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We develop an endogenous growth model in which clean and dirty
technologies compete in production. Research can be directed to ei-
ther technology. If dirty technologies are more advanced, the transi-
tion to clean technology can be difficult. Carbon taxes and research
subsidies may encourage production and innovation in clean tech-
nologies, though the transition will typically be slow. We estimate
the model using microdata from the US energy sector. We then char-
acterize the optimal policy path that heavily relies on both subsidies
and taxes. Finally, we evaluate various alternative policies. Relying only
on carbon taxes or delaying intervention has significant welfare costs.
I. Introduction
Recent economic research recognizes the importance of the transition
to clean technology in controlling and reducing fossil fuel emissions
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and potentially limiting climate change,1 while empirical evidence sug-
gests that innovation may switch away from dirty to clean technologies
in response to changes in prices and policies. For example, Newell, Jaffe,
and Stavins ð1999Þ show that following the oil price hikes, innovation in
air conditioners turned toward producing more energy-efficient units
compared to the previous focus on price reduction; Popp ð2002Þ finds
that higher energy prices are associated with a significant increase in
energy-saving innovations; Hassler et al. ð2011Þ estimate a trend break
in factor productivities in the energy-saving direction following the era
of higher oil prices; and Aghion et al. ð2016, in this issueÞ find a sizable
impact of carbon taxes on the direction of innovation in the automobile
industry and further provide evidence that clean innovation has a self-
perpetuating nature feeding on its past success. On the basis of this type
of evidence, Acemoglu et al. ð2012Þ suggest that a combination of ðtem-
poraryÞ research subsidies and carbon taxes can successfully redirect tech-
nological change toward cleaner technologies. Several conceptual and
quantitative questions remain, however. The first is whether, in the con-
text of a micro-founded quantitative model, reasonable policies can se-
cure a transition to clean technology. The second is whether there is
an important role for significant research subsidies conditional on opti-
mally chosen carbon taxes. The third concerns how rapidly the transi-
tion to clean technology should take place under optimal policy.
A systematic investigation of these questions necessitates a microeco-

nomic model of innovation and production in which clean and dirty
technologies compete given the prevailing policies, and the direction
1 On climate change, see, e.g., Stott, Stone, and Allen ð2004Þ on the contribution of hu-
man activity to the European heat wave of 2003; Emanuel ð2005Þ and Landsea ð2005Þ on
the increased impact and destructiveness of tropical cyclones and Atlantic hurricanes over
the last decades; and Nicholls and Lowe ð2006Þ on sea-level rise. On economic costs of cli-
mate change, see Mendelsohn, Nordhaus, and Shaw ð1994Þ, Pizer ð1999Þ, and Weitzman
ð2009Þ. On economic analyses of climate change, see Nordhaus ð1994, 2008Þ, MacCracken
et al. ð1999Þ, Nordhaus and Boyer ð2000Þ, Nordhaus and Stern ð2007Þ, Krusell and Smith
ð2009Þ, Hassler and Krusell ð2012Þ, and Golosov et al. ð2014Þ. On endogenous technology
and climate change, see Bovenberg and Smulders ð1995, 1996Þ, Goulder and Schneider
ð1999Þ, Goulder and Mathai ð2000Þ, Popp ð2002, 2004Þ, Van der Zwaan et al. ð2002Þ, Gri-
maud, Lafforgue, and Magné ð2011Þ, Hartley et al. ð2011Þ, Hassler, Krusell, and Olovsson
ð2011Þ, and Acemoglu et al. ð2012Þ.
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of technological change is determined as a function of these policies.2 It
also necessitates a combination of microdata for the modeling of compe-
tition in production and innovation with a quantitative model flexible
enough to represent realistic dynamics of carbon emissions and poten-
tial climate change. This paper is an attempt in this direction.
Our first contribution is to develop a tractable microeconomic model

for this purpose. In our model, which we view as an abstract representa-
tion of the energy production and delivery sectors, a continuum of inter-
mediate goods can be produced using either a dirty or a clean technol-
ogy, each of which has a knowledge stock represented by a separate
quality ladder. Given production taxes—which differ by type of technol-
ogy and thus can act as a “carbon tax”—final good producers choose
which technology to utilize. Profit-maximizing firms also decide whether
to conduct research to improve clean or dirty technologies. Clean re-
search, for example, leads to an improvement over the leading-edge
clean technology in one of the product lines, though there is also a small
probability of a breakthrough that will build on and surpass the dirty tech-
nology when the dirty technology is the frontier in the relevant product
line. Research and innovation decisions are affected by both policies and
the current state of technology. For example, when clean technology is
far behind, most research directed to that sector will generate incremen-
tal innovations that cannot be profitably produced ðunless there are very
high levels of carbon taxesÞ. However, if clean research can be success-
fully maintained for a while, it gradually becomes self-sustaining as the
range of clean technologies that can compete with dirty ones expands
as a result of a series of incremental innovations.
Our second contribution is to estimate parameters of this model using

microdata on R&D expenditures, patents, sales, employment, and firm
entry and exit from a sample of US firms in the energy sector. The data
we use for this exercise are from the Census Bureau’s Longitudinal Busi-
ness Database and Economic Censuses, the National Science Founda-
tion’s Survey of Industrial Research and Development, and the NBER
Patent Database. We design our sample around innovative firms in the
energy sector that are in operation during the 1975–2004 period.3 We
use our sample to estimate two of the key parameters of the model with
regression analysis using R&D and patents. We also estimate the initial
distribution of productivity gaps between clean and dirty technologies
in the economy by allocating the patent stocks of firms innovating in
2 Acemoglu et al. ð2012Þ assume that clean and dirty inputs are combined with a con-
stant elasticity of substitution, which allows for a limited form of competition between
clean and dirty technologies.

3 See Popp ð2006Þ and Jaffe, Popp, and Newell ð2010Þ for background on technology,
R&D, and innovation in the energy sector.
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these technology areas across the three-digit industries in which the firms
are operating. The remaining key parameters are estimated using sim-
ulated method of moments. We show that, despite its parsimony, the fit
of the model to a rich and diverse set of moments not targeted in the es-
timation is fairly good.
We then combine this structure with a flexible model of the carbon

cycle ðalso used in Golosov et al. [2014]Þ. Our final and main contribu-
tion is to use this estimated quantitative model for the analysis of optimal
policy and for a range of counterfactual policy experiments. Though it is
intuitive to expect that carbon taxes should do most of the work in the
optimal allocation—because they both reduce current emissions and en-
courage R&D directed to clean technologies—we find a major role for
both carbon taxes and research subsidies. The research subsidy is ini-
tially more aggressive and then declines over time, while we find that op-
timal carbon taxes are back-loaded ðbut also start declining after about
130 yearsÞ. Despite the differences between the models, the reason for
the major role for research subsidies is related to the one emphasized
in Acemoglu et al. ð2012Þ.4 Research subsidies are powerful in redirect-
ing technological change, and given this, it is not worth distorting the
initial production too much by introducing very high carbon taxes. It
is important to emphasize that research subsidies are not used simply
to correct a market failure ðor an uninternalized externalityÞ in research.
In fact, in our model, in the absence of externalities from carbon, or in
the special case in which there is only a dirty or a clean sector, the social
planner does not have a reason to use research subsidies. The reason is
that a scarce factor, skilled labor, is being used only for research, and
thus the social planner cannot increase the growth rate by subsidizing
research.5 The reason why the social planner relies heavily on research
subsidies is that when carbon emissions create negative externalities, in-
4 Major differences between the models include the following: ð1Þ here the damage
from atmospheric carbon is modeled as affecting production, along the lines of previous
literature, rather than utility directly; ð2Þ there is no “environmental disaster” threshold,
making it possible for us to calibrate the parameters more closely to data and without tak-
ing a position on carbon emissions in the rest of the world; ð3Þ in contrast to the constant
elasticity of substitution formulation of Acemoglu et al. ð2012Þ, dirty and clean sectors are
not ðq -Þ complements in our model but explicitly compete in each product line; ð4Þ be-
cause of breakthrough innovations, even with fairly aggressive research subsidies and car-
bon taxes, the dirty sector is eliminated very slowly ðin more than 1,000 yearsÞ; and ð5Þ we
also allow for research subsidies to create distortions, which plays some role in our quan-
titative policy conclusions. The third one is one of the most important microeconomic dif-
ferences, making the production structure more realistic and enabling us to use microdata
on innovation and production.

5 The social planner could affect growth by reallocating research activity between in-
cumbents and entrants, but this is neither quantitatively important nor allowed in our anal-
ysis ðbecause we restrict subsidies/taxes on the incumbents and entrants to be the sameÞ.
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ducing a transition to clean technology is an effective way of reducing
future carbon emissions.
In terms of counterfactual policies, we investigate the welfare costs of

just relying on carbon taxes and delaying intervention. Delaying optimal
policy by 50 years has a welfare cost equivalent to a permanent 1.7 per-
cent drop in consumption. The cost of relying only on the carbon tax,
without any research subsidies, is similar—1.9 percent. Another useful
comparison is made to current US policies. We estimate the effective re-
search subsidy from the differential between clean and dirty firms in our
sample in the use of federally funded R&D expenditure. Utilizing this
estimate and different values of effective carbon tax at the moment and
its likely values in the future, our estimated optimal policies are quite dif-
ferent from their US counterparts, and we show that under current US
policies, climate change dynamics will be significantly worse.
We also consider several variations and robustness checks to show

which aspects of the model are important for our main theoretical and
quantitative results. In particular, we investigate the implications of using
different discount rates and estimates of the damage of carbon concen-
tration on economic activity, allowing for alternative modeling of emis-
sions, different degrees of distortions from research subsidies, different
estimates of the microeconomic elasticities in the R&D technology, and
different distributions of initial productivity gaps between clean and
dirty technologies. Overall, most of the main qualitative and quantitative
features of optimal policy are fairly robust across a range of plausible var-
iations, though a few variations lead to optimal policies that are more ag-
gressive and involve carbon taxes reaching higher levels and remaining
high for 200 years or more.
Our model combines elements from four different lines of research

and is thus related to each of these four lines. First, we build on the grow-
ing literature on quantitative general equilibrium models of climate
change, such as Nordhaus ð1994, 2008Þ, Nordhaus and Boyer ð2000Þ,
Stern ð2007Þ, Krusell and Smith ð2009Þ, Adao, Narajabad, and Temze-
lides ð2012Þ, Hassler and Krusell ð2012Þ, and Golosov et al. ð2014Þ. We
follow these papers in introducing a simple model of the carbon cycle
and the economic costs of carbon emissions in a general equilibrium
model and then characterizing optimal policy. Second, we introduce en-
dogenous and directed technological change along the lines of Ace-
moglu ð1998, 2002Þ in amodel in which producers have a choice between
clean and dirty productionmethods. In combining these two first lines of
research, we are following Acemoglu et al. ð2012Þ as well as several other
papers listed in footnote 1 above. Third, we develop a tractable but rich
model of competition between dirty and clean technologies building on
the literature on step-by-step competition as inHarris andVickers ð1995Þ,
Aghion et al. ð2001Þ, andAcemoglu andAkcigit ð2012Þ. Fourth, wemodel
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the microeconomics of innovation, employment, and output dynamics
building onKlette andKortum ð2004Þ, where each firm consists of a num-
ber of products and technologies ðin contrast to other applications, tech-
nologies here are different from products because of the competition
between clean and dirty sectorsÞ.
In estimating a general equilibrium model of firm-level innovation

and employment dynamics, we follow Lentz and Mortensen ð2008Þ,
Akcigit and Kerr ð2010Þ, and Acemoglu et al. ð2013Þ. We differ from ex-
isting work in this area in three important respects, however. First, we
combine this type of estimation strategy with a model of clean and dirty
technologies and estimate some of the parameters of the R&D technol-
ogy directly from microdata. Second, rather than focusing on steady-
state comparisons, we study non-steady-state dynamics, which is crucial
for the question of transitioning to clean technology. Third, we charac-
terize optimal policies in such a framework.
The remainder of the paper is organized as follows. Section II intro-

