swaps will be non-zero if there can be news at t + 1 about the severity of future constraints. Specifically,
even if ψt = 0, we can have Et[r

s(n)
t+1 ] = −αCovt[r

s(n)
t+1 , r

s
t+1]dt 6= 0, so long as Vart[Et+1[ψt+k]] > 0 for some

k ≤ n − 1. That is, even if the constraint is slack at t, intermediaries need to be compensated for the risk of
swap spread movements at t + 1 due to news about the tightness of future constraints. Intermediaries still need to
be compensated for bearing demand-and-supply risk between t and t + 1 even when the constraint is not currently
binding.

An affine equilibrium. To obtain an affine model of the term structure of swap spreads, we conjecture that

s
(n)
t = A

(n)
0 +A(n)

m zmt +A
(n)
d zdt +A(n)

w zwt , (A-22)

and impose assumptions (15) and (16). To obtain this solution, we take the upper limit as d(n)t approaches zero from
above for all n—i.e., we assume that intermediaries have a vanishingly small short position in the pay-fixed swap
spread arbitrage for all maturities n. We obtain the following result:

Theorem 2 The equilibrium n-period swap spread is given by

s
(n)
t = A

(n)
0 +A(n)

m zmt +A
(n)
d zdt +A(n)

w zwt , (A-23)

with the exact functional forms of A(n)
0 , A(m)

m , A(n)
d , and A(n)

w provided in Appendix B.2.2.
When γ = 0, A(n)

0 is negative and decreasing in maturity n, A(n)
m and A(n)

w are positive and decreasing in n,
and A(n)

d is negative for all n. A
(n)
d reflects both the (i) expected balance sheet costs and (ii) compensation for

risk over the life of the swap. When the volatility of swap spreads is sufficiently low, (i) dominates and A(n)
d is an

increasing function of maturity n. When the volatility of swap spreads is higher, (ii) dominates. In this case, A(n)
d is

downward-sloping across maturities n when ρd is sufficiently high and is a U-shaped function of maturity n when ρd
is lower.

As shown by (A-20), swap spreads equal the average expected short-rate differential plus the average expected
returns to swap spread arbitrage over the lifetime of a swap. And, the expected returns to swap spread arbitrage reflect
the expected compensation for using scarce capital and the expected compensation for risk.
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For simplicity, we focus on the case where end-user demand is completely inelastic (γ = 0). A key implication
of our model is that the swap spread curve is downward-sloping on average when end-user demand to receive fixed is
positive (dt > 0). This result arises because, at least when end-user demand is completely inelastic (γ = 0), C(n) ≡
Covt[r

s(n)
t+1 , r

s
t+1] is an increasing function of maturity n—i.e., the returns on longer-dated swaps covary more strongly

with the returns on intermediaries’ portfolios—implying that longer-dated swaps are riskier for intermediaries. The
greater average magnitude of longer-dated spreads reflects the greater risk compensation that intermediaries require
on these longer-dated swaps.

Turning to the level of spreads, when E[mt] = m ≥ 0 is sufficiently small, such as for OIS swaps, we have
A

(n)
0 < 0 for all n. When m is sufficiently large, we have A(n)

0 > 0 for all n. In the intermediate case where m is
moderately positive, we have A(n)

0 > 0 for small n and A(n)
0 < 0 for larger n. Thus, a higher interest rate differential

pushes all swap spreads towards positive values, however, the balance sheet cost and the risk compensation terms push
swap spreads towards negative levels. The relative magnitudes of these forces determine the overall sign ofA(n)

0 , with
longer maturity spreads more likely to be negative.

The A(n)
m term reflects variation in the expected future short rate differentials (mt) over the life of the swap and,

thus, is positive and locally downward-sloping across maturities n. Similarly, A(n)
w reflects variation in the impact of

intermediary wealth on expected future balance sheet costs (−κxψt) over the life of the swap and, thus, is positive
and locally downward-sloping across maturities n.

Finally, A(n)
d is negative for all maturities n and reflects both the (i) expected balance sheet costs and (ii) com-

pensation for risk over the life of the swap. When the volatility of swap spreads is sufficiently low, (i) dominates for
all maturities, and A(n)

d is an increasing function of maturity n. When the volatility of swap spreads is higher, (ii)
dominates. In this case, A(n)

d is downward-sloping across maturities n when ρd is sufficiently high and is a U-shaped
function of maturity n when ρd is lower.

When γ > 0, end users submit price-sensitive demands and hence movements in zmt and zwt affect intermediaries’
equilibrium exposure to swaps; this implies that A(n)

m and A(n)
w now also reflect compensation for risk. By continuity,

all of the analytical results for the γ = 0 case continue to hold when end-user demand is somewhat inelastic, i.e., for
γ > 0 sufficiently small. However, the local shape of the swap spread curve can become more complex when γ > 0
is larger, —i.e., when end-user demand is highly elastic, which creates strong feedback effects between current and
expected future swap spreads and can theoretically lead to swap spread curves with oscillatory properties that seem
less empirically realistic.

Expected returns also have a term structure, as follows:

Proposition 8 The expected return on the n-period swap spread trade is given by

Et[r
s(n)
t+1 ] = B

(n)
0 +B(n)

m zmt +B(n)
m zdt +B(n)

w zwt , (A-24)

with the exact functional forms of B(n)
0 , B(m)

m , B(n)
d , and B(n)

w given in Internet Appendix B.2.2.
When end-user demand is completely inelastic (γ = 0), (i) B(n)

0 is negative and decreasing in maturity n, (ii)
B

(n)
m = 0 for all n, (iii)B(n)

d is negative and decreasing in n, and (iv)B(n)
w is positive and constant across maturities.

When end-user demand is somewhat inelastic (γ is positive, but not too large), (i) B(n)
0 < 0, (ii) B(n)

m < 0, (iii)
B

(n)
d < 0, and (iv)B(n)

w > 0. Since C(n) is increasing in n when γ is not too large, all four coefficients are decreasing
in maturity n in this case.

When γ = 0, interest rate differential shocks and supply shocks have the same effect on the expected swap
arbitrage returns for all maturities n, as measured by B(n)

m and B(n)
w , respectively. In fact, B(n)

m = 0 for all maturities
because, just like in the case of the perpetual long-term swap spread, changes in the short-rate differential mt impact
swap cash flows, but do not affect the equilibrium amount of swap spread risk that intermediaries must hold. In turn,
the constancy of B(n)

w reflects the fact that as long as γ = 0, the B(n)
w zwt term in (A-24) purely reflects compensation

for consuming scarce capital, and all swaps, irrespective of maturity, consume the same amount of capital per unit
notional.38 By contrast, the B(n)

d zdt term reflects both compensation for consuming scarce capital and compensation
for risk. The fact that B(n)

d is decreasing in n reflects the fact that longer-term swaps are riskier for intermediaries—
i.e., that C(n) is increasing in n. The fact that longer-dated swaps are riskier also implies that the unconditional average
of expected returns, B(n)

0 , must decline in maturity n.
When end-user demand is somewhat inelastic (γ is positive, but not too large), B(n)

0 , B(n)
m , B(n)

d , and B(n)
w

are each decreasing in n. This decline reflects the facts that (i) Et[r
s(n)
t+1 ] = −αC(n)dt − κxψ (wt, dt), (ii) C(n) is

increasing in n, and (iii) dt = d+ zdt + γst is increasing in zmt , zdt , and zwt when γ > 0.

