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Organizations routinely conduct experiments on millions of interconnected people to evaluate new products

and services. However, as the practice has proliferated, organizations have encountered a principal challenge:

interference, the process in which one person’s outcome depends on the treatment assignment of others. The

bias from ignoring interference can be substantial, affecting both the magnitude and the sign of the naive

difference-in-means estimator. In this paper, we focus on cross-unit interference that is modeled as occurring

through edges on a two-dimensional lattice, which is particularly prominent in modern marketplaces, such

as ride-sharing, food delivery, and homestay. The leading strategy for overcoming such interference is to

combine all experimental units into a single group and perform a switchback (or time series) experiment, in

which the treatment assignment is randomized across time periods. However, this approach suffers from low

statistical power when the number of time periods is limited. This paper proposes a novel design of panel

experiment (the generalization of switchback experiments to multiple units) that allows for both interference

and carryover effects (the process whereby past treatments affect current outcomes). Our proposed design

has two features: the first is a notion of randomized spatial clustering, which we refer to as random shaking,

that partitions units into equal-size clusters; the second is a notion of balanced temporal randomization

that extends the classical completely randomized designs to the temporal interference setting. We prove the

theoretical performance of our design, develop its inferential techniques, and verify its superior performance

by conducting extensive simulations, including simulations using real data from a ride-hailing platform.

Practically, our new design can help researchers and practitioners achieve over a 50% increase in statistical

power with the same sample size.

Key words : Experimental design, causal inference, network interference, cluster randomized experiments,

switchback experiments.
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1. Introduction

In the past decade, companies have adopted randomized controlled trials (i.e., experiments) as a

standard practice for evaluating the impact of changes to products and services before wide-scale

release (Thomke 2003, Kohavi and Thomke 2017, Cui et al. 2018, Gupta et al. 2019, Bojinov and

Gupta 2022, Larsen et al. 2023). Today, companies conduct thousands of experiments annually

on millions of interconnected people (Thomke 2020). The most prominent experimental design is

the standard A/B test in which customers are randomly assigned to the change (often called the

treatment or “B”), while the rest receive the status quo (often called the control or “A”); the impact

is then estimated by comparing the two groups across various business metrics or outcomes (such as

revenue, sales, and customer engagement). Unfortunately, A/B tests produce biased results in the

presence of interference (Cox 1958) — the processes one unit’s treatment impacts another’s outcomes

— a commonplace phenomenon routinely recognized as one of the main pitfalls of experimentation

(Gupta et al. 2019, Bojinov et al. 2020).

Interference is particularly prevalent and challenging in service marketplaces (Taylor 2018) such

as DoorDash (Tang et al. 2020), Lyft (Chamandy 2016), and Uber (Farronato et al. 2018), where

the interference occurs across units that are in close physical proximity. For a motivating example,

suppose that a ride-sharing firm develops a new pricing algorithm. If the firm randomly assigns half

of the drivers within a city to the new algorithm, these drivers are likely to alter their behavior,

which will affect the drivers assigned to the control through their common pool of passengers. The

leading strategy for overcoming such spatial interference, has been to aggregate all experimental

subjects within a large geographical area into a single group. In the ride-sharing example, all drivers

in a specific city could be aggregated into a single unit. Since it is impossible to run an A/B test

on a single unit, managers have instead started to use switchback experiments (also known as time

series experiments or N-of-1 trials) (Bojinov and Shephard 2019, Bojinov et al. 2022, Glynn et al.

2020, Hu and Wager 2022, Xiong et al. 2022, Chen and Simchi-Levi 2023, Jia et al. 2024).

In a switchback experiment, a single unit is randomly assigned to either treatment or control,

its outcome is recorded, and the process is repeated for T time periods; creating a time series of

treatment assignments and corresponding outcomes. Inference then focuses on the average responses

over time. Although switchback experiments overcome the challenge posed by spatial inference, they

create two additional complications. First, time series experiments often suffer from carryover effects

(or temporal interference), where past treatments can impact current outcomes (Cox 1958). Prior

literature has proposed several ways to incorporate temporal interference. For example, Bojinov

and Shephard (2019) focused on a causal estimand that measured the effect of administering an

additional treatment, conditional on past assignments; Glynn et al. (2020) proposed using Markov

chain modeling to estimate the transition probabilities; and Hu and Wager (2022) suggested the
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usage of burn-out periods to stabilize temporal interference, leveraging the rapid mixing condition in

Markov chains. Jia et al. (2024) further extended and generalized the ideas in Hu and Wager (2022)

with improved performance bound. Second, time series experiments typically have relatively low

statistical power, as the variance is inversely proportional to the (few) time points as opposed to

the (many) experimental units. Researchers have proposed specific designs that reduce the variance

and increase the statistical power; for example, Bojinov et al. (2022) provided a minimax Bernoulli

design for switchback experiments and Glynn et al. (2020) proposed optimizing a state-dependent

switchback design. Although the above designs help aliviate some of the power conserns, they do not

solve the underlying root cause: the aggregation of all subjects into a single unit.

An open problem in this domain is to determine whether it is necessary to aggregate all experimental

units in a single group. With less aggregation, it may be possible to achieve substantially higher

power by running a panel experiment (also called cross-over experiments), the generalization of

switchback experiments to multiple subjects (Cox 1958, Cochran and Cox 1962, Brown Jr 1980,

Xiong et al. 2019, Basse et al. 2019, Bajari et al. 2021, Bojinov et al. 2021). Of course, the benefits

would depend on the specifics of the interference structure. For instance, Han et al. (2024) showed

that for panel experiments with population interference, the additional ability to change units’

treatments over time can substantially increase statistical power, but only when the carryover effects

are limited. If the carryover effects were long-lasting, the benefits disappeared.

In our motivating ride-sharing example, the spatial interference can be modeled as occurring

through a two-dimensional lattice where the vertices represent experiment (grouped) units and the

interference is captured by the edges. Specifically, vertices could be geographical locations with an

edge connecting two locations if there is a substantial number of rides between them; typically, this

would result in connecting regions in close proximity. More generally, it is possible to define these

nodes so that the interference only occurs between neighboring nodes (see Figure 2 for visualization

of a 6× 6 lattice with nearest neighbor interference). This type of interference structure is prevalent

beyond ride-sharing. For example, travelers on a homestay platform compete for customers in a

specific geographical area – enhancing the picture quality of one house could cannibalize the demand

for other nearby properties. Similarly, customers on a meal delivery platform typically order food

from local restaurants; testing a new order batching policy in several restaurants may impact the

delivery time in the nearby regions, but not beyond.