duces our model and characterizes the equilibrium. Section III describes
the data set we use for estimation and quantitative evaluation, outlines
the different components of our estimation strategy, and presents the
estimates of some of the parameters we obtain from our microdata. Sec-
tion IV presents the simulated method of moments estimates of our pa-
rameters and discusses the fit of themodel. Section V quantitatively char-
acterizes the structure of optimal environmental policy. In this section,
we also conduct a range of counterfactual exercises. Section VI discusses
a range of robustness exercises intended to convey which sorts of assump-
tions and parameters are important for the qualitative and quantitative
results of the paper. Section VII presents conclusions, while the online
appendix contains additional details and proofs.
II. Model
This section presents our baseline model, which is a simple dynamic gen-
eral equilibrium setup in which final output combines intermediates
produced using either a clean or a dirty technology, and the dirty tech-
nology also uses an exhaustible resource such as oil. The productivity of
the dirty and clean technologies for each intermediate is represented by
a quality ladder. Production is also subject to taxes, so profit-maximizing
final good producers choose whether to use clean or dirty intermediates
as a function of taxes and the productivity gap between the two. Research
is conducted by both entrants and incumbent firms, which already hold
a portfolio of products and technologies, and is directed toward clean
or dirty technology. Finally, dirty technology contributes to carbon emis-
sions, which create potential economic damage. We next describe each
aspect of the model in turn and characterize the equilibrium.
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A. Preferences and Endowments
Wemodel an infinite-horizon closed economy in continuous time. Since
the consumer side is not our focus, we simplify the discussion by model-
ing it with a representative household with a logarithmic instantaneous
utility function and lifetime utility given by

U0 5E∞

0

e2rt lnCtdt;

where Ct is the representative household’s consumption at time t and r >
0 is the discount rate. The representative household is composed of un-
skilled workers, with measure normalized to one, and “scientists,” with
measure Ls, who will be employed in R&D activities. All workers supply
one unit of labor inelastically. The household owns all the firms in the
economy, so it maximizes lifetime utility subject to the following budget
constraint,

wu
t 1 ws

t L
s 1 Pt 2 Tt ≥ Ct ;

and the usual no Ponzi condition. Here Pt is the total sum of corporate
profits net of R&D expenses, wu

t and ws
t are the wage rates ðand thus wage

incomesÞ of the unskilled and R&D workers, and Tt is the net lump-sum
tax ðor transferÞ used for balancing the government budget. Because re-
search subsidies may create additional distortions ðdenoted by DtÞ, there
may be a wedge between consumption and output, so that Ct 1 Dt 5 Yt.
B. Final Good Technology, Intermediate Production,
and Pricing
The final good is produced by combining a measure one of intermedi-
ates with an elasticity of substitution equal to one. In addition, its pro-
duction is negatively affected by the amount of atmospheric carbon con-
centration, which we denote by St. We follow the formulation suggested
by Golosov et al. ð2014Þ, which builds on earlier work by Mendelsohn
et al. ð1994Þ, Nordhaus ð1994, 2008Þ, and Stern ð2007Þ, and assume

lnYt 5 2gðSt 2 �SÞ1E1

0

ln yi;tdi; ð1Þ

where �S > 0 is the preindustrial level of the atmospheric carbon concen-
tration, g ≥ 0 is a scale parameter, and yi,t is the quantity of intermediate
good i. When g 5 0, ð1Þ gives the standard aggregate production func-
tion for combining intermediates to produce a final good with unit elas-
ticity of substitution. When g > 0, levels of atmospheric carbon concen-
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tration above the preindustrial level reduce productivity with an elastic-
ity of g.
A feature of ð1Þ, which will play a central role in our quantitative exer-

cise, is worth noting: the proportional cost of a unit increase in atmo-
spheric carbon concentration is independent of its current level. Though
nonlinearities, or even major threshold effects, are likely to be present
in the impact of atmospheric concentration on economic activity, this
functional form is consistent with assumptions made by other economic
approaches to climate change ðe.g., Nordhaus 1994, 2002, 2007; Nord-
haus and Boyer 2000; Stern 2007; Golosov et al. 2014Þ.
Each intermediate i ∈ [0, 1] can be produced with either a dirty or a

clean technology, and when it is produced with the clean ðdirtyÞ technol-
ogy, we denote it by yci;t ðydi;tÞ. We will sometimes refer to clean and dirty
technologies as clean and dirty “sectors” and also use the terms “interme-
diates” and “product lines” interchangeably.
Firm f can produce intermediate i with either a clean or a dirty tech-

nology ð j ∈ fc, dgÞ. The production function for clean technology is

yci;tð f Þ5 qc
i;tð f Þl ci;tð f Þ;

where l ci;tð f Þ is employment of production workers and qc
i;tð f Þ is the labor

productivity of the technology that this firm has access to for producing
with clean technology in product line i.6 Focusing on the firm with the
most productive clean technology for this intermediate and suppressing
firm indices, we often write this as yci;t 5 qc

i;t l
c
i;t .

The production function for dirty technology is similar, except that it
also uses an exhaustible resource ei,t:

ydi;tð f Þ5 qd
i;tð f Þl di;tð f Þ12nei;tð f Þn; ð2Þ

where n ∈ ð0, 1Þ. We assume that the exhaustible resource is owned by a
set of competitive firms, which can extract it with the following technol-
ogy relying on unskilled labor:

ei;t 5 z l ei;t ;

where z > 0. This implies that the marginal cost of extraction is ce ;t 5
wu

t =z . The stock of exhaustible resource, Rt, evolves according to the
law of motion

_Rt 5 2E1

0

ei;tdi: ð3Þ
6 Capital can be introduced as an additional factor of production following Golosov
et al. ð2014Þ but would further complicate our setup. Given our focus on technology choice
and endogenous innovation, we have not pursued this generalization.
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Profit maximization of resource owners combined with this law of mo-
tion implies that the price of the exhaustible resource, pe,t, follows the
Hotelling rule. In particular, this price minus the cost of extraction must
grow at the rate of interest ði.e., pe;t 2 zwu

t grows at the rate rtÞ.
The cost minimization problem of producers using a dirty technology

implies

ei;t 5

�
n

12 n

wu
t

pe;t

�
l di;t : ð4Þ

Combining this with ð2Þ gives a linear relationship between the output of
dirty producers and labor:

ydi;t 5

�
n

12 n

wu
t

pe;t

�n
� qd

i;t l
d
i;t :

Only firms with the most advanced technology for intermediate i within
the clean or dirty sector will find it profitable to produce it. However, be-
cause of taxes tjt on sector j at time t, it is not necessarily the most ad-
vanced technology between these two sectors that will be active. Given
these taxes, the marginal cost of production in line i is

MCi;t 5

ð11 tct Þwu
t

qc
i;t

if produced with clean technology

ð11 tdt Þwu
t
~Pe;t

qd
i;t

if produced with dirty technology;

8>>><
>>>:

where wu
t is the wage rate of unskilled workers and

~Pe;t ; ð12 nÞn21

�
pe;t
wu

t n

�n
ð5Þ

is the normalized price of the exhaustible resource at time t. In equilib-
rium, only the technology with the lower marginal cost inclusive of
taxes—or, equivalently, the one with the higher tax-adjusted labor pro-
ductivity—will produce. Equilibrium production decisions are

produce intermediate i with

clean technology if
qc
i;t

11 tct
>

qd
i;t

ð11 tdt Þ~Pe;t

dirty technology if
qc
i;t

11 tct
<

qd
i;t

ð11 tdt Þ~Pe;t

:

8>>>><
>>>>:

ð6Þ
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We assume that if condition ð6Þ holds with equality, each technology pro-
duces with probability 50 percent at any point in time.7

Finally, we also assume that at the initial date t 5 0, for each leading
technology of quality q j

i;0, there also exists an intermediate good of qual-
ity q j

i;0=l. This ensures that markups in the initial date will be equal to l,
and this result will hold endogenously at all subsequent dates.
C. Innovation, the Quality Ladder, and Dynamics
Labor productivity for each intermediate ðfor each technologyÞ evolves
as a result of innovation. Research is directed toward clean or dirty tech-
nologies. Successful research leads to one of two types of innovation.
The first is an incremental innovation, which takes place with probability
12 a; and the second is a breakthrough innovation, which takes place with
probability a ðindependently of all other eventsÞ.
If research directed to sector j ∈ fc, dg leads to an incremental innova-

tion, then the innovator advances by one rung in the quality ladder over
the current leading-edge technology of type j in a randomly chosen in-
termediate. Breakthrough innovations, on the other hand, enable the
successful innovator to improve by one rung over the frontier technol-
ogy, even if this frontier is set by the alternative technology; that is, a
breakthrough clean innovation improves over the dirty technology even
if the latter is far ahead of the clean sector, thus allowing the clean sector
to leapfrog the dirty one.8

We assume that each rung in the quality ladder corresponds to a pro-
portional improvement of l > 1. Consequently, labor productivity of
technology j in intermediate i at time t can be expressed as q j

i;t 5 ln
j
i;t ,

where n j
i;t ∈ Z1 is the effective number of steps that this technology has

taken since time t 5 0 ðwhere the initial levels, q j
i;0’s, are set equal to

one for all i and j without any loss of generalityÞ. This also implies that
an incremental innovation during an interval of time Dt leads to a new
technology with q j

i;t1Dt 5 lq j
i;t ði.e., an improvement of proportional

amount l over the leading technology in the same sectorÞ, while a break-
through innovation in sector j that is behind sector2j ði.e., with q j

i;t < q2j
i;t Þ

leads to a new technology with q j
i;t1Dt 5 lq2j

i;t , meaning that it builds on
the more advanced technology level of sector 2j.
Given this specification, the relative productivity of dirty to clean tech-

nology in intermediate i at time t can be written as
7 This condition will hold as an inequality “generically,” i.e., for almost all values of the
normalized price of the exhaustible resource, ~Pe;t .