38Formally, we have (i) Et[r
Spread(n)
t+1 ] = −αC(n)dt−κxψ (wt, dt), (ii) C(n) is increasing in n, and (iii) dt = d+zdt

is independent of zwt when γ = 0. Thus, ∂Et[r
Spread(n)
t+1 ]/∂zwt = −κx · ∂ψt/∂zwt for all n.
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Using this term structure extension of our model, we can further study both the global as well as the local shape
of the spread curve. Our measure of the global shape of the spread curve, st − s

(1)
t , is simply the difference in

spreads between the long-term generic swap—which we associate with a swap with the average duration of end-user
demand—and a 1-period swap. Proposition 6 in the main text summarizes our results.39

We can also examine the local shape of the swap spread curve. We have:

Proposition 9 Using (17) and (A-23), the local slope of the term structure of swap spreads is given by

s
(n)
t − s(n−1)t (A-25)

= (A
(n)
0 −A(n−1)

0 ) + (A(n)
m −A(n−1)

m )zmt + (A
(n)
d −A(n−1)

d )zdt + (A(n)
w −A(n−1)

w )zwt .

When end-user demand is completely inelastic (γ = 0), we find that A(n)
0 − A(n−1)

0 , A(n)
m − A(n−1)

m , and A(n)
w −

A
(n−1)
w < 0 for all maturities n, while A(n)

d − A(n−1)
d is ambiguous and depends on the amount of swap spread risk

and the persistence of shocks to end-user demand (ρd). However, if swap spread risk is sufficiently high and demand
shocks are sufficiently persistent, we have A(n)

d −A(n−1)
d < 0 for all n.

Our framework also implies that the slope of the swap curve can be used to predict return the returns to swap
spread arbitrage. To this end, we calculate Fama-Bliss-style regression coefficients. Proposition 7 in the main part of
the paper presents our results when using the global slope, and the following proposition present the result using the
local slope.

Proposition 10 If swap spread risk V is sufficiently large, a larger local slope of the swap spread curve predicts that
longer-maturity swap spread trades will outperform short-maturity trades. Specifically, the slope coefficient from the
forecasting regression

r
s(n)
t+1 − r

s(n′)
t+1 = a+ b · (s(n)t − s(n

′)
t ) + et+1. (A-26)

satisfies b > 0 for any n > n′.

Finally, our framework allows to study swap spread volatility. In particular, we obtain the following result:

Proposition 11 The conditional and unconditional volatilities of swap spreads are given by

Vart−1[s
(n)
t ] = (A(n)

m )2σ2
m + (A

(n)
d )2σ2

d + (A(n)
w )2σ2

w

and

Var[s(n)t ] = (A(n)
m )2

σ2
m

1− ρ2m
+ (A

(n)
d )2

σ2
d

1− ρ2d
+ (A(n)

w )2
σ2
w

1− ρ2w
.

When end-user demand is completely inelastic (γ = 0) or moderately inelastic (γ is not too large) and swap spread
risk is meaningful (σ2

m, σ2
d, and σ2

w are large), (i) shocks to short-rate differentials and intermediary have a larger
impact on the volatility of short-dated swaps (n small) whereas (ii) shocks to end-user demand have a larger impact
on the volatility of long-dated swaps (n large).

Formally, this follows from the fact that |A(n)
m | and |A(w)

m | are decreasing in n, whereas |A(n)
d | is either decreasing

or a hump-shaped function of n when there is meaningful swap spread risk. Intuitively, the changing drivers of swap
spread volatility at different maturities arises from the fact that shocks to short-rate differentials and intermediary
wealth primarily affect the term structure by changing the expected short-dated spread over the life of a swap. Since
these shocks are mean reverting, this expectations-hypothesis-like channel plays an greater role in driving movements
in short-dated swap spreads. By contrast, shocks to demand primarily affect the term structure by changing the
expected compensation for risk over the life of a swap. This term-premium-like channel plays a greater role in driving
movements in long-dated spreads.

39Alternatively, we could define Slope∗t ≡ s
(n)
t −s

(1)
t as the difference between the n- and the 1-period swaps; while

the exact coefficients and certain conditions change, our qualitative results presented in Proposition 6 remain the same.
Further, we could also study the local shape of the term structure, i.e., the determinants of Slope(n)t ≡ s

(n)
t − s(n−1)t

for some n to obtain similar qualitative results.

60



B.2.2 Proofs and derivations
Proof of Theorem 2. To derive the solution to our affine term structure model, we start from (18) and (A-19) in the
case when dt > 0 and d(n)t ↘ 0, and thus sgn(d

(n)
t ) = sgn(d

(n)
t ) = 1. Combining these equations, we obtain

Et[r
s(n)
t+1 ]=B

(n)
0 +B(n)

m zmt +B(n)
m zdt +B

(n)
w zwt︷ ︸︸ ︷

ns
(n)
t − (n− 1) Et[s

(n−1)
t+1 ]−mt + α

C(n)︷ ︸︸ ︷
Covt[r

s(n)
t+1 , r

s
t+1]dt = Et[rst+1] + αV dt = −κxψt. (A-27)

Using our affine conjecture for the n-period swap spread (A-23) to express Et[r
s(n)
t+1 ], combining it with (7) and (21),

(A-27) implies [
nA

(n)
0 − (n− 1)A

(n−1)
0 −m+ α

(
d+ γA0

)
C(n)

]
(A-28)

+
[
nA(n)

m − ρm (n− 1)A(n−1)
m − 1 + αγAmC(n)

]
· zmt

+
[
nA

(n)
d − ρd (n− 1)A

(n−1)
d + α (1 + γAd) C(n)

]
· zdt

+
[
nA(n)

w − ρw (n− 1)A(n−1)
w + αγAwC(n)

]
· zwt

=
[
A0 −m+ αV

(
d+ γA0

)]
+

[
1− ρmδ

1− δ
Am − 1 + αγV Am

]
· zmt

+

[
1− ρdδ
1− δ

Ad + αV (1 + γAd)

]
· zdt

+

[
1− ρwδ

1− δ
Aw + αγV Aw

]
· zwt .

Letting D(n)
j ≡ nA(n)

j for j ∈ {0,m, d, w} and noting that

C(n) ≡ Covt[r
s(n)
t+1 , r

s
t+1] =

δ

1− δ

(
D(n−1)
m Amσ

2
m +D

(n−1)
d Adσ

2
d +D(n−1)

w Awσ
2
w

)
, (A-29)

we can write this system of recursive equations more compactly as[
D

(n)
0

D(n)

]
= Φ1

[
D

(n)
0

D(n−1)

]
+ Φ0, (A-30)

where D(n) ≡
[
D

(n)
m , D

(n)
d , D

(n)
w

]′
,

Φ1=


1 −α δ

1−δσ
2
m

(
d+γA0

)
Am −α δ

1−δσ
2
d

(
d+γA0

)
Ad −α δ

1−δσ
2
w

(
d+γA0

)
Aw

0 ρm−αγ δ
1−δσ

2
mA

2
m −αγ δ

1−δσ
2
dAdAm −αγ δ

1−δσ
2
wAwAm

0 −α δ
1−δσ

2
mAm (1+γAd) ρd−α δ

1−δσ
2
dAd (1+γAd) −α δ

1−δσ
2
wAw (1+γAd)