Main results. The paper proposes a novel design of panel experiments subject to spatial

interference modeled as a two-dimensional lattice with limited carryover effects. Our design has two

features: randomized spatial clustering for determining the appropriate amount of aggregation and

temporal balancing for ensuring that each aggregated unit is assigned to receive the same number
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of treatment and control periods. The two steps in our design are partly inspired by the standard

completely randomized design, which ensures that the number of treated and control units are equal

and each unit has the same chance of receiving either treatment (Fisher 1936).

In the randomized spatial clustering step, we first define spatial regions in which all experimental

subjects (e.g., drivers, passengers, houses, restaurant) are aggregated into experimental units so that

the interference is restricted to adjoining units. Next, these units are partitioned into equal-sized

clusters. We then build on the idea of cluster randomization (Eckles et al. 2017, Holtz et al. 2020,

Manski 2013, Ugander et al. 2013, Ugander and Yin 2020, Candogan et al. 2021) to add an outer layer

of randomization to the clusters that randomly “shakes” the boundary of all clusters, ensuring that

the propensity score is uniform for all interior units. We refer to this outer layer of randomization as

random shaking, which, to the best of our knowledge, is new to the experimental design literature. As

we show in Section 8, random shaking reduces the variance of our estimator by nearly 85%. Finally,

we derive the optimal cluster size from a minimax perspective, demonstrating that performing limited

aggregations and allowing some cross-unit interference is substantially better than aggregating all

units and performing a single switchback experiment.

Next, our design runs a panel experiment in which units in the same cluster receive the same

assignment independently of other clusters. Specifically, for each cluster in the temporal balancing

step, our design ensures that the number of treatment and control periods are equal by performing

the analogous completely randomized design, where the time periods are treated as units. Temporal

balancing is a key procedure for controlling for carryover effects and preserving a sufficient volume

of data. We show provable guarantees of our balanced design from a minimax perspective based

on the creative lower bound techniques from Candogan et al. (2021). Finally, we demonstrate both

theoretically and empirically that the temporal balanced design, when applied to a single unit,

improves on the previous optimal designs for switchback experiments proposed by Bojinov et al.

(2022).

For our proposed design, we also provide an inference strategy that leverages the variation

introduced by treatment assignments. Specifically, we derive a novel central limit theorem for a fixed

number of units as the number of time periods goes to infinity. Our result extends the prior work on

completely randomized design (Li and Ding 2017) to panel experiments. The proof builds on earlier

ideas from the double-index permutation literature and may be of independent interest (Daniels

1944, Hoeffding 1951, Zhao et al. 1997, Reinert and Röllin 2009).

To demonstrate the robustness of our design, we examine its empirical performance using a

comprehensive simulation study, where we consider more general outcome models and interference

structures than those required by our theoretical analysis. First, we show that under a stochastic

outcome model, our design with the optimal cluster size achieves the smallest variance, even though
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our optimal design was not derived under this setting. Second, we demonstrate the robustness of our

design by considering more complex networks when spatial interference is present not only within

the neighborhood but also among remote units. We consider two simulation setups and construct

the remote interference structures using both synthetic networks and a real network abstracted from

a ride-hailing platform. We also develop a simple heuristic algorithm for additional aggregation

when the interference is more general; our simulations suggest that the algorithm further improves

on our design when the interference structure is far from the two-dimensional lattice assumed by

our theory. Finally, we show how the optimal cluster sizes depend on the interference structure.

When interference is more pervasive, the optimal cluster size should be larger; when interference is

less spread, the optimal cluster size should be smaller. Again, this suggests that there are a slew

of possible strategies besides clustering all experimental units and performing a single switchback

experiment.

Alternative approaches to handling interference. Instead of using switchback or panel

experiments, researchers have proposed numerous strategies for overcoming the challenges posed by

interference. Typically, these involve performing a subject-level experiment without grouping and

adjusting for the interference in the analysis stage by modeling either the outcomes or the exposure

probabilities. Although the introduction of modeling assumptions may not precisely characterize the

impact of interference, it takes advantage of a high volume of data from thousands or millions of

users for inference.

When modeling the outcomes, researchers have proposed methods that utilize the underlying

problem contexts (Bright et al. 2022, Farias et al. 2022, Johari et al. 2022b, Li et al. 2021, Munro

et al. 2021, Wager and Xu 2019, Li et al. 2023, Dhaouadi et al. 2023, Zhu et al. 2024). For example,

Bright et al. (2022) models interference coming from a centralized matching market. Farias et al.

(2022), Johari et al. (2022b),Li et al. (2021), Dhaouadi et al. (2023) and Zhu et al. (2024) model

interference coming from experimental units sharing a common competitive resource. Munro et al.

(2021) and Wager and Xu (2019) propose to use an equilibrium price to capture interference. Li et al.

(2023) considers the interference from stochastic congestion when experimental units stay in a queue.

When modeling the exposure probabilities, researchers often search for an underlying structure

that limits the scope of interference. This often entails assuming that interference remains confined

within groups but not across. Additionally, the indirect effect within a group is typically assumed to

be contingent solely on the number of treated individuals (Rosenbaum 2007, Hudgens and Halloran

2008, Sinclair et al. 2012, Li et al. 2019, Sävje et al. 2021). For general interference patterns, Aronow

and Samii (2017) presents a comprehensive framework where they introduce exposure mapping,

define useful causal estimands, and develop asymptotically valid confidence intervals based on the

Horvitz-Thompson estimator.
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Roadmap of the paper. The remaining of this paper is structured as follows. In Section 2, we

define the treatment assignments and the potential outcomes, discuss the assumptions on interference

and introduce the causal effect of interests. In Section 3, we introduce the design of experiments

together with the causal estimator. In Section 4, we propose our new design of panel experiments

and give an overview of randomized spatial clustering and temporal balancing. In Section 5, we

first analyze the temporal balancing by formulating a minimax optimization problem. In Section 6,

we then investigate the random shaking idea for randomized spatial clustering. Following a similar

minimax optimization framework, we develop the optimal cluster size. In Section 7 we present a new

central limit theorem to draw inference. In Section 8, we conduct extensive simulations to evaluate

the performance of our new design. In Section 9, we conclude the paper with several practical

implications and future directions.