8 Note that innovations here have a creative destruction element ðe.g., Grossman and
Helpman 1991; Aghion and Howitt 1992Þ because, by improving over an existing product
typically operated by another firm, they transfer the leading-edge technology to the cur-
rent innovator.
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qd
i;t

qc
i;t

5 lni;t ;

where ni;t ; nd
i;t 2 nc

i;t ∈ Z is defined as the technology gap between dirty
and clean sectors in product line i at time t.
Denoting by zjt the aggregate innovation rate ðthe sum of incumbents’

and entrants’ innovation ratesÞ in technology j, the law of motion for the
technology gap ni,t can be expressed as

ni;t1Dt 5

ni;t 2 1 with probability ð12 aÞzctDt 1 oðDtÞ 8ni;t

ni;t 1 1 with probability ð12 aÞzdt Dt 1 oðDtÞ 8ni;t

21 with probability azctDt 1 oðDtÞ if ni;t > 0

ni;t 2 1 with probability azctDt 1 oðDtÞ if ni;t ≤ 0

1 with probability azdt Dt 1 oðDtÞ if ni;t ≤ 0

ni;t 1 1 with probability azdt Dt 1 oðDtÞ if ni;t > 0

ni;t otherwise;

8>>>>>>>>>>>><
>>>>>>>>>>>>:

where oðDtÞ represents second-order terms that disappear faster than Dt
as Dt goes to zero.
Let us next denote the price-adjusted policy gap by mt, such that

mt ;
1

lnl

�
ln

�
11 tdt
11 tct

~Pe;t

��
;

where ~Pe ;t is given by ð5Þ. The tax-adjusted technology gap can therefore
be written as

qd
i;t

qc
i;t

11 tdt
11 tct

1
~Pe;t

5 lni;t2mt :

The leading-edge tax-adjusted technology in intermediate i is dirty if
ni,t > mt, the two technologies are neck and neck if ni,t 5 mt, and clean
is the leading technology otherwise.
D. Firms, R&D, and Free Entry
Following Klette and Kortum ð2004Þ, we define a firm as a collection of
leading-edge technologies. Let u j

f denote the number of intermediates
in which firm f has the leading-edge technology within sector j ∈ fc, dg,
though these may not be the most advanced technology for the interme-
diate in question because there is also a competing technology 2j. We
assume that u j

f captures the stock of knowledge on which the firm can
build for further innovations with technology j ∈ fc, dg. In view of this
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and without any loss of generality, we simplify the exposition by assuming
that each firm specializes in either clean or dirty technologies. Each firm
can then combine its knowledge stock u j

f ðin sector/technology jÞ with
scientists ðR&D workersÞ Hj

f in order to generate a Poisson flow rate of
X j

f new innovations according to the production function

X j
f 5 vðHj

f Þhðu j
f Þ12h; ð7Þ

where h ∈ ð0, 1Þ is the R&D elasticity with respect to scientists and v > 0.
The variable cost of generating a flow rate of Xj is therefore ws

t uh
j , where

h jðx jÞ5
�
x j

v

�1=h

ð8Þ

is the demand for skilled workers ðas scientistsÞ given innovation intensity
per product line of x j;Xj/uj andws

t is the wage rate of scientists ðwe have
dropped the firm index to simplify notationÞ. There is in addition a fixed
cost associated with R&D, which is again in terms of skilled workers. In
particular, to perform any R&D, firm f will need to hire FI,i scientists per
product line, where FI ;i;t ∈ ½ð12 yÞFI ; ð11 yÞFI � is an independent and
identically distributed draw ðacross firms and over timeÞ with mean FI
and y ∈ ð0, 1Þ.9 Hence, the total cost of R&D for firm f performing R&D
directed at technology j ∈ fc, dg at time t is Ctðu; xjÞ5 ws

t uðh j 1 FI ;i;tÞ.
Entrants can also undertake R&D directed to either sector by paying a

variable cost as in ð8Þ and a fixed cost in terms of FE ≥ FI scientists. We
denote the endogenously determined mass of entrants performing
R&D directed to technology j at time t by Ej

t .
On the policy side, R&D for sector j receives a proportional govern-

ment subsidy at the rate s jt ∈ ½0; 1�. Though the government uses lump-
sum taxes to finance its budget shortfall, subsidies to specific types of
research create various distortionary effects ðe.g., because of the ineffi-
ciency of picking winners or misdirection of resourcesÞ. We allow for
this by introducing the parameter x measuring the extent of such wast-
age and specifying the aforementioned wedge between output and con-
sumption as Dt 5 xSt. This also implies that the government budget at
time t is

ð11 xÞSt 5 Tt :
9 This heterogeneity in fixed costs is useful for smoothing out the dynamics. In partic-
ular, because of “creative destruction,” the equilibrium path in this class of models involves
some firms stopping R&D ðas clean firms will do without policy change and dirty firms do
under our optimal policyÞ. This will lead to a discontinuous behavior shortly before this
point because of the expectation that creative destruction will cease. Heterogeneity in
fixed costs smooths this transition.
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E. The Carbon Cycle
While clean intermediate production yci;t creates no carbon emission,
dirty production ydi;t emits k units of carbon per intermediate output.10

This implies that the total amount of carbon emission at time t is

Kt 5 kY d
t ; ð9Þ

where Y d
t 5 ∫

1

0 y
d
i;tdi is the total output of the dirty sectors at time t. We fol-

low Archer ð2005Þ and Golosov et al. ð2014Þ in assuming that the atmo-
spheric carbon concentration St is determined as follows:

St 5Et2T

0

ð12 dlÞKt2l dl ; ð10Þ

where t 5 T is the first date when emission started and

dl 5 ð12 JPÞð12 J0e
2JlÞ

is the amount of carbon emitted l years ago still left in the atmosphere;
JP ∈ ð0, 1Þ is the share of emission that remains permanently in the atmo-
sphere; ð1 2 JPÞJ0 ∈ ð0, 1Þ is the fraction of the transitory component
that remains in the first period; and J ∈ ð0, 1Þ is the rate of decay of
carbon concentration over time. As explained in Archer ð2005Þ and
Golosov et al. ð2014Þ, this specification approximates the complex dy-
namics of carbon concentration in the atmosphere and provides a good
match to the observed dynamics of atmospheric carbon concentration as
we show below.
F. Prices and Profits
The aggregate production function ð1Þ implies a unit elastic demand for
intermediates, which, taking the final good as numeraire, can be written
as

yi;t 5
Yt

pi;t
: ð11Þ
10 The assumption that carbon emissions are per unit of intermediate good produced
with dirty technology is a plausible baseline. Given our formulation with two types of tech-
nological changes, assuming that emissions are directly from the use of the exhaustible re-
source would amount to imposing that even dirty technological improvements reduce
effective emissions; the reason is that the same amount of dirty output, which in our em-
pirical work will correspond to energy output, can be obtained with less and less pollution
over time—even without any clean innovations. The main motivation for our baseline
choice is to avoid this blurring of the distinction between clean and dirty technologies. Al-
ternative emission specifications, where it is the use of the exhaustible resource that creates
emissions and where the dirty sector does not use the exhaustible resource, are investi-
gated in Sec. VI.
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To characterize equilibriumprices, we define the tax- and energy-price-
adjusted ðfor the exhaustible resourceÞ qualities by

~qd
i;t
;

qd
i;t

ð11 tdt Þ~Pe;t

and ~qc
i;t
;

qc
i;t

11 tct
:

Therefore, intermediate i will be produced using technology j ∈ fc, dg
only if ~q2j

i;t ≤ ~q
j
i;t . Moreover, as explained in the previous section, if the

leading technology for intermediate i at time t is q j
i;t , another firm will

have access to technology q j
i;t=l for free, and therefore, equilibrium

markups can never exceed l. This implies that the price and quantity
are given as

p j
i;t 5 min

�
lwu

t

~q j
i;t

;
wu

t

~q2j
i;t

�
and y j

i;t 5 max

�
~q j
i;t

lwu
t

;
~q2j
i;t

wu
t

�
� Yt : ð12Þ

Equilibrium profits can then be computed as a function of mt and n as

pd
n;t 5 ~pðn 2 mtÞYt and pc

n;t 5 ~pðmt 2 nÞYt ; ð13Þ
where

~pðkÞ;
0 if k ≤ 0

lðkÞ2 1

lðkÞ otherwise;

8<
:

and lðkÞ ; lk if k ∈ [0, 1] and lðkÞ 5 l if k > 1 summarizes equilibrium
markups.
G. Value Functions and Innovation Incentives
We now characterize innovation incentives. Let us focus on a single
firm, drop the firm and time indices to simplify notation, and let ~n j ;
½n j

1; : : : ; n
j

u j � denote the vector of product lines in which the firm in ques-
tion holds the leading-edge technology of type j ∈ fc, dg and nj

i is the
technology gap compared to technology 2j within the same product
line. Let ~n j

2i denote the same vector ~n j without its ith element n j
i . Then

the value of the firm satisfies the Hamilton-Jacobi-Bellman equation:

rV j

~n j 2 _V j

~n j 5o
u

i51

fp j
ni
1 z jðV j

~n
j
2i

2 V j

~n j Þ

1 z2j ½12 a1 Iðn j
i ≤0Þ

a�ðV j

~n
j
2i[fn

j
i 21g

2 V j

~n
j
i

Þ
1 Iðn j

i >0Þ
z2jaðV j

~n
j
2i[f21g 2 V j

~n
j
i

Þg

1Emax
x j≥0

fu jx jðEnV
j

~n j[fn j
u11

g 2 V j

~n j Þ

2 ð12 s jÞu jws½ðx jÞ1=hv21=h 1 Iðx j>0ÞFI �gdFI :

ð14Þ
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The first term on the right-hand side is the profits generated from uj

product lines. In addition, at the flow rate z j, each product line i will
be lost to an innovation by another firm from the same technology j,
in which case i is taken out of the firm’s portfolio ðso that the firm’s port-
folio becomes ~n j

2iÞ. If instead production line i experiences an innova-
tion from the alternative technology 2j, which happens at the rate z2j,
then there are two possibilities. First, if the innovation is incremental
ðprobability 1 2 aÞ or technology j is already behind ðn j

i ≤ 0Þ, the tech-
nology gap declines by one step to n j

i 5 n j
i 2 1. Second, if the innovation

is a breakthrough ðprobability aÞ and technology j was leading ðn j
i > 0Þ,

then the firm falls behind by one step to n j
i 521. Finally, the firm invests

in R&D itself and innovates at the flow rate Xj 5 ujx j, and the expected
return from this R&D ðinclusive of costs net of the R&D subsidy for this
sector, s jÞ is the final line of the right-hand side, with the integral ac-
counting for the fixed costs being stochastic. When successful, the firm
adds a new product line so that its portfolio becomes ~n j [ fn j

u11g.
Let us next denote by mn,t the fraction of product lines where the dirty

lead is exactly equal to n steps at time t. The next lemma provides a con-
venient reexpression of this Hamilton-Jacobi-Bellman equation.
Lemma 1. Equation ð14Þ can be reexpressed as V j

~nj ;t
5 ðou

i51 v
j
ni ;t
Þ � Yt ,

where

~rtv
j
ni ;t

2 _v j
ni ;t

5 ~p j
ni
2 z jt v

j
ni ;t

1 z2j
t ½12 a1 Iðn j

i
≤0Þa�ðv j

ni21;t 2 v j
ni ;t
Þ

1 Iðn j
i >0Þ

z2j
t aðv j

21;t 2 v j
ni ;t
Þ

1Emax
x
j
t ≥0

fx j
t �v

j
t 2 ð12 s jt Þ~ws

t ½ðx j
t Þ1=hv21=h 1 Iðx j

t >0ÞFI ;t �gdFI ;t ;

ð15Þ

where ~rt ; rt 2 gY;t is the effective interest rate ðnet of output growthÞ,
~ws
t ; ws

t =Yt is the normalized skilled wage, and �v j
t is the expected per-

product value of innovation, defined as

�vd
t ;o

n≥0
mn;tv

d
n11;t 1o

n<0

mn;t ½ð12 aÞvd
n11;t 1 avd

1;t �;

�vc
t;o

n≤0
mn;tv

c
n21;t 1o

n>0

mn;t ½ð12 aÞvc
n21;t 1 avc

21;t �:
ð16Þ

Proof. See the online appendix.
Intuitively, because there are no technological or product market link-

ages between the different product lines in which the firm has a lead, its
value can be written as the sum of the values of each one of its product
lines. An important implication of this result is that incumbent innova-
tion rates per product line are independent of their portfolios:
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xj
t 5 Iðx j