0 −αγ δ
1−δσ

2
mAmAw −αγ δ

1−δσ
2
dAdAw ρw−αγ δ

1−δσ
2
wA

2
w

 (A-31)

and

Φ0 =


(1 + αγV )A0 + αV d(

1−ρmδ
1−δ + αγV

)
Am(

1−ρdδ
1−δ + αγV

)
Ad + αV(

1−ρwδ
1−δ + αγV

)
Aw

 , (A-32)

and the initial conditions D(0)
0 = D

(0)
m = D

(0)
d = D

(0)
w = 0. The solution of this system of recursive equations is then[

D
(n)
0

D(n)

]
= (I−Φ1)

−1
(I−Φn

1 ) Φ0. (A-33)

For example, the 1-period swap rate at time t is given by

s
(1)
t = mt − κxψt = A

(1)
0 +A(1)

m zmt +A
(1)
d zdt +A(1)

w zwt , (A-34)
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where [A
(1)
0 , A(1)

m , A(1)
d , A(1)

w ]′ = [D
(1)
0 ,D(1)]′ = Φ0. We have D(1)

m = A
(1)
m > 0, D(1)

d = A
(1)
d < 0, and

D
(1)
w = A

(1)
w > 0. Since D(1)

0 = A
(1)
0 = m− κx·E[ψt], the sign of A(1)

0 is ambiguous.
To understand how the D(n)

j coefficients behave as a function of n, note that (A-33) implies[
D

(n)
0

D(n)

]
−
[
D

(n−1)
0

D(n−1)

]
= Φn−1

1 Φ0, (A-35)

or, ignoring the constant term, D(n) −D(n−1) = Φ̂n−1
1 D(1) where Φ̂1 is the 3× 3 obtained from Φ1 by deleting the

first row and the first column:

Φ̂1 =

 ρm−αγ δ
1−δσ

2
mA

2
m −αγ δ

1−δσ
2
dAdAm −αγ δ

1−δσ
2
wAwAm

−α δ
1−δσ

2
mAm (1+γAd) ρd−α δ

1−δσ
2
dAd (1 + γAd) −α δ

1−δσ
2
wAw (1+γAd)

−αγ δ
1−δσ

2
mAmAw −αγ δ

1−δσ
2
dAdAw ρw−αγ δ

1−δσ
2
wA

2
w

 . (A-36)

In the general case where γ > 0 is large, the behavior of D(n) can be quite complex as we explain below.
However, their behavior in the case when end-user demand is inelastic (γ = 0) is straightforward and intuitive.

Assume for now that γ = 0. Letting φd ≡ ρd − α δ
1−δσ

2
dAd > ρd > 0, we have D(n) −D(n−1) = Φ̂n−1

1 D(1)

with

Φ̂n−1
1 =

 ρn−1m 0 0

−α δ
1−δσ

2
mAm ·

φn−1
d −ρn−1

m

φd−ρm
φn−1d −α δ

1−δσ
2
wAw ·

φn−1
d −ρn−1

w

φd−ρw
0 0 ρn−1w

 . (A-37)

It follows that

D(n)
m −D(n−1)

m = ρn−1m ·D(1)
m > 0, (A-38)

D(n)
w −D(n−1)

w = ρn−1w ·D(1)
w > 0, (A-39)

and

D
(n)
d −D(n−1)

d = −α δ

1− δ
σ2
mAm ·

φn−1d − ρn−1m

φd − ρm
·D(1)

m (A-40)

+ φn−1d ·D(1)
d − α

δ

1− δ
σ2
wAw ·

φn−1d − ρn−1w

φd − ρw
·D(1)

w < 0.

Thus, when γ = 0, D(n)
m , D(n)

d , and D(n)
w are monotonic functions of n with the same signs as Am, Ad, and Aw.

Using equation (A-29), it then follows that C(n) > 0 for n ≥ 2 and is increasing in n. Naturally, C(1) = 0 since
1-period swap spread positions are riskless.

When γ = 0, we can provide closed-form expressions for A(n)
m , A(n)

d , and A(n)
w . After some algebra, we obtain

the following expressions for A(n)
m and A(n)

w :

A(n)
m =

1

n

1− ρnm
1− ρm

> 0, (A-41)

A(n)
w =

1

κx
α

(
κx
κo

)2

σ2
o ·

1

n

1− ρnw
1− ρw

> 0. (A-42)

Since n−1 (1− ρn) / (1− ρ) = n−1
∑n−1
k=0 ρ

k is decreasing in n for ρ ∈ (0, 1), it follows that A(n)
m and A(n)

w are
positive and decreasing functions of n.

Turning to A(n)
d , we have

A
(n)
d = θo ·

1

n

1− φnd
1− φd

+ θm · S(n) (φd, ρm) + θw · S(n) (φd, ρw) < 0, (A-43)

where

θo = −ασ2
o

(
κx
κo

)2

< 0, θm = −ασ2
m

δ

1− δρm
< 0, θw = −ασ2

w

δ

1− ρwδ

(
θo
κx

)2

< 0, (A-44)

and

S(n) (a, b) ≡ 1

n

n∑
k=1

an−k
1− bk−1

1− b
=


1
a−b

1
n

(
1−an
1−a −

1−bn
1−b

)
if a 6= 1

1
a−b

1
n

(
1−an
1−a −

1−bn
1−b

)
if a = 1

> 0 (A-45)
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for a > 0 and b ∈ (0, 1). It is easy to show that S(n) (a, b) is an increasing function of n when a ≥ 1 and a
hump-shaped function of n when a < 1.

In (A-43), the first term reflects a combination of (i) expected future compensation for using scarce capital and
(ii) expected future compensation for risk due to shocks to zdt (recall that φd ≡ ρd − α δ

1−δσ
2
dAd > 0). This term is

only present when κx > 0, but exists even when σ2
m, σ

2
w → 0. The second and third terms reflect expected future

compensation for risk due to shocks to zmt and zwt (as amplified amplified by the risk of shocks to zdt ) and are only
present when σ2

m > 0 and σ2
w > 0, respectively.

Turning to the shape of these functions, n−1 (1− φnd ) / (1− φd) = n−1
∑n−1
k=0 φ

k
d is a decreasing function of n

when φd < 1, increasing when φd > 1, and constant when φd = 1. Since ρm, ρw ∈ (0, 1), S(n) (φd, ρi), i = m,w
are hump-shaped functions of n when φd < 1 and increasing functions of n when φd ≥ 1.

Since φd ≡ ρd − α δ
1−δσ

2
dAd, this means that all three terms tend to be increasing in magnitude in n when both

ρd, σ2
d, and |Ad| are large and φd > 1—i.e., when there are large and persistent shocks to end-user demand.

By contrast, when φd < 1, the magnitude of the first term will decline with n and the second and third terms
will be hump-shaped in n. When σ2

m and σ2
w are small, the first term dominates and the magnitude of A(n)

d declines
with n. By contrast, when σ2

m and σ2
w are larger, the second and third terms dominate and the magnitude of A(n)

d is a
hump-shaped function of n.

Letting B(n)
d ≡ ∂Et[r

s(n)
t+1 ]/∂zdt = θo−α · C(n), this hump shape stems from the fact that the loading of n-period

swap spreads on demand shocks satisfies

A
(n)
d = n−1

∑n

k=1
ρn−kd B

(k)
d (A-46)

= θo ·
1

n

1− ρnd
1− ρd︸ ︷︷ ︸

Expected compensation for using scarce capital

+
1

n

∑n

k=1
ρn−kd ·

(
−αC(k)

)
︸ ︷︷ ︸

Expected compensation for risk

< 0.