2. Setups, Notations, and Assumptions
2.1. The Assignment Matrix and the Potential Outcomes

Companies regularly run experiments over geographical regions that can be represented as a

two-dimensional grid. For example, when data scientists at Lyft (Chamandy 2016) conducted an

experiment to test the effectiveness of a surge price subsidy, they partitioned a city into smaller

regions to receive different levels of subsidies; see Figure 1 for an illustration. In such experiments,

each experimental unit is defined by a local square region as shown in Figure 1.

We model each experimental unit, i.e., each local square region, as a vertex in a lattice, where the

edges approximate the interactions (or potential interference) between the local square regions; see

Figure 2 for an illustration. For each positive integer D ∈N, let there be a D×D lattice G = (V,E),

where V stands for the vertex set with a total of N =D2 units and E stands for the edge set. For

example, the Lyft experiment as shown in Figure 1 could be mapped to a 25× 25 grid. For each unit

i∈ [N ], we define its neighborhood N (i) = {j ∈ [N ]|(i, j)∈ E}∪{i} to be the vertex i and the set of

vertices connected through edges to the focal vertex i. For an illustration, see the bold edges and

units in Figure 2.

Let there be a total of T ∈N periods in the experiment. As suggested by earlier works (Bojinov

et al. 2022, Tang et al. 2020), each period is typically selected to be the same length as the carryover

effect — the length of time a treatment persists in impacting future outcomes. For on-demand service

platforms, one period typically ranges from about 30 minutes to several hours (Chamandy 2016,

Tang et al. 2020).

At the design phase of the experiment, the experimenter is presented with T periods and N units.

At each time period t∈ [T ], the experimenter chooses to expose each unit i∈ [N ] to either treatment

(or the new development) or control (the status quo). Let Wi,t ∈ {0,1} be the treatment assignment
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Figure 1 An illustration of the Geohash system at Lyft

(Chamandy 2016).

Figure 2 An illustration of a 6× 6 lattice, and the

neighborhood of N (i).

for unit i∈ [N ] at time period t∈ [T ], where Wi,t =1 stands for treatment and Wi,t =0 stands for

control. The assignment matrix is then defined by a collection of assignments across all units and

over all time periods, W1:N,1:T ∈ {0,1}N×T . Following convention, we use W1:N,1:T to stand for a

random assignment matrix, and w1:N,1:T to stand for one realization.

Once the assignment matrix w1:N,1:T is realized, the experimenter will observe some outcomes

of interest. Under the potential outcomes framework (Neyman 1923, Rubin 1974, Robins 1986),

we model the observed outcomes to be related to their respective potential outcomes. We denote

Yi,t(w1:N,1:T ) to be the outcome of unit i∈ [N ] at time period t∈ [T ] under the assignment matrix

w1:N,1:T . As a short-hand notation, denote Y= {Yi,t(w1:N,1:T )}i,t,w1:N,1:T
to be the collection of all

potential outcomes. In this paper, we do not assume structural models for the potential outcomes or

impose parametric assumptions (Wager and Xu 2019, Glynn et al. 2020, Munro et al. 2021, Johari

et al. 2022b, Li et al. 2021, Bright et al. 2022, Farias et al. 2022). Instead, we adopt a design-based

perspective (Neyman 1923, Fisher 1936, Kempthorne 1955, Rubin 1980, Imbens and Rubin 2015,

Abadie et al. 2020) and treat the potential outcomes as fixed quantities. Or, equivalently, we condition

on Y. To make inference possible, we rely on variations introduced by the random assignment matrix.

For any unit and at any time, the experimenter only observes Yi,t(w1:N,1:T ) under one assignment

matrix w1:N,1:T , but is unable to observe the potential outcomes under other assignment matrices

(Holland 1986). Without making additional assumptions, it is impossible to achieve valid inference

(Basse and Airoldi 2018).

2.2. Assumptions on the Spatial and Temporal Interference

We now introduce two practical assumptions that limit the spatial and temporal interference.

First, we assume that the potential outcomes of one unit depend only on the treatment assignments

of this unit and its neighboring units. Mathematically, let wN (i),1:T ∈ {0,1}|N (i)|×T be a sub-matrix
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that contains the treatment assignments of units N (i) at all time periods. We introduce the following

assumption.

Assumption 1 (Neighborhood spatial interference). For any i ∈ [N ], t ∈ [T ] and any two

assignment matrices w1:N,1:T ,w
′
1:N,1:T ∈ {0,1}N×T , we have

Yi,t(w1:N,1:T ) = Yi,t(w
′
1:N,1:T ) whenever wN (i),1:T =w′

N (i),1:T .

The version of this assumption when T = 1 is widely adopted in the literature (Ugander et al. 2013,

Manski 2013, Aronow and Samii 2017, Ugander and Yin 2020, Han et al. 2024) and is viable in many

applications, such as the homestays, ride-sharing, and food deliver, discussed in the introduction. In

practice, experimenters are suggested to properly define each unit, relying on their domain knowledge,

so that there is only neighborhood interference. However, as we show in Section 8, our design and

analysis is somewhat robust to violations of this assumption.

Second, we limit the temporal interfernece, by assuming that the potential outcomes at one time

period depend on the treatment assignments at this time period and the preceding time period.

Mathematically, let w1:N,t−1:t ∈ {0,1}N×2 be a sub-matrix that contains the treatment assignments

for all units at time periods t− 1 and t. We introduce the following assumption.

Assumption 2 (Limited carryover effects). For any i∈ [N ], t∈ [T ] and any two assignment

matrices w1:N,1:T ,w
′
1:N,1:T ∈ {0,1}N×T , we have

Yi,t(w1:N,1:T ) = Yi,t(w
′
1:N,1:T ) whenever w1:N,t−1:t =w

′
1:N,t−1:t.