I ;t>0Þ

�
hv1=h�v j

t

ð12 s j
t Þ~ws

t

�h=ð12hÞ
for j ∈ fc; dg; ð17Þ

where v j
n;t is the solution to ð15Þ, �v j

t is given as in ð16Þ, and ~ws
t is the nor-

malized skilled wage defined in lemma 1. A number of important qual-
itative conclusions follow from ð17Þ.
I. Higher average values of innovation and lower scientist wages in-

crease research effort.
II. Subsidies to research increase research effort. This will be impor-

tant in encouraging clean innovation by means of research subsidies.
III. Carbon taxes increase clean research effort ðand reduce dirty re-

search effortÞ. This can be seen by considering higher values of m in
ð13Þ, which, given the distribution of technology gaps mn,t, increases pc

n;t

and �vc
t , because production shifts from dirty to clean technologies ðand

neck-and-neck sectors shift to positive markups for clean technologiesÞ.
This shows that carbon taxes alone may be sufficient to encourage clean
innovation and thus a transition to clean technology. Whether they are
optimal is an empirical and quantitative question we consider below.
IV. Perhaps most importantly, the nature of innovation is path depen-

dent in this economy. Consider the fraction of sectors in which clean
producers are already making positive profits. The average profit for
clean producers is Gc

t ;on<m mn;tptðmt 2 nÞ. Since the value function is
determined as the discounted sum of these average profits, the sequence
fGc

tg∞
t50 has a direct impact on innovation incentives through �vc

t . When
there are large technology gaps between dirty and clean, Gc

t is small, dis-
couraging clean innovation and encouraging dirty innovation. But if
clean innovation is maintained for a while, then the fraction of sectors
with n ≤ m increases, raising the probability that clean innovation will im-
prove over a profitable intermediate. Thus clean innovation can naturally
self-reinforce over time, but this is a slow process because the fraction of
sectors with n ≤ m changes slowly.
H. Free Entry and Labor Market Clearing
The previous subsection characterized the R&D decisions of incumbents
as a function of the state of the economy and policies. The other compo-
nent of R&D comes from entrants. Using reasoning similar to that for
incumbent R&D incentives, the free-entry condition for entrants for
technology j ∈ fc, dg is

max
x
j
E ;t

≥0
fx j

E ;t�v
j
t Yt 2 ð12 s jt Þws

t ½hðx j
E ;tÞ1 FE �g ≤ 0; ð18Þ

holding as equality if Ej
t > 0. Inspection of ð18Þ establishes that at time t,

there can be positive entry into sector j only if the “policy-adjusted” value
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of innovation is higher in sector j than in sector 2j. In other words, en-
trants will direct their R&D to the clean technology if �vc

t =ð12 sct Þ >
�vd
t =ð12 sdt Þ and to the dirty technology if the reverse inequality holds.
Conditional on entry, the optimal value of x j

E ;t is given by equation
ð17Þ, except that the indicator function now conditions on R&D by en-
trants in sector j being positive, that is, Iðx j

E ;t>0Þ
.

The labor market-clearing condition for skilled workers, combining
demand from incumbents and entrants, is

Ls 5 o
j∈fc;dg

�
Iðx j

E ;t>0Þ
½hðx j

E ;tÞ1 FE �Ej
t 1E1

0

Iðx j
i;t>0Þ

½hðx j
I ;tÞ1 FI ;i;t �di

�
; ð19Þ

where hð�Þ is defined in ð8Þ above, while x j
E ;t and x j

I ;t depend on the nor-
malized skilled wage ~ws

t via ð17Þ. This labor market-clearing condition
thus pins down this normalized skilled wage and indicates that the equi-
librium normalized skilled wage will be higher when R&D is more prof-
itable and is subsidized more heavily.
We next characterize labor market clearing for unskilled workers.

From the equilibrium production decisions in ð12Þ, demand for produc-
tion workers is

li;t 5

Yt

ð11 tci Þlðmt 2 ni;tÞwu
t

if ni;t ≤ mt

Yt

ð11 tdi Þlðni;t 2 mtÞwu
t

otherwise:

8>><
>>:

Adding the labor used in the extraction of the exhaustible resource, un-
skilled labor market clearing can be written as

15
Yt

wu
t

�
�
o
n≤mt

mn;t

ð11 tct Þlðmt 2 nÞ

1

�
n1 ð12 nÞ

�
1=z
~Pe ;t

��
o
n >mt

mn;t

ð11 tdt Þlðn 2 mtÞ
�
:

ð20Þ

This equation shows both the impact of taxes on labor demand ðwhich
reduce labor demand and thus wagesÞ and the distribution of technol-
ogy gaps ðbecause these affect markupsÞ. It also shows that if there were
only one type of technology ðand no extraction of the exhaustible re-
sourceÞ, an increase in the tax rate would have no impact on production,
just reducing the unskilled wage rate. This is no longer true with two
types of technologies, because a tax on dirty technology, for example,
would also change the prices of intermediates produced with dirty tech-
nology relative to those produced by clean technology, thus affecting
production.
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Next, substituting the optimal quantities ð12Þ into the final good pro-
duction function ð1Þ, we obtain

wu
t 5 �Q

t
Lt ; ð21Þ

where �Q
t
; expð∫ ln~q

it
diÞ is the quality index of active tax-adjusted labor

productivities, and Lt ;
Q

nlðn 2 mtÞ2mn;t is an inverse function of equilib-
rium markups.
We can next use ð20Þ to express aggregate output as a function of the

quality index of active tax-adjusted labor productivities:

Yt 5 �Q
t
LtQ

21
t exp½2gðSt 2 �SÞ�; ð22Þ

where

Qt ; o
n≤mt

mn;t

ð11 tct Þlðmt 2 nÞ

1

�
n1 ð12 nÞ

�
1=z
~Pe;t

��
o
n >mt

mn;t

ð11 tdt Þlðn 2 mtÞ

is an adjustment for labor demand coming from both taxes andmarkups.
As noted above, pollution is caused by total dirty intermediate produc-

tion at time t, which can be expressed as

Y d
t 5

Yt

ð11 tdt Þwu
t
~Pe;t

�
1

2
Qd

m;t 1
1

lðn 2 mÞon>mt

Q d
n;t

�
; ð23Þ

where we broke up the quality index by step-size differential n and define
Qd

n;t ; ∫i∈mn q
d
i;tdi ðwith a slight abuse of notation where i ∈ mn denotes inter-

mediates in which the technology gap is n stepsÞ. The evolution of the
quality indices Qd

n;t and Q c
n;t is described in the online appendix.

Intertemporal maximization yields the standard Euler equation,

gC ;t 5 rt 2 r; ð24Þ
where gC,t is the growth rate of consumption and rt is the interest rate at
time t ðand in addition we impose the usual transversality conditionÞ.
The Hotelling rule implies that the exhaustible resource price net of

the cost of extraction must grow at the rate rt ði.e., at the interest rateÞ,
and thus, the exhaustible resource price net of the cost of extraction
relative to the unskilled wage, ðpe;t 2 zwu

t Þ=wu
t , must grow at the rate

rt 2 gw,t. The implied path of the normalized exhaustible resource price
is therefore

pe;t
wu

t

5

�
pe;0
wu

0

2 z

�Et

0

ers2gw;s ds 1 z : ð25Þ
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An additional boundary condition is given by the requirement that the
price of the exhaustible price must satisfy

lim
t→∞

ðpe;t 2 zwu
t ÞRt 5 0;

so that either the entire stock of the exhaustible resource is utilized as
t → ∞ or pe;t 5 zwu

t for all t ≥ 0.
Finally, the evolution of the distribution of technology gaps repre-

sented by mn,t can be derived from the following differential equations
ðwith some initial condition fmn;0g∞

n52∞Þ. For n > 1, we have

_mn >1;t 5 zdt mn21;t 1 ð12 aÞzct mn11;t 2 ztmn;t ; ð26Þ

where zjt ; ð11 Ej
t Þx j

t and zt ; zdt 1 zct . Intuitively, the fraction of inter-
mediates with the technology gap n changes because of the difference
between inflows and outflows. There will be inflows into state n from
n2 1 when a dirty innovation occurs and from n1 1 when a clean inno-
vation occurs without leapfrogging. Outflows from the technology gap of
n steps will take place as a result of both clean and dirty innovations
ðbringing the state into n1 1, n2 1, or21 depending on the innovation
typeÞ. For n ≤ 1, a similar reasoning identifies

_m1;t 5 zdt m0;t 1 ð12 aÞzctm2;t 1 azdto
n <0

mn;t 2 ztm1;t ;

_m0;t 5 ð12 aÞzdt m21;t 1 ð12 aÞzctm1;t 2 ztm0;t ;

_m21;t 5 zctm0;t 1 ð12 aÞzdt m22;t 1 azcto
n >0

mn;t 2 ztm21;t ;

_mn <21;t 5 zctmn11;t 1 ð12 aÞzdt mn21;t 2 ztmn;t :

ð27Þ

We now summarize the dynamic equilibrium path using the equa-
tions we have derived in this section. For any given time path of policies
½t j

t ; s
j
I ;t ; s

j
E ;t �∞t50, a dynamic equilibrium path is characterized by a time

path of

½y j
i;t ; p

j
i;t ; x

j
I ;t ; x

j
E ;t ; Yt ; w

s
t ; w

u
t ; ei;t ; pe;t ; Rt ; E

j
t ; fmd

n;tg∞
n52∞;

fQd
n;tg∞

n52∞; rt ; St �∞t50

such that ð1Þ y j
i;t and p j

i;t maximize profits as in ð12Þ; ð2Þ x j
I ;t and x j

E ;t satisfy
ð17Þ; ð3Þ wu

t is determined by ð21Þ; ð4Þ aggregate output Yt is given by
ð22Þ; ð5Þ ws is determined from the free-entry condition ð18Þ when there
is positive entry and from skilled labor market clearing ð19Þ when there
is no positive entry; ð6Þ Ej

t is determined from the skilled labor market
clearing ð19Þ when there is positive entry; ð7Þ technology gap shares
fmn;tg∞

n52∞ satisfy ð26Þ and ð27Þ; ð8Þ total productivity of the sectors with
n-step gap Qd

n;t evolves according to the innovation rates in ð17Þ and
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ð18Þ;11 ð9Þ the interest rate satisfies the Euler equation ð24Þ; ð10Þ ex-
haustible resource quantity and price satisfy ð4Þ and ð25Þ; ð11Þ Rt evolves
according to the law of motion ð3Þ; and ð12Þ St is given by ð9Þ and ð10Þ
with Y d

t given by ð23Þ.
III. Empirical Strategy and Data
Ourmodel has 18 parameters/variables, fr, �S , g, J, J0, JP, k, n, z, R 0, Ls, a,
h, v, l, FI, FE , xg, and the initial distribution of technology gaps between
clean and dirty technologies, fm0;tg∞

n52∞, to be determined. As will be-
come clearer below, given fm0;tg∞

n52∞, the remaining parameters can be
estimated without knowledge of taxes and subsidies, and also without
any information on �S , g, J, J0, and JP. These parameters become relevant
only for our policy analysis. Nevertheless, for completeness we also spec-
ify our choices for all these parameters.
We proceed in four steps. First, we choose from external sources the

parameters of the carbon cycle and the discount rate: r, �S , g, J, J0, JP,
k, n, and x. Second, we directly estimate Ls, a, and h from microdata.
Third, we choose the initial distribution of technology gaps to match
the distribution of patents between firms innovating primarily with clean
and primarily with dirty technologies as we explain below. Finally, we es-
timate the remaining parameters v, l, R 0, z, FI, and FE using simulated
method of moments, with moments being selected to model the firm-
level R&D behavior, growth rates, and entry/exit rates for the energy sec-
tor as we describe below, and from the time path of carbon emissions.
The model performs well and is able to replicate these moments reason-
ably closely.
Throughout our focus is on the energy sector, the behavior of which