—i.e., the impact of a shift in demand on n-period swap spreads is an average of the expected balance sheet costs
and expected risk premia (the −αρn−kd C(k) terms) over the life of the swap. The first term in (A-46) is negative and
increasing in n. Since C(n) is positive and increasing in n, the second term is negative and decreasing in n when ρd is
sufficiently large and is a negative and U-shaped function of n when ρd is lower.

Overall, when swap spread risk is high and demand shocks are sufficiently persistent (ρd is large), the A(n)
d

coefficients will rise in magnitude with n since the impact of demand on risk premia |B(n)
d | rises with n. However,

when demand shocks are more transitory, the A(n)
d coefficients become U-shaped since these larger risk premia are

only expected to persist for a short fraction over the life of the swap.

Finally, we consider the A(n)
0 coefficients. Combining (A-35) and (A-41)-(A-43), we obtain

D
(n)
0 −D(n−1)

0 = A
(1)
0 + ηm ·

>0︷ ︸︸ ︷[
1− ρn−1m

1− ρm
+ ηo ·

1

φd − ρm

(
1− φn−1d

1− φd
− 1− ρn−1m

1− ρm

)]
(A-47)

+ ηd ·
1− φn−1d

1− φd
+ ηw ·

>0︷ ︸︸ ︷[
1− ρn−1w

1− ρw
+ ηo ·

1

φd − ρw

(
1− φn−1d

1− φd
− 1− ρn−1w

1− ρw

)]
,

which, after some algebra, leads to

A
(n)
0 = A

(1)
0 +

[
ηd · T (n) (φd)

]
+

[
ηm ·

(
T (n) (ρm) + ηo ·

T (n) (φd)− T (n) (ρm)

φd − ρm

)]
(A-48)

+

[
ηw

(
T (n) (ρw) + ηo ·

T (n) (φd)− T (n) (ρw)

φd − ρw

)]
,
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with

A
(1)
0 = m− κx · E [ψt] = m− κx

ασ2
o

κ2o

[
κo

ro
ασ2

o

+ κxd− w
]

, (A-49)

ηo = −α δ

1− δ
σ2
dAd > 0, ηm = −α δ

1− δ
σ2
mdAmA

(1)
m < 0,

ηd = −α δ

1− δ
σ2
ddAdA

(1)
d < 0, ηw = −α δ

1− δ
σ2
wdAwA

(1)
w < 0, and

T (n) (a) ≡ 1

1− a

(
1− 1

n

1− an

1− a

)
.

T (n) (a) is positive and an increasing function of n for all a > 0, a 6= 1.
(
T (n) (a)− T (n) (b)

)
/ (a− b) is zero

for n = 1 and otherwise positive and an increasing function of n for all a, b > 0 for which it is defined. Therefore,
the three terms in square brackets in (A-48) are each negative and decreasing in n. It follows that A(n)

0 is a decreasing
function of n.

Turning to the sign of the A(n)
0 , note that the sign of A(1)

0 is ambiguous and depends on m ≥ 0: A(1)
0 < 0 if m

is sufficiently small. Thus, if m = 0, as would be the case for SOFR swaps, A(n)
0 is negative for all n. By contrast,

as if m is a moderately small number, as could be the case for LIBOR swaps, A(n)
0 will be positive for small n and

negative for large n.
This completes our characterization of the solution when γ = 0. By continuity of the model’s solution in γ,

these same conclusions must also hold when γ > 0 is sufficiently near 0. However, these conclusions need not
hold for γ large. Indeed, when the underlying shocks are transient and γ is very large, one can construct extreme
parameterizations where D(n)

i , i = m, d,w, and C(n) are not monotonic and instead are oscillatory. Furthermore, the
A

(n)
i can also be oscillatory.

These oscillatory patterns are a quirk that arises from our modelling shortcut of working with zero-coupon bonds
that are in infinitesimal supply. Specifically, these unintuituve oscillatory patterns for zero-coupon bonds obtain even
though the coefficients for the perpetual swap have well-defined and intuitive limits when end-user demand becomes
highly elastic—i.e., the Ai for i = m, d,w converge to 0 as γ →∞. And, these oscillatory patterns for zero-coupon
bonds would not arise if we closed the model in a more realistic—albeit mathematically less tractable—fashion where
the zero-coupon bonds were available in non-zero supply.

Proof of Proposition 6. Combining (19b)-(20) with (A-32),

st − s(1)t = [A0 −A(1)
0 ] + [Am −A(1)

m ]zmt + [Ad −A(1)
d ]zdt + [Aw −A(1)

w ]zwt ,

where 
A0 −A(1)

0

Am −A(1)
m

Ad −A(1)
d

Aw −A(1)
w

 =


−α

(
d+ γA0

)
V < 0

−
[

δ
1−δ (1− ρm) + αγV

]
Am < 0

−
[

δ
1−δ (1− ρd) + αγV

]
Ad − αV

−
[

δ
1−δ (1− ρw) + αγV

]
Aw < 0

 .

From (A-32) and (A-34), it is easy to see that E[st − s(1)t ] = A0 − A(1)
0 = −αV E [dt] < 0, implying that the term

structure of swap spreads—summarized by the difference between the generic long-term spread st and the 1-period
spread—is downward-sloping on average. The average slope is a function of intermediaries’ risk aversion α, swap
spread risk V , and the average demand from end-users to receive the fixed swap rate, E [dt] = d+ γA0 > 0.

Using the expression for Ad, simple algebra shows that Ad −A(1)
d is negative if and only if (31) holds—i.e., if

δ

1− δ
(1− ρd)

(
κx
κo

)2

σ2
o < V,

which is more likely when (κx/κo)
2
σ2
o is small and when ρd, σ2

m, σ2
d, and σ2

w are large. When this condition is met,
E[st − s(1)t ] < 0 and (st − s(1)t ) is decreasing in zmt , zdt , and zwt .

Proof of Proposition 7. First, note that Et[rst+1] = −κx · ψt − αV · dt and Et[r
s(1)
t+1 ] = −κx · ψt, implying that

Et[rst+1 − r
s(1)
t+1 ] = −αV · dt

= −αV
(
d̄+ zdt + γst

)
= −α

(
d̄+ γA0

)
V − αγAmV · zmt − α (1 + γAd)V · zdt − αγAwV · zwt .
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Combining this with Proposition 6 assuming that condition (31) holds, it follows that both Et[rst+1−r
s(1)
t+1 ] and st−s(1)t

are decreasing in zmt , zdt , and zwt . And since since these three factors are orthogonal, this then implies that we must
have b > 0 in the time-series regression (32).

Proof of Proposition 8. Note that the relationship between the B(n)
i and the D(n)

i , i ∈ {0,m, d, w}, functions are
given by

B
(n)
0 = D

(n)
0 −D(n−1)

0 − m̄

= B0 + α
(
d̄+ γA0

)
· (V − C(n)) = B

(1)
0 − α

(
d̄+ γA0

)
· C(n)

B(n)
m = D(n)

m − ρmD(n−1)
m − 1

= Bm + αγAm · (V − C(n)) = B(1)
m − αγAm · C(n)

B
(n)
d = D

(n)
d − ρdD

(n−1)
d

= Bd + α (1 + γAd) · (V − C(n)) = B
(1)
d − α (1 + γAd) · C(n)

B(n)
w = D(n)

w − ρwD(n−1)
w

= Bw + αγAw · (V − C(n)) = B(1)
w − αγAw · C(n)

In the γ = 0 case, this reduces to B(n)
m = Bm = 0 and B(n)

w = Bw > 0. Furthermore, since B(1)
0 , B

(1)
d < 0 and C(n)

is increasing in n, both B(n)
0 and B(n)

d are negative and decreasing in n.
When γ is positive but not too large, we can show that B(n)

0 < 0, B(n)
m < 0, B(n)

d < 0, and B(n)
w > 0 and that

each of these functions is decreasing in n. This follows from signing these functions for n = 1 and then using the fact
that, by continuity, C(n) is increasing in n when γ is not too large. Furthermore, when γ is sufficiently small, B(n)

w

will remain positive even as n increases.