This assumption is widely adopted in the literature (Laird et al. 1992, Senn and Lambrou 1998,

Basse et al. 2019, Bojinov et al. 2022, Han et al. 2024) and viable in many applications as the

experiment has control over the length of each period. We can relax this assumption by considering

general lengths of carryover effects by allowing the potential outcomes at each time period to depend

on the treatment assignments up to m> 1 periods ago. The structure of the main results will remain

the same; however, for simplicity, in this paper, we focus on the case of m= 1 to de-emphasize the

importance of the length of carryover effects to our main results. This assumption is in line with prior

research that recommends selecting the length of one time period to be the same as the length of the

carryover effect (Bojinov et al. 2022, Tang et al. 2020). For example, consider a ride-sharing platform

testing a new surge pricing policy with a carryover effect that lasts around 30 to 60 minutes. In this

example, setting the length of a period to be one hour would ensure the length of the carryover effect

is one period; see Bojinov et al. (2022) for suggestions on how to identify the length of carryover

effects.
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Combining both assumptions, we have for any i∈ [N ], t∈ [T ] and any two assignment matrices

w1:N,1:T ,w
′
1:N,1:T ∈ {0,1}N×T ,

Yi,t(w1:N,1:T ) = Yi,t(w
′
1:N,1:T ) whenever wN (i),t−1:t =w

′
N (i),t−1:t.

In this paper, we use the short-hand notation Yi,t

(
wN (i),t−1:t

)
= Yi,t (w1:N,1:T ) to focus on the

dependence of the potential outcomes on the sub-matrices. Using this short-hand notation, the

observed outcomes are related to their respective potential outcomes as follows,

Yi,t = Yi,t(wN (i),t−1:t), if WN (i),t−1:t =wN (i),t−1:t.

3. The Causal Effect and Causal Estimator

Our primary causal estimand is the Global Average Treatment Effect, which measures the difference

between the average outcomes when all units are exposed to treatment and when they are all exposed

to control, in all time periods (Han et al. 2024). Mathematically, this is defined as

τ(Y) =
1

N(T − 1)

T∑
t=2

N∑
i=1

[Yi,t (1)−Yi,t (0)] , (1)

where 1 and 0 are two assignment sub-matrices with all treatments wN (i),t−1:t = 1 and controls

wN (i),t−1:t = 0, respectively. We also introduce a shorthand notation τi,t = Yi,t (1)−Yi,t (0) so that

the causal estimand is equivalently τ(Y) = 1
N(T−1)

∑T

t=2

∑N

i=1 τi,t.

The causal effect as defined in (1) captures the effect of permanently implementing a new policy

and is the primary estimand of interest for managers. Since the causal effect τ(Y) is never directly

observable, our goal is to estimate the causal effect using observations from the panel experiments

efficiently, which requires a careful design of the experiment.

We define the design of experiments (also known as the randomization distribution or simply

the design) as a discrete probability distribution η(·) : {0,1}N×T → [0,1] over assignment matrices.

For each design, the experimenter first draws one assignment matrix W1:N,1:T =w1:N,1:T from the

distribution η, and then implements this assignment matrix to conduct the experiment. During

the experiment, the experimenter collects the observed outcomes {Yi,t}i∈[N ],t∈[T ]
, and uses both the

realized assignment matrix and the observed outcomes to estimate the causal estimand.

A commonly used estimator is the Inverse Propensity Weighted (IPW) estimator, which is also

referred to as the Horvitz-Thompson estimator (Horvitz and Thompson 1952, Bojinov and Shephard

2019, Han et al. 2024):

τ̂ (Y, η,w) =
1

N(T − 1)

T∑
t=2

N∑
i=1

{
Yi,t

1
{
wN (i),t−1:t = 1

}
Pr
(
WN (i),t−1:t = 1

) −Yi,t

1
{
wN (i),t−1:t = 0

}
Pr
(
WN (i),t−1:t = 0

)} . (2)
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Although this estimator is unbiased over the randomization distribution (that is, Eη[τ̂ (Y, η,w)] =

τ (Y)) it only uses a subset of the observed data points. This is because the estimator requires

an observed outcome Yi,t to be valid, meaning that WN (i),t−1:t ∈ {0,1}. A good design is one that

maximizes the number of valid observations, while ensuring there is enough randomness to protect

the inference from systematic unobserved factors.

Finally, to evaluate the quality of a design, we adopt the decision-theoretic framework (Berger

2013, Bickel and Doksum 2015) and focus on finding designs that minimize the variance of the

IPW estimator, Varη(τ̂(Y, η,w)) =Eη[(τ̂ (Y, η,w)− τ(Y))2]. Since the IPW estimator is unbiased,

the variance of the estimator is equivalent to the risk function, or the mean squared error of the

estimator.

4. An Overview of Randomized Spatial Clustering and Temporal Balancing

This section provides an intuitive introduction to our proposed design; the theoretical properties are

presented in the subsequent sections. Our design belongs to the family of designs H that involve the

following two steps:

1. Aggregate adjacent units into clusters of size d× d1.

2. Conduct an independent time series (or switchback) experiment for each cluster, such that units

within the same cluster receive the same treatment assignment at the same time.

Specifically, in the first step, we propose using a randomized spatial clustering that ensures uniform

exposure probabilities. In the second step, we use a temporal balanced design that restricts each

group to receiving the same number of treatments as control periods.

Both steps take inspiration from the standard completely randomized design (Fisher 1936), which,

in the no-interference setting, ensures that the probabilities of having valid observations are the

same for all experimental units and that an equal number of units are assigned to treatment and

control. Intuitively, our first step can be through of as the spatial-interference generalization of the

completely randomized deisgn and our second step as the temporal-interference generalization.

4.1. Randomized Spatial Clustering

For now, suppose that d, the parameter that determines the cluster sizes, is fixed and known; in

Section 6.2, we derive the asymptotically optimal cluster size d within the family of randomized

spatial clustering.

1 Each cluster contains exactly d× d units as long as it is not on the boundary.
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Lattice clustering. Recall that we model the experimental units as vertices on the D×D=N

lattice. Assume there is a Cartesian coordinate system that encodes the vertices as pairs of integers

(a1, a2), where a1, a2 ∈ [D]. For example, in Figure 3, vertex i has a coordinate of (4,6). The clustering

of units can be constructed by partitioning the vertices using straight vertical and horizontal lines.

Formally, let a cluster indexed by ψ = (ψ
1
,ψ

2
,ψ1,ψ2) be Cψ =

{
(a1, a2)

∣∣∣∣ψ1
≤ a1 ≤ψ1,ψ2

≤ a2 ≤ψ2

}
.

For any d such that (D/d) is an integer, define a spatial clustering C (d) to be a collection of

clusters, such that ∀ Cψ ∈C (d), ψ1 −ψ
1
=ψ2 −ψ

2
= d and that

⋃
Cψ∈Cd

Cψ = [N ],
⋂

Cψ∈C (d) Cψ = ∅.