has motivated our theoretical model. The energy sector is defined as
firms involved in the sourcing, refinement, and delivery of energy inputs
for residential and industrial applications ðe.g., oil and gas, electricityÞ;
firms that provide complementary inputs and equipment into this en-
ergy production process ðe.g., drilling equipment, power plant technolo-
giesÞ; and firms that interface with the energy inputs for residential
and industrial use ðe.g., motor manufacturersÞ. As such, the 1,576 firms
that make up our sample include oil and gas producers, mining and ex-
ploration firms, engine manufacturers, power companies building on
multiple techniques, energy equipment manufacturers, and similar oth-
ers. The data we use for estimation come from the Census Bureau, and
we design our sample around innovative firms in the energy sector that
are in operation during the 1975–2004 period.
11 See the online appendix for the explicit equations for the evolution of quality indices.
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A. External Calibration
We choose the parameters �S , g, J, J0, JP, k, and n to link our model to
the carbon cycle and its impact on aggregate output following Golosov
et al.’s ð2014Þ approach. This approach takes into account the current
level of carbon stock and its increase since preindustrial times; the rate
at which new emissions enter the atmosphere, the terrestrial biosphere
or shallow oceans, and the deep oceans; how that movement and the var-
ious reservoirs of carbon influence the earth’s temperature; and how
higher temperatures and environmental damage hurt the economy. This
approach is similar toprior work in environmental economics ðe.g.,Nord-
haus and Boyer 2000; Nordhaus 2008Þ, though with some important
differences: in particular, it is more flexible in allowing nonlinear absorp-
tion of atmospheric carbon, but it does not allow any delay on the impact
of this carbon content on economic outcomes and temperature changes
ðe.g., because ocean temperature changes at a different rate than land
temperatureÞ and does not separately keep track of the dynamics of
the atmospheric concentration of carbon dioxide, methane, and nitrous
oxide.
The value of the preindustrial stock of carbon dioxide in the atmo-

sphere �S is 581 gigatons of carbon ðGtCÞ. To model how emission in-
creases the atmospheric stock of carbon, we define the three parameters
J, J0, and JP as follows. First, JP is the portion of new emissions that will
remain in the atmosphere for a very long time, likely for thousands of
years, and estimates of this parameter from Archer ð2005Þ and the Inter-
governmental Panel on Climate Change ð2007Þ are about 20 percent.
The other two parameters, J and J0, govern the short- and medium-
termmovement of the emitted carbon, which influences the earth’s tem-
perature over short horizons but is ultimately absorbed into the deep
oceans. To identify these parameters, we utilize the 30-year half-life of
carbon and match the carbon stock evolution under emissions during
the 1900–2008 period. We use the law of motion of the atmospheric car-
bon concentration St, given by ð10Þ, over the period 1900–2008: St 5
∫
t21900

0 ð12 dlÞKt2l dl 1 S1900. The emission data, fKtg2008

t51900, are depicted in
figure 1.
Figure 2 then shows the close fit of ð10Þ at the parameter values J 5

0.0313 and J0 5 0.7661 ðthe solid lineÞ to the actual data on atmospheric
carbon concentration ðthe dashed lineÞ.
As already noted, our damage function also follows Golosov et al.

ð2014Þ, and we choose the same g parameter as they do, 5.3 � 1025

GtC21. Because this number may be too low, we investigate the robust-
ness of our results to higher values of g in Section VI.
In addition, the k parameter is chosen to link current world emissions

levels to the baseline level of dirty output in the model, Yd as given by
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ð23Þ, so that implied future increases in Yd will translate to correspond-
ingly higher levels of emissions. This formulation assumes that both
emissions and technological change in our model can proxy for those
in the global economy ðe.g., because new technologies can be utilized
globallyÞ.12 For the elasticity parameter n in the dirty production func-
tion, we follow Golosov et al. ð2014Þ and set n 5 0.04.
As noted above, the parameter x allows for distortionary effects of re-

search subsidies, for example, because it is difficult for the government
to know ex ante which projects are most worthy of public support. For
instance, the US Department of Energy ðDOEÞ provided $6.3 billion
in funding for the support of clean energy research and implementation
projects, and there have been some high-profile business and technol-
ogy failures associated with this program ðDOE 2012Þ. A well-known ex-
ample is that of Solyndra Corporation, a solar panel manufacturer, which
received approximately $500 million in support from the DOE before
declaring bankruptcy without achieving large-scale production. Moti-
vated by this, we set our baseline value for x to 10 percent ðimplying
FIG. 1.—World carbon emissions; source: Boden, Marland, and Andres ð2010Þ
12 This modeling strategy abstracts from several important issues: ð1Þ carbon taxes and
research subsidies vary across countries, especially in view of the prevailing lack of inter-
national cooperation ðsee Hassler and Krusell [2012] for possible implications of thisÞ;
and ð2Þ new technologies, often first developed in advanced economies ðin particular, the
United States, whose microdata we are usingÞ, will spread only slowly to other countries.
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that out of the $6.3 billion, $630 million would be entirely wastedÞ. We
will show that our results are robust when x is equal to 0 percent or
20 percent.
The final piece of our external calibration is the ðprivate and socialÞ

discount rate, which we take as r 5 1 percent, close to the 1.5 percent
chosen by Nordhaus. We also show that our results are quite similar, but
of course involvemore aggressive policies, when the ðsocialÞ discount rate
is 0.1 percent as assumed by Stern ð2007Þ.
B. Sample Construction and Data Sources
We use the individual records of patents granted by the US Patent and
Trademark Office ðUSPTOÞ from 1975 to 2009. We collect patents that
are filed by inventors living in the United States at the time of the patent
application and are assigned to industrial firms. We identify patents re-
lated to the energy sector through patent technology codes. The tech-
nology codes are the most disaggregated level of the USPTO’s classifica-
tion scheme and number over 150,000. We adopt the prior classifications
developed by Popp ð2002Þ and Popp and Newell ð2012Þ. These author-
itative prior works are particularly helpful in that they provide classifica-
tions into various types of energy technologies. We are interested, how-
ever, in several technologies ðe.g., nuclear powerÞ not considered by
FIG. 2.—Atmospheric carbon concentration: data and model implications
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Popp and Newell and thus extend their list through three additional
steps: ð1Þ using environment-related technologies identified by the
OECD under the International Patent Classification system, ð2Þ exam-
ining patents made by prominent firms with energy-related R&D data
rom the National Science Foundation ðNSFÞ Survey of Industrial Re-
search and Development ðR&D SurveyÞ, and ð3Þ searching manually on
key phrases.
Our firm-level operating data are from the US Census Bureau’s Lon-

gitudinal Business Database, which contains annual employment levels
for every private-sector establishment with payroll from 1976 onward.
We also employ Economic Censuses that are conducted every 5 years
to collect additional plant and firm operation data ðe.g., salesÞ. We
match patent data to these operating data using firm name and geo-
graphic location matching algorithms. We focus our sample on the years
in which Economic Censuses are conducted. This structure matches our
data’s features and accounts for the lumpiness of innovation outcomes.
We thus measure variables using the average of observed values for firms
in 5-year windows surrounding Economic Census years and have six time
periods covering 1975–2004.
Our third data source is the NSF’s R&D Survey, which collects infor-

mation from all firms conducting over $1 million in R&D and sub-
samples firms beneath this level. The R&D Survey provides us with infor-
mation on many firms’ R&D expenditures and employments of science
and engineering workers. We use the data, along with the patenting of
the firm, to calculate the innovation production function for the sector
ðe.g., the h and a parametersÞ. These calculations utilize only firm obser-
vations for which we always observe reported data. For our broader mo-
ments on firm dynamics, we need a complete distribution that encom-
passes firms subsampled only beneath the threshold. Our patent data
are universally observed, and we thus use patents to impute R&D values
for firms that are less than the threshold of $1 million R&D and not sub-
sampled. Overall, our moments combine the R&D and patent data into
a single measure of innovation ðin R&D termsÞ that accords with the
model.
Our sample requires that a firm either patent or have measured R&D

in the first period of its life and does not condition on innovative activity
before 1975–79 for firms that are present at the sample’s start. Because
our model allows for firms to transition out of R&D, we include firms
that stop innovation, though we do not include noninnovative incum-
bent firms that switch to innovation.13 Our final sample requires that
13 As the probability that an existing, noninnovative firm commences R&D or patenting
over the ensuing 5 years ðconditional on survivalÞ is only about 1 percent, this exclusion is
reasonable. These procedures define the base pool of innovative firms in the energy sector.
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the firm have positive employment and obtain three or more patents
in the energy sector during 1975–2004. We also require that 10 percent
of the firm’s total patenting be in energy-related fields. The 10 percent
bar is more substantial than it may initially appear as we have been fairly
conservative in terms of defining energy sector patents.
Thus, our compiled data set includes 6,228 observations from 1,576

innovative firms in the energy sector from 1975 to 2004. While focused
on a single sector, our firm-level panel contains 19 percent of all US R&D
industrial expenditures and accounts for about 70 percent of industrial
patents for the US energy sector. Across all activity in the economy, our
sample contains 1 percent of establishments, 5 percent of employment,
and 10 percent of sales. Our sample accounts for a substantial amount
of activity in several of the main sectors responsible for emissions ðe.g.,
Mueller, Mendelsohn, and Nordhaus 2011Þ.14 While our sample does
not include many firms directly from two high-emission sectors, agricul-
ture and transportation, it includes many of the manufacturers of prod-
ucts that are key inputs to these sectors.
We define patents as related to dirty technologies if they are con-

nected to the extraction, refinement, or use of fossil fuel–based energy,
including oil, coal, natural gas, and shale technologies. We group into
clean-energy patents fields that are related to geothermal, hydroelectric,
nuclear, solar, and wind energy. We also include patents for conservation
and utilization of energy. Results are robust to reclassifications of border
group types.
Finally, to determine themodel’s initial conditions, we identify whether

firms are primarily operating in dirty- or clean-energy applications. We
first classify an observation ða firm in a given periodÞ as focused on clean
energy if 25 percent or more of its energy-sector patents are devoted to
clean-energy fields; otherwise the firm is classified as a dirty-energy firm
in the period. We use the 25 percent threshold as our assignments of
clean-energy fields are conservative compared to dirty-energy fields. We
then describe the firm overall as a clean-energy firm if half or more of
its time periods achieve this clean-energy focus. The distribution between
clean and dirty uses at the firm level is fairly bimodal—96 percent of ob-
servations have 75 percent or more of their patents in one technology—
making the exact details of these procedures less important. In total,
11 percent of our firms are classified in the clean-energy subsector; 14 per-
cent of energy-sector patents are classified as clean energy.
14 In the 1992–97 period, e.g., we account for 59 percent of sales in industries related to
coal and oil extraction, refinement, and shipment; 33 percent of sales in industries related
to electricity production; and 21 percent of manufacturing sales. Among manufacturing
industries, our sample contains higher shares in industries more closely linked with emis-
sions ðe.g., 64 percent in petroleum refinement, 31 percent in primary metalsÞ.
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C. Estimation and Choice of Parameters from Microdata
We first estimate the h parameter from our innovation production func-
tion, Xf 5 vðHf Þhðuf Þ12h, which can be rewritten as

lnðX=uf Þ5 lnðvÞ1 h � lnðH=uf Þ:

Wemeasure X by the firm’s count of patents,H by the firm’s R&D expen-
ditures or scientist counts, and u through four proxies of firm size given
below. Our patent count measure is weighted by citations ðnormalized by
the average citations achieved by other patents in the same patent class
and application yearÞ.
To estimate the h elasticity as accurately as possible, we use the panel

nature of our data and later return to estimating the v parameter. As
noted earlier, we use for this exercise only firms that have a full panel
of reported R&D data. To focus on higher-quality data for our differ-
enced estimations, we also require that the firm be present in at least
three periods. We first estimate a linear regression with year fixed effects
dt as follows:

lnðPatents=product
f ;t
Þ5 b � lnðR&D=product

f ;t
Þ1 dt 1 ef ;t ; ð28Þ

with standard errors clustered by firm. We then extend the estimation to
allow for firm fixed effects by first-differencing to obtain the following
specification:

D lnðPatents=product
f ;t
Þ5 b � D lnðR&D=product

f ;t
Þ1 dt 1 ef ;t ; ð29Þ

Panel A of table 1 summarizes eight variants of the ordinary least squares
ðOLSÞ levels regression ð28Þ. The rows indicate four measures of firm
size uf: three-digit and four-digit Standard Industrial Classification ðSIC3
and SIC4Þ industry counts, sales, and establishment counts. Column
headers indicate whether R&D inputs are being measured through
R&D expenditures or counts of scientists. The eight coefficients are from
eight separate estimations of regression ð28Þ. The average is 0.69 with a
range of 0.63–0.76.
Panel B similarly summarizes eight estimation variants of the first-

differenced regression ð29Þ. The average across these variants is lower
at 0.37, with a range of 0.29–0.51. We set the baseline value of h to 0.5,
the midpoint within the range of estimates in table 1.15
15 We also find comparable h parameters in robustness checks off of this sample plat-
form. For example, restricting the sample to firms with energy patents as more than 30 per-
cent of their patent portfolio yields levels and first-difference estimates of 0.744 ð0.065Þ

This content downloaded from 128.103.149.052 on February 04, 2016 06:47:00 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



78 journal of political economy

All
We next turn to the a parameter that describes technology leapfrog-
ging. This process is challenging to model empirically, and we are un-
fortunately unable to identify exact races between clean and dirty tech-
nologies directly within the patent data. This limitation is due to the
narrowness of the technology codes that are entirely clean or dirty in ap-
plication, while patent class divisions are too broad and few in num-
ber. We thus identify the rate at which patents with exceptional quality
emerge using patent citations and quantify the rate at which patents en-
ter and quickly establish high levels of citations compared to incumbent
peers.
Specifically, we start with our data set of all energy-sector patents

granted toUS inventors during the post-1975 period.We calculate among
these energy-sector patents the citation count distribution of incumbent
patents by year, excluding within-firm citations. Incumbent patents are
defined to be those that were applied for 5–10 years before the focal year;
we cap at 10 years prior so that we can have a stable window across a time
period from 1985 onward for analysis. Citations are coming from patents
being applied for in the focal year. By focusing on patents receiving a ci-
tation in a given year, we are effectively looking at technologies that are
being actively used, with many incumbent patents dropping out as no
one is building on them. We then calculate for new patents the citations
they receive by year. We designate a major entrant as any patent that has
a citation count that exceeds the 90th percentile of the incumbent dis-
tribution in any of its first 3 years. This evaluation approach is designed
TABLE 1
OLS Estimates for h Parameter

A. Levels B. First-Differenced

Firm Size uf R&D Scientists R&D Scientists

SIC3 counts .632 ð.042Þ .653 ð.048Þ .342 ð.056Þ .286 ð.052Þ
SIC4 counts .625 ð.043Þ .644 ð.048Þ .353 ð.057Þ .296 ð.053Þ
Sales .761 ð.053Þ .751 ð.048Þ .405 ð.075Þ .348 ð.065Þ
Establishments .714 ð.039Þ .732 ð.041Þ .505 ð.058Þ .455 ð.054Þ
and 0.384 ð0.100Þ, respecti
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to keep the incumbent groups ð5–10 years earlierÞ separate from the en-
trant groups ðmaximumof 3 years earlierÞ; 4.2 percent of entrants achieve
this level of major entrant. We find a slightly lower estimate at 4.0 per-
cent using Popp and Newell’s ð2012Þ definitions and a rate of 4.1 percent
when making the citation distributions specific to each patent class. On
the basis of these findings, we set a 5 4 percent.
Finally, for Ls, which is the supply of scientists and engineers involved

in R&D-type activities in the model ðrelative to unskilled workersÞ, we use
5.5 percent.We calculate this share from the census IntegratedPublicUse
Microdata Series using the 2000 5 percent sample, focusing on non-
group-quartered workers aged 20–65, employed in industries closely re-
lated to the energy sector. We also require 20 weeks worked within the
year and usual hours worked of 20 or more during each week. The share
of these workers with a college education or more, employed in occupa-
tions related to science and engineering, is 5.5 percent.
D. Initial Technology Gaps
To provide the initial distributions of the model, we develop estimates of
the cumulative stock of technologies invented by clean- and dirty-energy
firms using SIC3 industries as approximations of product lines. We de-
velop these distributions in three steps. The first step is to calculate
the sum of patents by each firm during the 1975–2004 period and the
firm’s distribution of employment across SIC3 industries in these sectors
over the same period. We then apportion the firm’s cumulative patent
stock across SIC3 industries using the firm’s employment distributions.
For each SIC3 industry, we finally sum the apportioned patents made
by clean- and dirty-energy firms. This sum of patents across all firms, ac-
tive or inactive, reflects the quality ladders structure of our model.
These calculations provide us with over 400 estimates of comparative

clean- and dirty-energy stocks. Across these SIC3 industries, clean-energy
firms are estimated to have a higher cumulative patent stock in 13.1 per-
cent of industries. For data quality and Census Bureau disclosure restric-
tions, we focus on the upper half of the industry distribution in terms of
cumulative clean and dirty patent counts, which has 13.0 percent of in-
dustries being led by the clean-energy stock ðwithin manufacturing and
energy production specifically, this share is 12.5 percentÞ.
The average gap relative to the frontier in the 13 percent of cases in

which clean patents have the lead is 39 percent, while it is 76 percent
in the 87 percent of cases in which dirty patents have the lead. We con-
vert the patent gaps into the technology gaps in the model using a con-
version factor between the patents rates in the data and the innovation
rates in the model. In particular, in our model the annual innovation
flow of incumbents is 24.1 percent per product line ðthe sum of xc 5
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4.8 percent and xd 5 19.3 percentÞ, while in the data the mean of patent
flow is approximately 43 per line. Hence we divide the empirical patent
distribution of clean and dirty ðwhich consists of patents registered be-
tween 1975 and 2004Þ by the conversion factor of 43/0.241 and then
round the resulting technology to the nearest integer. This gives us the
initial number of improvements nd

j ;0 and nc
j ;0. We then compute the ini-

tial productivities as qd
j ;0 5 lndj ;0 and qc

j ;0 5 lncj ;0 to provide the initialization
values.
Figure 3 plots the density of the resulting distribution of initial tech-

nology gaps between dirty and clean technologies.16 It shows that in most
product lines the dirty technology is only a few steps ahead of clean tech-
nology, but there is a long tail of product lines with a large gap between
dirty and clean and a small set in which clean is ahead of dirty. The frac-
tion of product lines with a nonzero gap in terms of step sizes is 90 per-
cent. Clean energy leads by one or more step sizes in 9 percent of cases.
Dirty energy has a lead of 20 and 50 step sizes or more in 11 percent and
2 percent of technologies, respectively. We later consider alternative ini-
tial distributions.
FIG. 3.—The distribution of initial productivity gaps between clean and dirty technolo-
gies across product lines. A positive number indicates the dirty technology having the lead.
16 See the online appendix for additional summary statistics.
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E. Simulated Method of Moments
The remaining parameters v, l, FI, FE, R 0, and z are estimated using the
quantitative implications of our model. For the first four of these pa-
rameters, v, l, FI, and FE, we use the simulated method of moments
ðSMMÞ. This approach chooses the parameter vector so as to minimize
the distance between four moments as implied by our model and data,
mino4

i51 jmodel ðiÞ2 data ðiÞj, where we index each moment by i. SMM
iteratively searches repeatedly across sets of parameter values for v, l, FI,
and FE until the model’s moments are as close as possible to the empir-
ical moments ðsee Adda and Cooper [2003] for further detailsÞ. We also
choose the fixed-cost heterogeneity parameter, y, as 10 percent and ver-
ify that our results are not sensitive to this choice of parameter.
We use three moments from themicrodata—firm entry rates, firm exit

rates, and the average R&D/sales ratio of firms—together with the growth
rate of the sector to identify these parameters. The entrant’s labor share
and exit rates are calculated across the 5-year intervals of our Census
Bureau data and then transformed into annualized net rates of 1.3 per-
cent and 1.75 percent, respectively. We match the construction of these
entry and exit rate moments in the model. The weighted average R&D/
sales ratio is 6.56 percent, using log sales as weights and winsorizing the
R&D/sales ratio at the 99th percentile to reduce outliers. The aggregate
annual sales growth per worker is 1.23 percent for the sector across the
1975–2004 period.17

For the remaining parameters, z and R 0, we use the implied emission
path of our model. British Petroleum ð2010Þ reports that oil reserves are
around 181.7 Gt, but there is considerable uncertainty around this esti-
mate as well as on coal reserves. Rogner ð1997Þ argues that world coal
supplies will be sufficient for several hundred years if used at the current
rate. This motivates our approach of computing these two parameters to
match the level and the growth rate of emissions in 2008 ðrather than us-
ing a specific value of total reservesÞ.
IV. Estimation Results
In this section, we provide the SMM estimates of the remaining param-
eters and discuss the fit of our model to nontargeted moments. Finally,
we show how atmospheric carbon concentration, temperatures, and ag-
gregate output evolve given these parameters in a laissez-faire equilib-
rium ðwith no policy interventionÞ starting from the observed distribu-
tion of technology gaps.
17 The computational algorithm is described in the online appendix.
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A. Parameter Estimates and Goodness of Fit
Table 2 summarizes our parameter estimates. The estimate of v 5 0.958
implies that a unit of skilled labor on a single product line generates an
innovation with probability of approximately 24 percent per year. Our
estimate of the innovation step size, l5 1.063, implies a gross profit mar-
gin of 5.7 percent, which is reasonable. The model predicts a sizable
fixed-cost advantage for incumbent firms: their fixed cost of operation
is equal to 5 percent of the entrants’ fixed cost. Finally, our procedure
of matching the recent past of emissions delivers the total energy re-
sources as 13,549 GtC, which is reasonable given the extent of known re-
serves.
Table 3 shows the values of the moments used for estimation, which

generally match the data quite closely.
Our main method of evaluating the quantitative fit of our model is to

look at a range of nontargeted moments, which are presented with the
model implications in table 4. We choose the nontargeted moments to
represent aspects of the firm size distribution and its growth properties,
which are quite different from the moments we targeted in our esti-
mation. Our first nontargetedmoment compares the size ratio of theme-
dian entrant to the median incumbent firm. Our targeted moments on
entry/exit rates, overall sector growth, and R&D intensity do not directly
This co
 use subject to Uni
TABLE 2
Parameter Estimates from SMM

Parameter Description Value

v Innovation productivity .958
l Innovation step size 1.063
FI Fixed cost of R&D .002
FE Fixed cost of entry .040
R 0 Total energy resources 13,549
z Extraction technology .016
ntent downloaded f
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TABLE 3
Moment Matching

Moments Model Data

Entry share .014 .013
Exit rate .032 .018
Average R&D/sales .065 .066
Aggregate sales/worker growth .012 .012
Emissions level in 2008 8.461 8.749
Growth of emissions in 2008 .023 .024
 04, 20
//www
Note.—This table compares the model and the data across the
moments used for estimation.
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impose strong constraints on this size distribution of firms. Panel A of
table 4 contrasts the size ratios in the model and data with respect to em-
ployment, sales, and sales per employee and shows that our model impli-
cations match the data very closely with respect to the latter two metrics,
though not as well for employment.18

We next compare growth distributions. We first calculate the uncondi-
tional growth rate of employment for each firm in the model and data
defined as ðEmpt 2 Empt21Þ/[ðEmpt 1 Empt21Þ/2]. As argued by Davis,
Haltiwanger, and Schuh ð1996Þ, this measure of growth has attractive
properties such as a symmetric treatment of positive and negative growth
and bounded values that minimize outliers. We calculate growth over
5-year intervals. We then calculate the probability that firms experience
substantial movements in either positive or negative directions. Com-
paring these movements in the model to the data provides insights into
how well the innovation step sizes and associated firm dynamics mirror
the sector’s true performance. Panel B of table 4 shows that the model
TABLE 4
Nontargeted Moments in the Model and the Data