Proof of Proposition 9. For the local slope of the swap spread curve, we are interested in

s
(n)
t − s(n−1)t =

[
A

(n)
0 −A(n−1)

0

]
+
[
A(n)
m −A(n−1)

m

]
zmt +

[
A

(n)
d −A(n−1)

d

]
zdt +

[
A(n)
w −A(n−1)

w

]
zwt .

Focusing on the γ = 0 case, using (A-41)-(A-43), we obtain

A(n)
m −A(n−1)

m =
1

n

1− ρnm
1− ρm

− 1

n− 1

1− ρn−1m

1− ρm
< 0, (A-50)

A(n)
w −A(n−1)

w =
1

κx
α

(
κx
κo

)2

σ2
o ·
[

1

n

1− ρnw
1− ρw

− 1

n− 1

1− ρn−1w

1− ρw

]
< 0,

and

A
(n)
d −A(n−1)

d = θo ·
[

1

n

1− φnd
1− φd

− 1

n− 1

1− φn−1d

1− φd

]
(A-51)

+θm ·
[
S(n) (φd, ρm)− S(n−1) (φd, ρm)

]
+θw ·

[
S(n) (φd, ρw)− S(n−1) (φd, ρw)

]
,

where θo, θm, θw < 0. The first term in square brackets is positive when φd > 1 and is negative when φd < 1. When
φd > 1, the second and third terms in brackets are positive. However, when φd < 1, second and third terms are
positive for small n and negative for large n.

Thus, if φd ≡ ρd − α δ
1−δσ

2
dAd > 1, we have A(n)

d −A(n−1)
d < 0 for all n. And, we have φd > 1 if

V >
1

α2σ2
d

1− δ
δ

(1− ρd)−
(
κx
κo

)2

σ2
o,

—e.g., if V is sufficiently large and ρd is sufficiently large. By contrast, if φd < 1, the sign of A(n)
d −A

(n−1)
d depends

on the magnitudes of σ2
m, σ2

d, and σ2
w and can depend on n. For instance, if σ2

m and σ2
w are small, the first term

dominates and we have A(n)
d − A(n−1)

d > 0 for all n when φd < 1. By contrast, if σ2
m and σ2

w are larger, the second
and third terms dominate and we will have A(n)

d −A(n−1)
d < 0 for small n and A(n)

d −A(n−1)
d > 0 for large n.

65



Proof of Proposition 10. Note that Et[r
s(n)
t+1 ] = −κx · ψt − α · C(n)dt. For n > n′, this implies

Et[r
s(n)
t+1 − r

s(n′)
t+1 ] = −α

(
C(n) − C(n

′)
)
dt

= −α
(
C(n) − C(n

′)
)(d̄+ γA0

)
+

>0︷ ︸︸ ︷
γAm ·zmt +

>0︷ ︸︸ ︷
(1 + γAd) ·zdt +

>0︷︸︸︷
γAw ·zwt

 .

Here, when γ = 0, C(n) is positive and increasing in n and thus C(n) − C(n′) > 0, which also extends to the case
where γ is small and positive by continuity. Therefore, Et[r

s(n)
t+1 − r

s(n′)
t+1 ] is decreasing in zmt , zdt , and zwt . At the

same time, Proposition 9 states that s(n)t − s(n
′)

t is always decreasing in zmt and zwt . However, the sign of its loading

on zdt , A(n)
d − A

(n′)
d , is ambiguous. However, assuming that swap spread volatility is sufficiently high relative to

the persistence of demand shocks, we have A(n)
d − A(n′)

d < 0. In this case, we must have b > 0 in the time-series
regression (A-26).

B.3 Model with multiple demand factors
B.3.1 Model
We now develop a simple model with two generic perpetual swaps—one with shorter duration and one with longer
duration—to understand how our analysis changes if there are separate shocks to end-user demand for short-term and
long-term swaps.

Following our original model, we write the return on short-dated swap spread trade

rxs,St+1 =
(
sSt −mt

)
− δS

1− δS
(
sSt+1 − sSt

)
, (A-52)

and the return on long-dated swap spread trade as

rxs,Lt+1 =
(
sLt −mt

)
− δL

1− δL
(
sLt+1 − sLt

)
. (A-53)

We assume that δL > δS , so the long-dated swap spread trade indeed has a greater duration.
At each date, intermediaries have mean-variance utility over 1-period ahead wealth. Let xt = [xSt , x

L
t ]′ denote

their position in the two receive-fixed swap spread trades, ot their position in the outside investment opportunity, and
rxt+1 = [rxs,St+1, rx

s,L
t+1]′ the vector of swap spread trade excess returns. Thus, at time t, intermediaries solve

max
xt

{
x′tEt [rxt+1]− α

2
(xt)

′Vart [rxt+1] xt + otro −
α

2
o2tσ

2
o

}
,

subject to the leverage constraint
κx |x′t|12+κo |ot| ≤ wt.

The Lagrangian then becomes

L = x′tEt [rxt+1]− α

2
(xt)

′Vart [rxt+1] xt + otro −
α

2
o2tσ

2
o + ψt

{
wt − κx |xt|′ 12−κo |ot|

}
,

with first-order conditions

Et [rxt+1] = αVart [rxt+1] xt + ψtκxsgn(xt) and ro = αotσ
2
o + ψtκosgn(ot). (A-54)

As before, assuming ro, ασ2
o > 0, we must have ot > 0. Further, assuming that the constraint always binds—that i.e.,

ψt > 0 and wt = κx |x′t|12+κo |ot|, we obtain

ψt =
ασ2

o

κo

(
ro
ασ2

o

− ot
)

=
ασ2

o

κ2o

(
κo

ro
ασ2

o

+ κx |xt|′ 12 − wt
)

.
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Together with (A-54), we then have

Et [rxt+1] = αVart [rxt+1] xt (A-55)

+sgn(xt)κx
ασ2

o

κ2o

(
κ0

ro
ασ2

o

− wt
)

+α

(
κx
κo

)2

σ2
o[sgn(xt)sgn(x′t)]xt.

We assume that net end-user demand to receive the fixed rate for short- and long-dated swaps is

dt︷ ︸︸ ︷[
dSt
dLt

]
=

[
d
S

+ zd,St + γSs
S
t

d
L

+ zd,Lt + γLs
L
t

]
(A-56)

= d + Edzt + Γst,

where zt =
[
zmt , z

d,S
t , zd,Lt , zwt

]′
and

Ed =

[
0 1 0 0
0 0 1 0

]
and Γ =

[
γS 0
0 γL

]
.

Finally, we assume an autoregressive process for the four state variables governing the short rate differential (zmt ),
short- and long-maturity end-user demand (zd,St and zd,Lt ), and intermediary wealth (zwt ). Specifically, we assume the
vector of state variables zt = [zmt , z

d,S
t , zd,Lt , zwt ]′ follows

zt+1 = %zt + εt+1, (A-57)

where % = diag
(
ρm, ρd,S , ρd,L, ρw

)
is a diagonal matrix of AR(1) coefficients ρm, ρd,S , ρd,L, ρw,∈ [0, 1) and

εt+1 = [εmt+1, ε
d,S
t+1, ε

d,L
t+1, ε

w
t+1]′ is the vector of structural shocks. For simplicity, we assume the four structural

shocks are orthogonal to each other: Vart[εt+1] ≡ Σ = diag
(
σ2
m, σ

2
d,S , σ

2
d,L, σ

2
w

)
where σ2

i ≡ Var
[
εit+1

]
for

i = m, (d, S) , (d, L) , w.