In words, C (d) is a partition of the D×D=N lattice, such that each cluster Cψ is a smaller d× d

square. See Figure 3 for an illustration when d= 3.

Random shaking. For clustering C (d), let ω= (ω1, ω2) be a pair of shaking parameters whose

support is given by

ω1, ω2 ∈Ω :=


{
−d− 1

2
,−d− 3

2
, ...,0, ...,

d− 1

2

}
if d is odd,{

−d
2
,−d− 2

2
, ...,0, ...,

d− 2

2

}
if d is even.

Basically, we want to shake the clustering horizontally and vertically for d units, pre-

cisely equal to the size of each cluster, resulting in |Ω| = d. For example, when d =

3 we have Ω = {−1,0,1}. Let a cluster Cψ with the shaking parameters ω be Cψ(ω) ={
(a1, a2)

∣∣∣∣ψ1
+ω1 ≤ a1 ≤ψ1 +ω1,ψ2

+ω2 ≤ a2 ≤ψ2 +ω2

}
. A spatial clustering with shaking parame-

ters ω = (ω1, ω2) refers to the collection of clusters denoted by C (ω;d). See Figure 4 for an illustration

when d= 3 and ω= (−1,1).

We refer to random shaking as a uniform probabilistic distribution over {C (ω;d),∀ω ∈Ω2}. That

is, the spatial clustering C (ω;d) is generated by sampling ω from Ω2 uniformly at random. For

example, Figure 3 and Figure 4 each represent one sample of shaking parameters, each with a 1/9

probability of being sampled.

In Figure 3 with ω = (0,0), unit i is connected to three clusters (its own cluster, the one above it,

and the one to the left of it) while unit j is only connected to one cluster since it is in the center of

its own cluster. The impacts of clustering on interference for these two units are asymmetric because

they are located at different (relative) positions within the cluster. In Figure 4 with ω = (−1,1), the

relative positions of units i and j are swapped. By introducing random shaking, the extra layer of

randomization ensures that both units i and j are equally likely to be located at any of the 9 relative

positions (in the center, in one of the four edges, or in one of the four corners) in a 3× 3 cluster.

The additional randomization ensures that each unit has the same propensity scores, simplifying the

denominator of our estimator in (2).
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Figure 3 Random spatial clustering with shaking

parameters (ω1, ω2) = (0,0)

Figure 4 Random spatial clustering with shaking

parameters (ω1, ω2) = (−1,1)

Table 1 An example of assignment path realizations from the balanced design η† with T = 9.

Periods 1 2 3 4 5 6 7 8 9
Assignment Path 1 1 1 0 0 0 1 1 0 1
Assignment Path 2 0 1 1 1 0 0 1 0 0

4.2. Temporal Balancing

After clustering, we run independent switchback experiments for each cluster over T periods. Suppose

T is odd, we propose using the following balanced design of switchback experiments:

1. Conduct a complete randomization with an equal number of treatments and controls over

the first T − 1 periods, i.e., there are exactly (T − 1)/2 treated periods and (T − 1)/2 control

periods.

2. Set the treatment assignment of the last period to be the same as that of the first period, i.e.,

WT =W1.

The first step ensures balance, while the second step deals with the boundary conditions of the

design and significantly simplifies the subsequent analysis. Table 1 provides two examples of possible

assignment path realizations with T = 9. We will provide a formal analysis of our balanced design in

Section 5.

5. Analysis of Temporal Balancing

We now analyze the design of temporal balancing for switchback experiments conducted in the

second step. We will then extend the analysis in the next section by incorporating randomized spatial

clustering. Throughout this section, we assume that we have a single unit and drop the subscript i.
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5.1. Variance Decomposition

We begin by characterizing the variance Varη†(τ̂ |Y) of our temporal balance design. In the IPW

estimator (2), whether the observations from two consecutive periods are valid are strongly correlated

due to temporal interference. The assignments in all time periods are also weakly correlated due to

the balancing structure. Hence, the joint impact of these two types of correlation complicates the

analysis.

Theorem 1. For any potential outcomes Y, the variance of the balanced design η† can be

decomposed as

Varη†(τ̂ |Y) =
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
− 4Sct +Rct − 2τ 2

T − 2

)
(3)

where

St =

∑T

t=2

(
Yt(1)+Yt+1(1)− 2

∑T
t′=2

Yt′ (1)

T−1

)2

4(T − 1)
, Sc =

∑T

t=2

(
Yt(0)+Yt+1(0)− 2

∑T
t′=2

Yt′ (0)

T−1

)2

4(T − 1)

and

Sct =

∑T

t=2 (τt + τt+1 − 2τ)
2

4(T − 1)
,Rct =

∑T

t=2 τ
2
t

(T − 1)
.

We prove Theorem 1 in Appendix C.1.The expression above generalizes the variance decomposition

of the classical completely randomized design (Li and Ding 2017) by bridging the outcomes at periods

t and t+ 1. In particular, St and Sc refer to the variance of the average treatment and control

outcomes in every two consecutive periods, respectively, while Sct refers to the variance of average

causal effect in every two consecutive periods. In the presence of interference, the number of valid

observations is also random, which contributes to another source of variance characterized by Rct.

Finally, it leaves a residual term that decays much faster in T .

5.2. Minimax Optimization

To evaluate our proposed design, we adopt the minimax decision rule (Berger 2013, Wu 1981, Li

1983) which entails minimizing the worst-case variance against an adversarial selection of potential

outcomes:

min
η∈H

max
Y∈Y

Varη(τ̂(Y, η,W )) =min
η∈H

max
Y∈Y

Eη

[
(τ̂ (Y, η,W )− τ(Y))2

]
. (4)

One compelling reason for adopting the minimax decision rule is that we do not impose any parametric

or structural model on the potential outcomes. Still, to make the decision-making problem feasible,

we impose a bounded support assumption.

Assumption 3 (Bounded realized potential outcomes). There exists B > 0, such that for

any i∈ [N ], t∈ [T ],w1:N,1:T ∈ {0,1}N×T , Yi,t(wN (i),1:t)∈ [0,B]. Equivalently, Y = [0,B]N×T .
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Assumption 3 is typically satisfied in practice as it assumes that the realized potential outcomes are

non-negative and upper bounded by some possibly large constant. For example, revenue, sales, and

customer engagement metrics all satisfy the non-negative and upper bounded assumptions. Note that

the upper bound B does not impose the boundedness on the underlying random data generation

process, but instead on the realization. Moreover, our design does not require knowledge of B.