Size Measure Model Data

A. Entrant Median Size Ratio to Incumbents

Employment .18 .03
Sales .18 .20
Sales per employee 1.13 1.05

B. Comparison of Growth Distribution:
Employment Growth Probability

Change over 5 years:
Decrease 75% or more .25 .11
Decrease 50% or more .30 .15
Decrease 25% or more .38 .26
Increase 25% or more .26 .31
Increase 50% or more .20 .20
Increase 75% or more .17 .14
Increase 100% or more .10 .11

C. Comparison of Growth over Size Distribution:
5-Year Conditional Growth Rates

Quantile of sizes:
Smallest 29% 31%
2nd 38% 14%
3rd 26% 11%
4th 28% 21%
Largest 23% 210%
18 To pass Census Bureau disclo
dian estimates that use the averag
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matches the data quite well on this dimension. The model somewhat
overpredicts employment declines of 25 percent or more, but it closely
matches otherwise.
Finally, panel C of table 4 turns to a comparison of the model and the

data for growth rates of firms conditional on different quartiles of the size
distribution. For this exercise, we divide firms into quantiles on the basis
of their initial size in each 5-year period and then compute the growth
rates using the above formula. The employment distribution implied
by themodel is a little less fine-grained than the data, as about 50 percent
of our firms have one product and employment is partially proportional
to product counts. Nevertheless, themodel’s implicationsmatch the gen-
eral patterns in the data, and in particular, the model successfully gener-
ates the lack of growth in the top two quantiles compared to the bottom
three. Overall, themodel performs reasonably well for these diverse tests,
providing confidence in its ability to capture production and innovation
dynamics in the energy sector.
B. Climate Dynamics in the Laissez-Faire Economy
We next describe the implied future equilibrium and atmospheric car-
bon paths of the model under laissez-faire ðmeaning no carbon taxes
and research subsidiesÞ. Given the initial distribution of technology gaps,
dirty innovation is more profitable, and with no policy intervention, most
R&D is initially targeted to the dirty technology as shown in figure 4.
Moreover, at these innovation rates, technology gaps and the profit-

ability of dirty technologies increase relative to those of clean technolo-
gies, and clean R&D rapidly converges to zero. Consequently, in the long
run, clean technologies disappear completely and dirty technologies
take over the entire economy.19 The obvious implication of this time path
of innovations is a steady increase in dirty-energy production and carbon
emissions. Figure 5 shows an increase in temperature of an additional
11 degrees Celsius in the next 200 years.20
V. Policy Analysis
In this section, we characterize the policies that maximize discounted
welfare given our estimated parameters and then consider various coun-
terfactual policy experiments.
19 Note that this rapid disappearance of clean technologies does not conflict with the
initial conditions shown in fig. 3, which had 9 percent of product lines being led by clean
technology. The reason is that the current stock of technologies is not generated by a laissez-
faire equilibrium, but by one in which clean technologies receive R&D subsidies as described
in Sec. V and other protections ðe.g., through pollution standardsÞ.

20 We compute temperature changes as Dtemperature5 lðln St 2 lnSÞ= ln 2:
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A. Optimal Policy
We start with optimal policy.21 Throughout, we do not allow the social
planner to correct for monopoly distortions, thus limiting ourselves to
the policy instruments discussed above—carbon taxes and subsidies to
clean research.22 In fact, our theoretical analysis makes it clear that what
is relevant is the differential tax and subsidy rates for clean versus dirty
energy, motivating us to focus on taxes on dirty production, which we re-
fer to as “carbon taxes,” and subsidies to clean innovation. Finally, for
computational reasons, we model taxes and subsidies as quartic func-
tions of calendar time. The resulting optimal policies are presented in
figure 6 ðwith the research subsidy shown on the left axis and the carbon
tax on the right axisÞ.
Figure 6 shows a very high level of research subsidy, especially during

the first few decades. The intuition for why optimal policy relies so much
on subsidies to clean research is instructive. The social planner would
FIG. 4.—Innovation rates under laissez-faire
21 Because of the nonlinear dynamics of atmospheric carbon concentration, optimal
policy is not necessarily time consistent. We ignore this problem by assuming that the social
planner is able to commit to the future sequence of taxes and subsidies.

22 As mentioned above, in the one-sector version of our model ðwith either only dirty or
only clean technologyÞ, taxes or subsidies to research would affect only relative wages of
skilled workers ðemployed in the research sectorÞ and, crucially, not the aggregate rate of
innovation. For this reason, subsidies to clean research or taxes on dirty research are iden-
tical in our model.
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FIG. 5.—The time path of temperature increases under laissez-faire
FIG. 6.—Optimal policies ðcarbon taxes and research subsidiesÞ under baseline pa-
rameters.
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like to divert R&D from carbon-intensive dirty technologies toward clean
technologies. She can do so by choosing a sufficiently high carbon tax
rate today and in the future, as this would reduce the profitability of pro-
duction using dirty technologies and secure a switch both to clean pro-
duction and, on the basis of this, to research directed at clean technol-
ogies. However, this is socially costly because given the current state of
technology, switching most production to clean technology has a high
consumption cost ðbecause the marginal costs of production of clean
technologies are initially significantly higher than those of dirty tech-
nologiesÞ. Hence, the social planner prefers to use the carbon tax to deal
only with the carbon emission externality and to rely on the research
subsidy to redirect R&D toward clean technologies. Figure 7 shows that
the research subsidy is indeed sufficient to rapidly switch innovation
from the dirty to the clean technology.
Figure 6 also shows that while the optimal research subsidy is front-

loaded, the optimal carbon tax is hump shaped. It starts out very low
and increases gradually over the first 130 years to almost 90 percent
and then declines back down to zero by about year 180. This is also intu-
itive: the research subsidy is front-loaded because the social planner
would like to switch research toward the clean technology as soon as pos-
sible. Once this is achieved and the change in the distribution of tech-
nology gaps makes clean research sufficiently profitable, the research
subsidy is phased out. Given the research subsidy, which is highly effec-
FIG. 7.—Innovation rates under optimal policies
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tive in redirecting technological change, the planner initially sets a low
carbon tax so as not to excessively distort early consumption. The carbon
tax is raised over time, which reflects two forces: ðiÞ future distortions are
less costly to the social planner because of discounting, and ðiiÞ as clean
technologies improve, the distortionary effects of the carbon tax are re-
duced. Finally, as most production switches to the clean technology,
there is less need for the carbon tax, and it is phased out.23

Figure 8 depicts the implied path of temperature under the optimal
policy. The combination of the research subsidy and the carbon tax
keeps the temperature increase below 2 degrees, and in fact, the temper-
ature starts reverting down after about 40 years. This reflects both the
switch of technological change to clean technologies and the role of the
carbon tax in discouraging the use of existing dirty technologies.
FIG. 8.—The time path of temperature increases under optimal policies
23 The path of optimal research subsidy and carbon tax here are fairly similar to those in
Acemoglu et al. ð2012Þ, despite the fact that the details of the two models and the exact
distortions that the carbon tax creates are quite different. In particular, the different pro-
duction structure here implies that a carbon tax creates no distortion unless it induces
some intermediates to switch to clean technology. This means that when there are few in-
termediates remaining with the dirty technology, the benefits from a carbon tax are low,
but so are the costs, as we show analytically in the online appendix. Nevertheless, along
the path induced by that optimal policy, the fraction of product lines using the dirty tech-
nology falls below 1 percent in 100 years, thus significantly reducing the role of carbon taxes
thereafter and accounting for the decline of the carbon tax to zero in about 180 years.
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B. Counterfactual Policy Analysis
We next investigate the welfare and climatic implications of a range of
alternative policies. We first focus on two counterfactuals. The first con-
cerns the choice of an optimal policy relying only on a carbon tax ði.e.,
no research subsidyÞ, and the second involves delaying intervention for
50 years and then choosing the optimal policy from that point onward.
The optimal policies are presented in figure 9.
The top panel shows that optimal policy becomes more aggressive

when the only policy tool is the carbon tax. The carbon tax in this case
starts out higher than in the baseline and continues to increase to above
300 percent, though it still has a hump-shaped form and declines after
about 150 years, coming down to below 200 percent around year 200
as is visible at the end of the 200-year window shown in the figure. The
much higher level of the carbon tax in this case occurs because this pol-
icy tool is being used not just to reduce current emissions but also to re-
direct innovation toward clean technologies. An interesting implication
of this constrained policy is that aggregate temperature increases less
at long horizons because of the more aggressive carbon tax, but this is
at the expense of slower consumption growth, especially early on. As a re-
sult, the welfare cost of just relying on a carbon tax for optimal policy ðin
terms of an equivalent loss of initial consumptionÞ is 1.9 percent.
Somewhat paradoxically, delaying the start of optimal policies by

50 years leads to less aggressive policies from that point onward. The rea-
son is that the intervening interval has generated a bigger technology
gap between the clean and dirty sectors, making a rapid switch from dirty
to clean technologies thereafter undesirable ðthe switch now takes place
in about 300 yearsÞ. Because the economy now generates greater con-
sumption early on, the welfare loss from this 50-year delay is a relatively
modest 1.7 percent.24

A related counterfactual is to focus on time-invariant policies. Under
this restriction, the optimal research subsidy and carbon tax are 63 per-
cent and 13 percent, respectively. The welfare loss from using time-
invariant policies is also relatively modest, just 1 percent, which in part
reflects the fact that once the switch to clean technology has taken place,
keeping the research subsidy and the carbon tax high has only moderate
costs.
Finally, we also evaluate climatic and welfare implications of maintain-

ing current US policies ðhere interpreted for the whole worldÞ relative to
adopting the optimal policy. For this purpose, we have tried to estimate
24 If we increase g to five times its baseline value ðas we do in our robustness checks
belowÞ so that the damages from not reducing carbon emissions become much higher,
then policies following a 50-year delay are indeed more aggressive than the baseline and
the cost of delaying intervention is significant ðabout 12.5 percentÞ.
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the carbon taxes implied by US policies and the current subsidies to
clean innovation ðrelative to dirty R&DÞ in our sample of firms. There
is much uncertainty about what the carbon tax in the United States
will be moving forward. A cap-and-trade program is likely to be imple-
mented, but it is unclear what the implied carbon tax rate will be. Green-
stone, Kopits, and Wolverton ð2013Þ estimate a social cost of carbon
FIG. 9.—Constrained optimal policies with restriction to only carbon taxes ðtop panelÞ
and following a 50-year delay ðbottom panelÞ.
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equal to about $21 in 2010, expressed in 2007 dollars, and this number is
currently being used for cost-benefit analysis by US agencies. Because fu-
ture emissions are expected to become more harmful, this social cost es-
timate is forecasted to increase to $45 in 2050 ðin 2007 dollarsÞ. We
therefore use two values for the “business-as-usual” carbon tax: 0 percent
consistent with the current situation and 23 percent ðconsistent with a
$45 social cost of carbon in 2050Þ.25 We estimate the current clean re-
search subsidy from our sample as follows: over our full 30-year period,
49 percent of all R&D expenditures by our clean firms are federally
funded, while the same number is 11 percent for our dirty firms. This
implies a 43 percent ð[12 0.49]/[12 0.11] ≃ 12 0.43Þ subsidy for clean
R&D relative to dirty R&D.
Because a 43 percent research subsidy for clean is insufficient to redi-