We conjecture an affine equilibrium in which equilibrium swap spreads are in the form

st︷ ︸︸ ︷[
sSt
sLt

]
=

a0︷ ︸︸ ︷[
AS0
AL0

]
+

A1≡[am,ad,S ,ad,L,aw]︷ ︸︸ ︷[
ASm ASd,S ASd,L ASw
ALm ALd,s ALd,L ALw

]
zt︷ ︸︸ ︷
zmt
zd,St
zd,Lt
zwt

 ,

which, together with (A-56), implies

dt = d + Edzt + Γst =
(
d + Γa0

)
+ (Ed + ΓA1) zt.

Finally, let

Dδ=

[
δs

1−δS 0

0 δL
1−δL

]
.

Combining the conjectured forms with definitions (A-52)-(A-53) and the AR(1) structure for the state variables, we
obtain that excess returns are

rxt+1 = st −mt12−Dδ (st+1 − st) = [a0 −m1] + [A1 + DδA1 (I4−%)− 12e
′
m] zt −DδA1εt+1,

where I4 ≡ diag (1, 1, 1, 1) is the 4×4 identity matrix, 1′2 = [1, 1], and e′m = [1, 0, 0, 0]. Thus, the first two moments
of excess returns are

Et [rxt+1] = [a0 −m12] + [A1 + DδA1 (I4−%)− 12e
′
m] zt and (A-58)

Vart [rxt+1] = DδA1ΣA′1D
′
δ ≡ V ≡

[
VS CS,L
CS,L VL

]
,
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where

VS =

(
δs

1− δS

)2 [(
ASm
)2
σ2
m +

(
ASd,S

)2
σ2
d,S +

(
ASd,L

)2
σ2
d,L +

(
ASw
)2
σ2
w

]
,

CS,L =
δs

1− δS
δL

1− δL
[
ASmA

L
mσ

2
m +ASd,SA

L
d,Sσ

2
d,S +ASd,LA

L
d,Lσ

2
d,L +ASwA

L
wσ

2
w

]
, and

VL =

(
δL

1− δL

)2 [(
ALm
)2
σ2
m +

(
ALd,S

)2
σ2
d,S +

(
ALd,L

)2
σ2
d,L +

(
ALw
)2
σ2
w

]
.

Imposing market clearing, xt= −dt, (A-55) then becomes

Et [rxt+1] = −αVdt − sgn(dt)κx
ασ2

o

κ2o

(
κ0

ro
ασ2

o

− wt
)
− ασ2

o

(
κx
κo

)2

[sgn(dt)sgn(d′t)]dt,

which, when imposing dt > 0 and thus sgn(dt) = 12, simplifies to

Et [rxt+1] = −αVdt − κx
ασ2

o

κ2o

(
κ0

ro
ασ2

o

− wt
)

12 − ασ2
o

κ2x
κ2o

121
′
2dt. (A-59)

We can further rewrite the right-hand side as

Et [rxt+1] = −α

[
V +

(
κx
κo

)2

σ2
o121

′
2

] ((
d + Γa0

)
+ (Ed + ΓA1) zt

)
− κx

ασ2
o

κ2o

(
κ0

ro
ασ2

o

− (w + e′wzt)

)
12

=

[
−α

[
V +

(
κx
κo

)2

σ2
o121

′
2

] (
d + Γa0

)
− κx

ασ2
o

κ2o

(
κ0

ro
ασ2

o

− w
)

12

]
(A-60)

+

[
−α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
(Ed + ΓA1) + κx

ασ2
o

κ2o
12e
′
w

]
zt,

where e′w = [0, 0, 0, 1]. From here, matching the constant and the coefficients of zt in (A-58) and (A-60), we must
have [

I4 + α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

]
a0 (A-61)

= m12 − κx
ασ2

o

κ2o

[
κx121

′
2d +

(
κ0

ro
ασ2

o

− w
)

12

]
− αV

and

A1 + DδA1 (I4−%) + α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
ΓA1 (A-62)

= 12e
′
m − α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Ed + κx

ασ2
o

κ2o
12e
′
w.

Note that here
A1 + DδA1 (I− %) = [E + DδE (I− %)] ◦A1,

where

E + DδE (I− %) =

[
1 + 1−ρmδS

1−δS 1 +
1−ρd,SδS

1−δS 1 +
1−ρd,LδS

1−δS 1 + 1−ρwδS
1−δS

1 + 1−ρmδL
1−δL 1 +

1−ρd,SδL
1−δL 1 +

1−ρd,LδL
1−δL 1 + 1−ρwδL

1−δL

]
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and ◦ denotes the Hadamard or element-wide matrix product. Further, we have

α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
ΓA1

= α

 VS + σ2
o
κ2
x

κ2
o

CS,L + σ2
o
κ2
x

κ2
o

CS,L + σ2
o
κ2
x

κ2
o

VL + σ2
o
κ2
x

κ2
o

[γSASm γSA
S
d,S γSA

S
d,L γSA

S
w

γLA
L
m γLA

L
d,s γLA

L
d,L γLA

L
w

]

and

1e′m − α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Ed + κx

ασ2
o

κ2o
1e′w

=

1 −α
(
VS + σ2

o
κ2
x

κ2
o

)
−α

(
CS,L + σ2

o
κ2
x

κ2
o

)
κx

ασ2
o

κ2
o

1 −α
(
CS,L + σ2

o
κ2
x

κ2
o

)
−α

(
VL + σ2

o
κ2
x

κ2
o

)
κx

ασ2
o

κ2
o

 .

To solve for A1, we vectorize (A-62) to obtain[
diag (vec (E + DδE (I4−%))) + I4 ⊗ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

]
vec (A1)

= vec

[
12e
′
m − α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Ed + α

1

κx

(
κx
κo

)2

σ2
o12e

′
w

]
,

where ⊗ denotes the Kronecker product. Solving this equation for vec (A1), we obtain

vec (A1) =

[
diag (vec (E + DδE (I4−%))) + I4 ⊗ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

]−1

× vec

[
12e
′
m − α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Ed + α

1

κx

(
κx
κo

)2

σ2
o12e

′
w

]
,

where we note that the matrix in square brackets is block-diagonal. Finally, since V = DδA1ΣA′1D
′
δ , we obtain the

following fixed-point problem in A1:

vec (A1) =

[
diag (vec (E + DδE (I4−%))) + I4 ⊗ α

[
DδA1ΣA′1D

′
δ +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

]−1

× vec

[
1e′m − α

[
DδA1ΣA′1D

′
δ +

(
κx
κo

)2

σ2
o121

′
2

]
Ed + α

1

κx

(
κx
κo

)2

σ2
o12e

′
w

]
.