Since all units from the same cluster share the same assignments in a switchback experiment,

whenever it is clear from the context, we drop the unit index and let w1:T denote the assignment

vector, which we also refer to as an assignment path of a cluster.

5.3. Performance Analysis

For any design η, let Varη(τ̂) =max
Y∈Y

Eη

[
(τ̂ (Y, η,W )− τ(Y))2

]
denote the worst case variance. In

particular, let Varη∗(τ̂) be the worst-case variance of an optimal design η∗ which solves (4). We study

the performance of the balanced design η† by comparing its worst-case variance Varη†(τ̂) against

Varη∗(τ̂).

Directly solving the minimax optimization problem analytically is challenging. Nevertheless, we

are still able to compare them in the following theorem.

Theorem 2. (1) The worst-case outcomes against the balanced design η† can be characterized by

Yt(1) = Yt(0) =

{
B 2≤ t≤ (T +1)/2,

0 (T +3)/2≤ t≤ T,
(5)

which leads to an explicit expression of the worst-case variance

Varη†(τ̂) =
4(T − 2)

(T − 1)(T − 3)
B2.

(2) The worst-case variance of the optimal design is lower bounded by

Varη∗(τ̂)≥
2

T − 3
B2.

We prove Theorem 2 in Appendix C.2 and C.3. In general, there is no closed form of the worst-case

outcomes for an arbitrary design η. Fortunately, the worst-case outcomes against the balanced design

η† can be characterized explicitly, which leads to explicit expressions of the worst-case variance.

Next, we borrow the proof technique from Candogan et al. (2021) to construct a lower bound for

the optimal design. Combining both parts, Theorem 2 directly implies a suboptimality gap of the

balanced design.

Proposition 1. The balanced design η† is a 2-approximation design, i.e.,

Varη†(τ̂)≤
2(T − 2)

T − 1
Varη∗(τ̂)≤ 2 Varη∗(τ̂). (6)
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Finally, our balanced design η† improves on previous designs of switchback experiments. In

particular, the optimal Bernoulli design ηBer proposed by Bojinov et al. (2022) could possibly generate

imbalanced numbers of treatment and control assignments. Compared with the optimal Bernoulli

design ηBer, our balanced design has a much smaller variance; that is, lim
T→∞

Varη†(τ̂)/VarηBer(τ̂) = 1/4.

Detailed discussions and simulations are deferred to Appendix A.1.

6. Analysis of Randomized Spatial Clustering

We now analyze the randomized spatial clustering and investigate how different cluster sizes impact

performance. Compared to the last section, the variance derivation needs to incorporate the depen-

dence between periods but also between units. To this end, we will first introduce a notion of the

degree of dependence and then derive the optimal cluster size.

6.1. Degree of Dependence

Consider the randomized spatial clustering C (ω;d). For each unit i∈ [N ], denote Πi(ω;d) to be the

cluster it belongs to. For any two units i and j, let Ki,j(ω;d) ∈N be the number of clusters that

overlaps with the neighborhoods of both units i and j, so that,

Ki,j(ω;d) =

∣∣∣∣{C ∈C (ω;d)

∣∣∣∣∃i′ ∈N (i), j′ ∈N (j),Πi′(ω;d) =Πj′(ω;d) = C
}∣∣∣∣ .

Qualitatively, Ki,j(ω;d) implies the degree of dependence between the observations at unit i and

j. If Ki,j(ω;d) = 0, then the observations at these two units are independent; if Ki,j(ω;d) is large,

then they are strongly dependent. Note that Ki,j(ω;d) is a random variable due to the random

shaking ω. The randomized spatial clustering effectively determines the distribution of Ki,j(ω;d)

that characterizes the dependence between units. Along with the dependence between periods, we

derive a variance decomposition in the panel setting with randomized spatial clustering, extending

the case of Theorem 1 in switchback experiments; see Appendix A.3 for details.

Note that the degree of dependence Ki,j(ω;d) under i = j reduces to the number of clusters

that neighborhood units N (i) are involved, which is reflected in the magnitude of the propensity

score. We visualize the benefits of randomized spatial clustering in Figure 5 by comparing the

propensity scores of different units. On the left picture, we evaluate Ki,i(ω;d) for all i∈ [N ] under

the deterministic spatial clustering, where we clearly see the asymmetry between units. On the right

picture, Eω[Ki,i(ω;d)] is mostly the same between units, except for some boundary ones.

6.2. Optimal Cluster Size

We now study how randomized spatial clustering affects the variance of the IPW estimator using

our design and derive the optimal cluster size d. Intuitively, there is a tension between favoring a

smaller or larger d. A larger cluster size will ensure that more units receive the same treatment
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Figure 5 The value of Ki,i(C (ω; 3)) under cluster size d= 3 under the naive deterministic clustering (left) and the

randomized spatial clustering (right).
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Figure 6 The value of Eω[Ki,j(ω;d)] when we fix i= (5,5) and move j ∈ [D]2, under different cluster sizes d= 9

(left), d= 3 (middle), and d= 1 (right).

assignments but increases the pair of units that are dependent. On the other hand, a smaller cluster

size produces more units contaminated by spatial interference and decreases the number of valid

observations but increases the pair of units that are independent.

Consider a concrete example of 81 = 9× 9 units shown in Figure 6, where we fix i= (5,5) and

move j ∈ [D]2 to evaluate Eω[Ki,j(ω;d)] — larger value indicates more dependence between units i

and j. The left figure shows that when d=9, there is a weak global dependence. The right figure

demonstrates that when d= 1, there is a strong local dependence with no global dependence. The

middle figure shows that when d= 3, there is moderate local and global dependence, balancing the

number of dependent units and the size of correlations; as our theory below demonstrates, this leads

to the optimal design.