rect technological change toward clean with no carbon tax, the scenario
with a zero carbon tax involves rapid increases in temperature in the first
several hundred years and leads to close to 100 percent welfare costs
ðregardless of the discount rateÞ. Interestingly, however, even with this
less than optimal subsidy to clean research, it turns out that the temper-
ature increase can be contained provided that there is a moderate car-
bon tax of 23 percent. In fact, because this ðsuboptimally lowÞ combina-
tion of research subsidy and carbon tax is still sufficient to induce a rapid
switch to clean technology, the welfare loss is only 1.2 percent.
VI. Robustness and Extensions
In this section, we investigate how our estimation, optimal policy, and
counterfactual results are affected by a range of different approaches,
modeling assumptions, and variations on parameter estimates. We econ-
omize on space by reporting only the implied optimal policies, even when
the variation in question involves reestimation. Overall, we find that our
main conclusions, especially those concerning the form of optimal poli-
cies, are fairly robust across these variations.
A. Three-Step Policy
The first robustness exercise considers policies that take a simple “step
function form”with three endogenously determined switch points rather
than optimal policies modeled as a quartic in time. The optimal policies
25 In particular, US carbon emissions are 1.58 billion tons in 2002. One metric ton of
carbon is equivalent to 3.667 units of carbon dioxide. Our dirty firms have sales of approx-
imately $1 trillion in this year. The $45 social cost is $39 in 2002 terms. These numbers im-
ply a real tax rate in 2050 of about 23 percent: ð39 � 3.667 � 1.58 � 109Þ/1012 ≃ 0.23. This
carbon tax rate is much less than currently used in Sweden ðsee Golosov et al. 2014Þ and
also less than the numbers suggested by Nordhaus ð2008Þ.
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in this case are depicted in figure 10, which shows a pattern similar to
figure 6, except that the carbon tax now remains high for a longer inter-
val, coming down only after about 440 years. We therefore conclude that
the specific computation restrictions we imposed in our baseline analysis
are not particularly important for our main conclusions.
B. Lower Social Discount Rate
An important debate in the optimal climate policy literature concerns
the social discount rate. Here we follow Stern ð2007Þ and investigate
the implications of lower social discount rates, in particular, r 5 0.5 per-
cent and 0.1 percent ðwhile still keeping the private discount rate at
1 percent so that the implied interest rate is not counterfactually lowÞ.
Figure 11 shows that with 0.5 percent, the qualitative features of the op-
timal policy are very similar to our baseline, though the carbon tax now
increases to somewhat higher levels.
With the much lower social discount rate of 0.1 percent, the carbon

tax rises much more rapidly to much higher levels so as to cut emissions
immediately ðsince these emissions create persistent costs in the future,
which the social planner now cares much more aboutÞ. But even in this
case, the carbon tax has a hump-shaped path and starts coming down af-
ter 150 periods. Overall, we read the patterns in figure 11 as suggesting
that our qualitative, and to some degree quantitative, conclusions are
fairly robust to reasonable variations in the social discount rate.
FIG. 10.—Optimal policies restricted to a three-step form
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C. Alternative Specifications of Carbon Emissions
Our model considers emissions that are proportional to the use of dirty
output. An alternative is to assume that emissions are proportional to the
amount of exhaustible resource used in dirty production as in Golosov
et al. ð2014Þ. As noted in footnote 10, this amounts to assuming that even
technological changes in the dirty sector reduce emissions per unit of
energy output. As in Golosov et al.’s paper, this would not generate
enough emissions to make the climate change implications sufficiently
FIG. 11.—Optimal policies under a social discount rate of 0.5 percent ðtop panelÞ and
0.1 percent ðbottom panelÞ.
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costly. We therefore follow their paper in this case and assume that, in
addition to having emissions proportional to the use of the exhaustible
resource, there is also technological change reducing the cost of extract-
ing the exhaustible resource by 2 percent a year. Figure 12 shows that the
qualitative features of the optimal policy are similar to our baseline in
this case, with the only exception that the carbon tax now increases to
significantly higher levels and comes down only after about 500 years.
Figure 13 shows that if we eliminate the exhaustible resource entirely

ðso that we have n 5 0 in the above model and the production function
of the dirty sector in [2] simplifies to ydi;t 5 qd

i;t l
d
i;tÞ, the pattern of the op-

timal policy in this case is very similar to our baseline.
D. Alternative Damage Elasticity g
As noted above, actual damages from atmospheric carbonmay be greater
than the estimates commonly used in the economics literature. We now
show the sensitivity of our results to higher values of these damages, cap-
tured by the parameter g, in our model. We consider two cases: first,
where g is twice as large as our baseline value of g 5 5.3 � 1025 and, sec-
ond, where g is five times as large as the baseline ðsee fig. 14Þ.
Optimal policies are also similar when g is twice as large as the base-

line, with the only difference being that the carbon tax now increases
to a higher level ðabout 200 percentÞ within the first 150 years before de-
clining toward zero again. When g is raised to five times the baseline, the
qualitative pattern is also similar and involves a front-loaded research
FIG. 12.—Optimal policies when emissions are caused by the use of the exhaustible re-
source.
This content downloaded from 128.103.149.052 on February 04, 2016 06:47:00 AM
 use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



transition to clean technology 95
subsidy and a hump-shaped path for the carbon tax, though the carbon
tax now increases to much higher levels before starting to decline. We
conclude that the heavy reliance of the optimal policy on research sub-
sidies for the clean sector is robust to a fairly wide range of damage elas-
ticities.
E. Varying the Distortions from Research Subsidies x
We next investigate the robustness of our results to scenarios in which
research subsidies create no distortions ðx 5 0 percentÞ or create twice
as large distortions as in the baseline model ðx 5 20 percent; see
fig. 15Þ. Without any additional distortions from the use of the research
subsidy, optimal policy relies more heavily on this instrument, and the
carbon tax increases less rapidly ðand because it ramps up slowly, it also
starts declining later, after about 540 yearsÞ. With significantly higher
distortions from the use of the research subsidy ð20 percentÞ, the form
of the optimal policy is remarkably similar to the baseline, with only
slightly higher carbon tax rates. Overall, these results imply that one of
our main conclusions, the heavy reliance of optimal policy on research
subsidies, is quite robust to reasonable distortions from such subsidies.
F. Alternative R&D Elasticities h
Our baseline results are for h 5 0.50, which averaged across cross-
sectional and first-difference estimates. In figure 16, we reestimate the
FIG. 13.—Optimal policies when dirty production does not use the exhaustible re-
source.
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model using first a value of h in the ballpark of the cross-sectional esti-
mates ðh 5 0.65Þ and then a value corresponding to the first-difference
estimates ðh 5 0.35Þ and investigate the implications of this for optimal
policy.
The resulting optimal policies are again similar to the baseline, except

that with h5 0.35, because research more heavily relies on the past stock
of knowledge, redirecting technological change toward the clean sector
is somewhat less effective, and the social planner makes heavier use of
FIG. 14.—Optimal policies when the damage factor is two times the baseline ðtop panelÞ
and five times the baseline ðbottom panelÞ.
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the carbon tax ðwhich increases to 530 percent in the first 200 years,
coming down only after about 390 yearsÞ. When h 5 0.65, the optimal
policy is very similar to the baseline.
G. Alternative Leapfrogging Probabilities a
We also investigate the implications of lower and higher leapfrogging
rates ða5 0.03 and 0.05Þ. Figure 17 shows that the results are very similar
FIG. 15.—Optimal policies when research subsidy distortion is 0 percent ðtop panelÞ
and 20 percent ðbottom panelÞ.
This content downloaded from 128.103.149.052 on February 04, 2016 06:47:00 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



98 journal of political economy

All
to the baseline, with the only noteworthy difference being that with a 5
0.03, the slower rate of leapfrogging increases the reliance on the carbon
tax slightly, leading to a somewhat higher peak ðaround 140 percentÞ for
the optimal carbon tax schedule.
H. Alternative Initial Technology Distribution
Finally, we consider a variation on the initial technology distribution. We
compute an alternative initial technology gap distribution with three
FIG. 16.—Optimal policies when R&D elasticity is 0.35 ðtop panelÞ and 0.65 ðbottom
panelÞ.
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modifications: ð1Þ we weight patents by their normalized citation counts,
ð2Þ we consider SIC4 industries, and ð3Þ we focus on the manufacturing
and energy sectors. There are 332 SIC4 industries that are of sufficient
size to pass disclosure restrictions, and 9.4 percent are led by the clean
technologies.26 Figure 18 shows that the optimal policy is again very sim-
ilar to the baseline.
FIG. 17.—Optimal policies when leapfrogging probability is .03 ðtop panelÞ and .05
ðbottom panelÞ.
26 Additional moments of this distribution are provided in the online appendix.
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Overall, the robustness exercises presented in this section show that
the qualitative, and even quantitative, patterns of optimal policy, includ-
ing the heavy reliance on research subsidies, are fairly robust.
VII. Conclusion
One of the central challenges facing the world economy is reducing car-
bon emissions, which appears to be feasible only if a successful transition
to clean technology is induced. This paper has investigated the nature of
a transition to clean technology theoretically and empirically. We devel-
oped a microeconomic model in which clean and dirty technologies
compete in production and innovation. If dirty technologies are more
advanced to start with, the potential transition to clean technology can
be difficult both because clean research must climb several steps to catch
up with dirty technology and because this gap discourages research ef-
fort directed toward clean technologies. We estimated our key model pa-
rameters from firm-level microdata in the US energy sector, using regres-
sion analysis and SMM. Our model performs fairly well in matching a
range of patterns in the data that were not directly targeted in the esti-
mation, giving us confidence that it is useful for the analysis of the tran-
sition to clean technology in the US energy sector.
Theoretically, carbon taxes and research subsidies encourage produc-

tion and innovation in clean technologies. The key question we investi-
gate using our estimated quantitative model is the structure and time
path of optimal policies, how rapidly they will be able to secure a transi-
FIG. 18.—Optimal policies under alternative initial technology distributions
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tion to clean technology and slow down the potential increases in tem-
peratures, and what the costs of alternative, nonoptimal policies are.
A natural intuition would be that only carbon taxes should be used be-

cause the key externalities in this model are created by carbon ðin the
absence of these carbon externalities, the social planner would have
no reason to interfere with or subsidize researchÞ. In contrast to this in-
tuition, we find that optimal policy heavily relies on research subsidies,
and this result is very robust across a range of variations and for different
damages and social discount rates. We also use the model to evaluate the
welfare consequences of a range of alternative policy structures. For ex-
ample, both just relying on carbon taxes and delaying intervention have
significant welfare costs.
Though, to the best of our knowledge, this is the first attempt to de-

velop a microeconomic model of the transition to clean technology
and to quantitatively characterize optimal policy in such a setup, our pa-
per has inevitably left several questions unanswered and taken a number
of shortcuts, all of which constitute interesting areas for future research
and investigation. We list some of these that we view as particularly im-
portant here. First, we have abstracted both from cross-country variation
in policies and from the endogenous speed of clean technology transfer
across countries, which is likely to be central for the future of climate
changeandfor thestructureofoptimalpolicy.Secondandrelated,wehave
also abstracted from game-theoretic interactions in emissions, policies,
and technology choice across several countries in the global economy,
which become important when multiple countries individually choose
their policies ðe.g., Dutta and Radner 2006; Harstad 2012Þ. Third, we
have followed the literature in this area in ignoring nonlinear threshold
effects in the impact of atmospheric carbon on economic efficiency. In-
corporating such nonlinearities, together with an explicit approach to
uncertainty along the lines of Weitzman ð2009Þ, would be an important
area for future research. Fourth, as noted above, our optimal policies are
characterized under the assumptions of commitment to the policy se-
quence by the social planner. A major next step is to characterize time-
consistent optimal policy in the absence of perfect commitment. Fifth,
another interesting area is to investigate the interactions between inter-
national trade, technology, and emissions ðsee Hémous 2012Þ. Finally,
our framework can also be augmented by considering a richer set of possi-
ble technological improvements, including those that enable expansions
in the stock of exhaustible resources and technologies, such as carbon se-
questration, that reduce the climatic damage from dirty technologies.
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