After some algebra, when Γ > 0 and demand is elastic, the above equation yields[
ASm
ALm

]
=

([
1−ρmδS
1−δS 0

0 1−ρmδL
1−δL

]
+ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

)−1 [
1
1

]
,

[
ASd,S
ALd,S

]
= −

([
1−ρd,SδS

1−δS 0

0
1−ρd,SδL

1−δL

]
+ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

)−1  α

[(
κx

κo

)2
σ2
o + VS

]
α

[(
κx

κo

)2
σ2
o + CS,L

]
 ,

[
ASd,L
ALd,L

]
= −

([
1−ρd,LδS

1−δS 0

0
1−ρd,LδL

1−δL

]
+ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

)−1 α
[(

κx

κo

)2
σ2
o + CS,L

]
α

[(
κx

κo

)2
σ2
o + VL

]
 ,

[
ASw
ALw

]
= α

1

κx

(
κx
κo

)2

σ2
o

([
1−ρwδS
1−δS 0

0 1−ρwδL
1−δL

]
+ α

[
V +

(
κx
κo

)2

σ2
o121

′
2

]
Γ

)−1 [
1
1

]
.

69



If γS = γL = 0, these equations simplify to

[
ASm ASd,S ASd,L ASw
ALm ALd,S ALd,L ALw

]
=



1−δS
1−δSρm

1−δL
1−δLρm

− 1−δS
1−δSρd,S

α

[(
κx

κo

)2
σ2
o + VS

]
− 1−δL

1−δLρd,S
α

[(
κx

κo

)2
σ2
o + CS,L

]
− 1−δS

1−δSρd,L
α

[(
κx

κo

)2
σ2
o + CS,L

]
− 1−δL

1−δLρd,L
α

[(
κx

κo

)2
σ2
o + VL

]
1−δS

1−δSρw
κx

ασ2
o

κ2
o

1−δL
1−δLρw

κx
ασ2

o

κ2
o



>

;

(A-63)
which is the obvious generalization of our baseline model when γ = 0.

The following Proposition summarizes some results on the swap spread coefficients for short- and long-dated
swaps:

Proposition 12 If an equilibrium exists, we have Aim,,A
i
w > 0 and Aid,S ,Aid,L < 0 for i = S,L. Moreover, if

γL = γS = 0, shocks to the short-rate different and intermediary supply have a larger impact on short-maturity
spreads than on long-maturity swaps: we have ASm > ALm > 0 and ASw > ALw > 0. However, demand shocks can
have a hump-shaped effect on the spread curve: depending on the parameters, we can have either 0 > Aid,j > A−id,j
or 0 > A−id,j > Aid,j for all i, j = S,L.

Proof. The first sentence follows directly from (A-63). The second sentence follows from the fact that 1−δL
1−δLρ <

1−δS
1−δSρ for all ρ < 1 since δL > δS . It then follows immediately that ASm > ALm > 0 and ASw > ALw > 0.

Finally, define CorrS,L = CS,L/
√
VLVS and assume that VL > VS > 0 and CorrS,L ∈ (0, 1) in the stable

equilibrium, implying that CS,L = CorrS,L
√
VL
√
VS < VL. If shocks to the demand for long-dated swaps are

highly persistent, these shocks will have a larger impact on longer dated swaps. Formally, if ρd,L → 1, we are going
to have 0 > ASd,L > ALd,L However, when long-dated demand is less persistent, shocks to long-dated demand can
have a hump-shaped effect on the spread curve—i.e., we can have 0 > ALd,L > ASd,L.

At the same time, CS,L can exceed VS if CorrS,L is large enough or can be less than VS if CorrS,L is low
enough. If VS > CS,L, then we must have 0 > ALd,S > ASd,S—i.e., short-dated demand shocks will have a bigger
impact on short-dated spreads. However, if CS,L > VS , we can either have 0 > ALd,S > ASd,S or 0 > ASd,S > ALd,S .
And the greater is the difference between CS,L and VS , the more likely we are to have 0 > ASd,S > ALd,S .

B.3.2 Empirical predictions
Empirically, we would then estimate these latent factors using a VAR that imposes a combination of zero, sign, and
monotonicity restrictions. We rewrite our model, using short-dated spread as mt and swap prices and quantities at
two points on the curve, short (S) and long (L):

yt︷ ︸︸ ︷
mt

sSt
sLt
dSt
dLt

 =

a︷ ︸︸ ︷
m̄
AS0
AL0(

d̄S + γSA
S
0

)(
d̄L + γLA

L
0

)

+

A︷ ︸︸ ︷
1 0 0 0 0
ASm ASd,S ASd,L ASw .

ALm ALd,S ALd,L ALw .

γSA
S
m 1 + γSA

S
d,S γSA

S
d,L γSA

S
w .

γLA
L
m γLA

L
d,S 1 + γLA

L
d,L γLA

L
w .



zt︷ ︸︸ ︷
zmt
zd,St
zd,Lt
zwt
zUt

, (A-64)

where zUt is a non-identified shock orthogonal to the other shocks. Thus, zUt reflects unmodeled factors that may
impact equilibrium swap spreads and quantities. Empirically we think about S as being 5 years and L as 30 years.

Based on our theoretical results, assuming that the γs are not too large, the above model implies the following
sign and monotonicity restrictions on swap spreads and positions in (A-64):

• Monotonicity of spreads in the short-date differential:

0 < ALm < ASm < 1;

• Monotonicity of spreads in intermediary wealth:

0 < ALw < ASw;

• Negative loading of spreads on the short-dated demand shifter:

ASd,S < 0 and ALd,S < 0;

70



• Negative loading of spreads on the long-dated demand shifter:

ASd,L < 0 and ALd,L < 0;

• Positive impact of the short-date differential on quantities:

γSA
S
m > 0 and γLA

L
m > 0;

• Positive impact of intermediary wealth on quantities:

γSA
S
w > 0 and γLA

L
w > 0;

• Monotonic impact of the short-dated demand factor on quantities:

1 + γSA
S
d,S > γLA

L
d,S ;

• Monotonic impact of the long-dated demand on quantities:

1 + γLA
L
d,L > γSA

S
d,L.

Alternatively, we can rewrite (A-64) as replacing the short- and long-maturity equilibrium positions with the
aggregate equilibrium swap position and the difference of long- vs short-maturity holdings (and also ignoring the
interest rate differential and the impact of the fundamental shocks) to obtain:

yt︷ ︸︸ ︷
sSt
sLt

dSt + dLt
dLt − dSt

 = a +

A︷ ︸︸ ︷
ASd,S ASd,L ASw .

ALd,S ALd,L ALw .

1 + γSA
S
d,S + γLA

L
d,S 1 + γSA

S
d,L + γLA

L
d,L γSA

S
w + γLA

L
w .

γLA
L
d,S − 1− γSASd,S 1 + γLA

L
d,L − γSASd,L γLA

L
w − γSASw .


zt︷ ︸︸ ︷
zd,St
zd,Lt
zwt
zUt

,

(A-65)
with a = [AS0 , A

L
0 ,
(
d̄S + γSA

S
0

)
+
(
d̄L + γLA

L
0

)
,
(
d̄L + γLA

L
0

)
−
(
d̄S + γSA

S
0

)
]′. From here, we obtain the

following model-implied sign restrictions:

• Shocks to the demand for short-term swaps lower the spreads on both short- and long-term swap spreads

ASd,S < 0 and ALd,S < 0,

while increasing the total equilibrium quantity

1 + γSA
S
d,S + γLA

L
d,S > 0,

and decreasing the difference in the long- and short-term quantities,

γLA
L
d,S − 1− γSASd,S < 0;

• Shocks to the demand for long-term swaps also reduce both short- and long-term swap spreads,

ASd,L < 0 and ALd,L < 0,

while increasing the overall dealer net bond position,

1 + γSA
S
d,L + γLA

L
d,L > 0,

and increasing the difference in the long- and short-term quantities,

1 + γLA
L
d,L − γSASd,L > 0;

• Finally, intermediary wealth shocks increase both short- and long-term swap spreads,

ASw > 0 and ALw > 0

increase the total equilibrium quantity,
γSA

S
w + γLA

L
w > 0,
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but has an ambiguous impact on the difference in the long- and short-term quantities. (However, the impact on
the difference between long- and short-term quantities becomes unambiguous if γL = γS = γ. In this case,
we have γLA

L
w − γSASw = γ

(
ALw −ASw

)
< 0.)