With a slight reload of notation, let η†d denote the design of panel experiments with randomized

spatial clustering and temporal balancing using size d. We find the optimal cluster size by referring

to the minimax optimization again to study the design η†d under the worst-case variance. To avoid

the boundary cases, we consider a scaling regime when N →∞ and T →∞. That is, for any fixed
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Table 2 Worst-case variances and threshold parameters associated with different cluster size d

d 1 2 3 4 5 6 7 8 D

Var
η
†
d
(τ̂) ·NT 562224 2304 242.2 243.4 283.8 340.1 493.6 362.4 4N

αd 1 1 0.620 0.573 0.545 0.523 0.516 0.512 0.5

cluster size d, we evaluate the worst-case variance

Var
η
†
d
(τ̂) =max

Y∈Y
lim

N→∞,T→∞
E

η
†
d

[(
τ̂
(
Y, η†d,W

)
− τ(Y)

)2]
. (7)

Comparing the worst-case variances with different cluster sizes, we find the optimal one d∗ =

argmin
d

Var
η
†
d
(τ̂). Similar to the analysis in Section 5, it is necessary to characterize the worst-case

outcomes, which depend on the cluster size d. Nonetheless, there always exists the same structure

that characterizes the worst-case outcomes.

Theorem 3. As N →∞ and T →∞, the worst-case outcomes against the randomized spatial

clustering η†d under any cluster size d can be characterized by

Yi,t(1) = Yi,t(0) =

{
B 2≤ t≤ αdT

0 t > αdT
,∀i∈ [N ]. (8)

for some constant αd ∈ [0,1]. This further leads to the asymptotically worst-case variance

Var
η
†
d
(τ̂) =

αdB
2

N 2T

N∑
i=1

N∑
j=1

E[4Ki,j(ω;d)−Kj,j(ω;d)(2+4 · 2−Ki,j(ω;d) −αdKi,j(ω;d)4
2−Ki,j(ω;d) − 61{Ki,j(ω;d) = 0})]

E[4−Kj,j(ω;d)]
.

(9)

In Theorem 3, we refer to αd as a threshold parameter, which does not depend on i, N , or T . The

threshold parameter is decreasing in d, see Appendix C.5 for the closed-form expression of αd and

the proof of Theorem 3. The threshold parameter αd balances the covariance between units and the

covariance between periods. When d is small, the positive covariance between units dominates so the

worst-case scenario sets more outcomes to be B; when d gets larger, the negative covariance between

periods becomes more significant so the worst-case scenario tends to decrease the number of units

with outcome B.

Although we derive the worst-case variance (9), we are unable to obtain a simplified closed-form

expression because the distribution of Ki,j(ω;d) depends on the geographical relations between units

i and j. Nevertheless, we can precisely evaluate the worst-case variance with different cluster size

d. In Table 2, we tabulate the worst-case variances (normalized by NT ) associated with different

randomized spatial clustering η†d and the corresponding threshold parameters αd. Here we find the

optimal cluster size d∗.
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Proposition 2. As N →∞ and T →∞, the optimal cluster size is d∗ = 3, i.e., d= 3 gives the

smallest objective value in (7).

First, given that d= 3 leads to the worst-case variance, its gap to the second best one d= 4 is

small. Indeed, we observe from the simulations in Section 8 that these two clustering sizes perform

very close in many scenarios with general outcome models, so they are both good choices in practice.

Second, we consider the scaling regime for ease of analysis. Although we assume the same structure

of neighborhood interference for all units and apply the extra layer of random shaking, a unit in the

interior is always involved in more interference than a unit on the boundary due to the geographical

nature of units (see Figure 5). This significantly complicates the dependence structure between units

and, consequently, the analysis of the worst-case variance. In the scaling regime when N →∞, the

units on the boundary contribute little to the total variance and thus it is sufficient to focus on the

interior where units are symmetric. That being said, as the simulations suggest in Section 8, the

optimal cluster size d∗ = 3 has a superior performance as long as N is reasonably large.

7. Inference and Testing

After running an experiment, we observe the assignment vector and the corresponding observed

outcomes. Since in these types of experiments N tends to be much smaller than T , we focus on

the regime of fixed sample size with a growing number of time periods. Specifically, we derive a

central limit theorem (as T →∞) for the IPW estimator under our design and derive a (conservative)

estimator for the variance of the IPW estimator.

We consider the following null hypothesis of no average treatment effect:

H0 :
1

N(T − 1)

T∑
t=2

N∑
i=1

[Yi,t (1)−Yi,t (0)] = 0. (10)

We consider the case with a fixed number of experimental units and rely on variations introduced by

random assignments across time periods to make inferences, i.e., we consider a case when N is fixed

and T →∞. To highlight the impact of time periods T on inference, here we present the central

limit theorem only for the N = 1 case and leave the extension for N > 1 cases in Appendix A.3.

Theorem 4. Under Assumptions 1 - 3 and if Varη†(τ̂ |Y) = Ω(1/T ), the limiting distribution of

the IPW estimator is a normal distribution, i.e., as T →∞,

τ̂ − τ√
Varη†(τ̂ |Y)

D→N (0,1). (11)

This gives the nominal coverage that lim
T→∞

P(|τ̂ −τ |/
√
Varη†(τ̂ |Y)≥ c(α)) = α, where α is the nominal

level and c(α) is the critical value of the normal distribution.
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We prove Theorem 4 in Appendix C.6. In Theorem 4, the source of randomness comes from complete

randomization, instead of Bernoulli randomization. Central limit theorems of this type have been

developed in Li and Ding (2017) to handle multiple treatments and multi-dimension outcomes, yet

when there is no interference. With temporal interference, the number of valid observations under

treatment and control is no longer a fixed quantity. The random nature of the number of valid

observations requires new proof techniques. We adopt the framework of the double-index permutation

statistics (Daniels 1944, Hoeffding 1951, Zhao et al. 1997, Reinert and Röllin 2009) to analyze the

behavior of the random permutations in the balanced design.

In Theorem 1, the variance of the IPW estimator as shown in (3) involves both the potential

outcomes under treatment Yt(1) and the potential outcomes under control Yt(0), at all time periods

t∈ [T ]. Since we never observe all the potential outcomes, the variance of the IPW estimator can not

be directly estimated from the data. As an alternative, we derive an estimable conservative estimator

for the variance of the IPW estimator.