In summary, the model implies the following set of sign restrictions

ξt︷ ︸︸ ︷
ξs

S

ξs
L

ξd
S+dL

ξd
L−dS

 =

A3︷ ︸︸ ︷
− − + .
− − + .
+ + + .
− + . .


εt︷ ︸︸ ︷
εd,St
εd,Lt
εwt
εUt

. (A-66)

Appendix C contains the results of performing a sign-restricted VAR on our data based on exactly these restrictions;
see (A-67).

C Additional VARs
To check that our identification of demand and supply shocks is not sensitive to the inclusion of the LIBOR-repo
spread (mt) as an additional variable in the VAR, we consider the following tri-variate specification: mt

s
(30)
t

d̂t

 = c +

L∑
l=1

Cl

 mt−l

s
(30)
t−l
d̂t−l

+ ξt.

Following Proposition 5, we identify the structural demand, supply, and LIBOR-repo shocks by imposing a combina-
tion of sign and zero restrictions. Specifically, in addition to the structural shock orthogonality and the sign restrictions
that we imposed in our baseline VAR, we also assume that the LIBOR-repo spread does not respond on impact to
demand and supply shocks, and that the on-impact responses of the LIBOR-repo spread, of the 30-year swap spread
and of end-users’ demand to the LIBOR-repo shock have the same sign. Thus, structural shocks εt are related to
reduced-form VAR residuals ξt by the mapping

ξt︷ ︸︸ ︷ ξmt
ξs

(30)

t

ξd̂t

 =

A︷ ︸︸ ︷ + 0 0
+ − +
+ + +


εt︷ ︸︸ ︷ εmt
εdt
εwt

.

We estimate the structural VAR using the sign and zero restriction approach of Arias et al. (2018) with lag length
set to L = 4. The historical decomposition implied by the estimated VAR and shown on Figure A-2 suggests that
LIBOR-repo shocks contribute very little to the swap spread variation. This is confirmed by the forecast error variance
decomposition: LIBOR-repo shocks account for approximately 2% of the swap spread variance in the long run.

To study maturity-specific end-user demand to receive fixed rate, we consider the following VAR specification:
s
(5)
t

s
(30)
t

d̂t
d̂Lt − d̂St

 = c +

L∑
l=1

Cl


s
(5)
t−l
s
(30)
t−l
d̂t−l

d̂Lt−l − d̂St−l

+ ξt.

We identify the structural short-maturity demand, long-maturity demand, and supply shocks by imposing a combi-
nation of sign restrictions. First, we assume that positive demand shocks (both short-maturity and long-maturity)
make swap spreads (both s

(5)
t and s

(30)
t ) more negative and increase the scale of primary dealers’ total position

d̂t = d̂Lt + d̂St . Moreover, we assume that shocks to short-maturity demand have a larger effect on intermediaries’
net position in Treasuries with maturities of less than 6 years (PD-UST-Net<y

t = d̂St ) relative to their net position in
Treasuries with maturities of more than 6 years (PD-UST-Net>6

t = d̂Lt ) and vice versa. Thus, a positive short-maturity
demand shock on impact decreases d̂Lt − d̂St , while a positive long-maturity demand shock increases it. Finally, we
assume that a positive shock to intermediary supply makes swap spreads (both s(5)t and s(30)t ) less negative, while
increasing intermediaries’ overall short position d̂t. The fourth shock in the VAR is not identified. Thus, structural
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shocks εt are related to reduced-form VAR residuals ξt by the mapping

ξt︷ ︸︸ ︷
ξs

(5)

ξs
(30)

ξd̂

ξd̂
L−d̂S

 =

A3︷ ︸︸ ︷
− − + .
− − + .
+ + + .
− + . .


εt︷ ︸︸ ︷
εd,St
εd,Lt
εwt
εUt

 (A-67)

We estimate the structural VAR with the pure sign restrictions approach of Uhlig (2005) with lag length L = 2.
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D Additional tables and figures

Table A-1: Short-term and long-term demand factors, 2009m1 to 2018m6: This table reports
the slope coefficients from regressions of, respectively, the 5-year swap spread (s(5)t ), the 30-year
swap spread (s(30)t ), the short-term demand factor (ST-Demandt), and the long-term demand factor
(LT-Demandt) on the modified duration of the Barclays U.S. MBS index (MBS-Durationt), the
Klingler and Sundaresan (2019) pension underfunding factor (Pension-UFRt), and corporate bond
issuance (Corp-Issuancet). Variables are in levels in Panel A and in 13-week changes in Panel B.
Data are weekly and run from January 2009 to June 2018. Newey and West (1987) t-statistics are
reported in parentheses and are computed with 78 lags in Panel A and with 20 lags in Panel B.
We compute the associated p-values using the fixed-b asymptotic theory of Kiefer and Vogelsang
(2005). ∗∗∗, ∗∗, and ∗ denote statistical significance at the 1%, 5%, and 10% levels, respectively.

s
(5)
t s

(30)
t ST-Demandt LT-Demandt

(1) (2) (3) (4)

Panel A: Levels

MBS-Durationt -4.747∗∗ 5.557∗ -0.064 -1.622
(3.20) (2.24) (0.09) (1.63)

Pension-UFRt 0.314 -1.991 -0.230 1.117∗

(0.16) (1.30) (0.45) (2.30)

Corp-Issuancet -0.248∗∗ -0.250 0.131∗∗ 0.064
(2.52) (1.88) (2.49) (1.33)

Adjusted R2 0.284 0.283 0.233 0.353
N 495 495 495 495

Panel B: 3-month changes

∆13MBS-Durationt 0.144 3.728∗∗∗ -0.464∗ -1.596∗∗∗

(0.19) (5.01) (1.77) (5.75)

∆13Pension-UFRt 1.480∗∗∗ -1.057 -0.011 0.806∗∗∗

(3.58) (1.46) (0.06) (3.59)

∆13Corp-Issuancet 0.043 -0.114∗∗ 0.025∗ 0.029
(1.22) (2.36) (1.83) (1.52)

Adjusted R2 0.088 0.196 0.057 0.349
N 482 482 482 482
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Figure A-1: Impulse response functions and factors: The figure show the impulse response functions from the
structural VAR. Median, “closest to median,” and 15th-85th percentiles correspond to the set of responses that satisfy
the identification restrictions. Data are weekly and run from January 2009 to June 2018.
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Figure A-2: Swap spread historical decomposition: This figure shows how LIBOR-repo, end-user demand,
and intermediary supply contribute to the time-series variation in 30-year LIBOR swap spread. The underlying data
are weekly and run from January 2009 to June 2018. Shocks are identified using the structural VAR described in
Appendix C. Formally, we plot:

s
(30)
t − E[s

(30)
t ] =

Short-rate contribution︷ ︸︸ ︷
Âmẑ

m
t +

Demand contribution︷︸︸︷
Âdẑ

d
t +

Supply contribution︷ ︸︸ ︷
Âwẑ

w
t
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