Proposition 3. There exists an upper bound for the variance of the balanced design, i.e.,

Varη†(τ̂ |Y)≤
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
+

∑T

t=2 Y
2
t (1)+Y 2

t (0)

(T − 1)

)
(12)

where St and Sc are defined in Theorem 1. This upper bound VarUη†(τ̂ |Y) can be unbiasedly estimated

by

σ̂2
U =

(T − 2)

(T − 3)2(T − 4)

(
8(T − 4)

(
Ŝt + Ŝc

)
+

4(T − 2)
∑T

t=2 Y
2
t 1{wt−1 =wt}

(T − 1)

)
(13)

where

Ŝt =

T∑
t=2

(
Yt−1 +Yt − 2

∑T
t′=2

Yt·1{wt′−1:t′=1}∑T
t′=2

1{wt′−1:t′=1}

)2

·1{wt−2:t = 1}

4

(
T∑

t=2

1{wt−2:t = 1}− 1

)

is the sample estimate for St, and Ŝc is defined similarly by replacing 1 with 0.

We prove Proposition 3 in Appendix C.7. Compared to the true variance Varη†(τ̂ |Y), the upper

bound is generally not tight. As T →∞, the coverage probability using this conservative estimator

is larger than the nominal value. Nevertheless, we will show in simulations that this conservative

estimator admits a good power for testing the null hypothesis.
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8. Simulation Study

In this section, we describe an extensive simulation study to analyze the performance and robustness

of our design. We first demonstrate that d=3 leads to the lowest variance across several realistic

scenarios and then show how our method has substantially higher empirical statistical power. To

start with, we consider a stochastic data generating process as given by

Yi,t(wN (i),t−1:t) = αi,t +βi,0wi,t +βi,1

∑
j∈N (i)

wj,t−1 +βi,2

∑
j∈N (i)\i

wj,t + ϵi,t (14)

where ϵi,t ∼N (0,1). In (14), βi,0 governs the magnitude of the direct effect, βi,1 governs the magnitude

of the temporal interference, and βi,2 governs the magnitudes of the spatial interference.

8.1. Comparison of Variance Minimization

In our theoretical analysis, we adopted a minimax framework, meaning that our design performs

well in worst-case scenarios. Here, we investigate the average performance for different values of d

and show that our proposed design performs well in a range of correctly specified and misspecified

problems.

Correctly specified interference structure. We set D= 12 with N = 144 units in total and

T = 201. We allow the parameters αi,t, βi,0, βi,1, βi,2 to be heterogeneous between units. In particular,

we set αi,t = ρi(1 + sin(πt/4)) where ρi ∼ U(0.5,1.5). We also sample βi,0, βi,1, βi,2 from different

uniform distributions, allowing us to generate different outcome scenarios to evaluate the average

variance; see Table 3, columns 1-3 for the specification. We conducted the experiments using our

cluster-based design with different cluster sizes and summarized the average variance over 10000

instances.

Table 3 shows that the cluster size d = 3 has the smallest variance in all scenarios, which is

consistent with our worst-case analysis. The coefficients we set from top to bottom reflect the cases

of (almost) no effect (the first row), weak effect (the middle two rows), and substantial effect (the

last row). We also observe that the gap between d=3 and d=4 shrinks as the effect grows more

significant. Recall that in our analysis of the worst-case scenario, the potential outcomes imply no

effect, so the optimality of d= 3 diminishes when the true outcome model suggests a strong effect.

In fact, as discussed in Bojinov and Gupta (2022), the effect of online experimentation has a light

tail, so in most cases, the treatment has a weak effect.

In addition, we also simulate the performance of the fixed clustering without the random shaking.

Our results show that the corresponding variances can be around 7 times as large as those in the

randomized spatial clustering, which shows that the benefit of additional randomization is very

significant. More interestingly, the best cluster size under the fixed clustering is d= 6, which implies

that random shaking admits much smaller cluster sizes and more clusters.
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Table 3 Variances of the cluster-based design under different outcome models. The first three columns specify the

distribution that the β coefficients are samples from. The fourth column indicates if the clustering leveraged our random

shaking (Random) or not (Fixed ). Switchback is equivalent to grouping all units and setting d= 12.

βi,0 βi,1 βi,2 Clustering d= 2 d= 3 d= 4 d= 5 d= 6 Switchback

U(0,0.8) U(−0.05,0) U(−0.05,0) Random 0.0878 0.0058 0.0075 0.0096 0.0140 0.0340
Fixed - 0.0471 0.0301 0.0295 0.0234 -

U(0,0.8) U(−0.05,0) U(−0.02,0) Random 0.1088 0.0065 0.0081 0.0108 0.0142 0.0344
Fixed - 0.0506 0.0321 0.0305 0.0239 -

U(0,0.8) U(−0.02,0) U(−0.05,0) Random 0.1085 0.007 0.0085 0.0101 0.0143 0.0347
Fixed - 0.0527 0.0334 0.0321 0.0242 -

U(0,0.8) U(−0.02,0) U(−0.02,0) Random 0.1301 0.0078 0.0086 0.0125 0.0153 0.0350
Fixed - 0.0623 0.0367 0.0344 0.0256 -

Table 4 Variances of our design with different degrees of remote interference (uniform)

γ Neighborhood
Remote d= 2 d= 3 d= 4 d= 5 Switchback

20 24 0.1422 0.0115 0.0145 0.0167 0.0344

40 12 0.1831 0.0208 0.0223 0.0235 0.0344

60 8 0.2682 0.0271 0.0291 0.0342 0.0344

80 6 0.3710 0.0402 0.0401 0.0460 0.0344

100 4.8 0.5296 0.0514 0.0490 0.0603 0.0344

Performance under more general interference. We now consider a setting where our

assumption of neighborhood interference is wrong. Specifically, we investigate how our design performs

if, in addition to neighborhood interference, some remote regions may interfere with each other due to

underlying phenomena; for example, drivers may regularly drop off customers at an airport far away

from their pick-up location. To incorporate this, we make the following adjustments to the original

interference network: pick any two remote units at uniformly random and add an edge between

them, indicating remote interference. We repeat this procedure until we have added γ remote edges.

In Table 4, we vary γ to reflect different density of remote interference. When conducting the

experiments, we update the knowledge about the network so the estimation remains unbiased, but

we stick to the same design of experiments and evaluate the performance accordingly. We observe

that the cluster size d = 3 stays to be the best for γ ≤ 60. Note that when γ = 60, on average,

each local region has a remote edge connected to some non-neighborhood region, which means the

neighborhood interference assumption breaks almost everywhere. This shows that our new design

is quite robust against deviations to our neighborhood interference structure. When γ ≥ 80, the

performance of d = 3 becomes worse than that of d = 4, but in these cases, all cluster sizes are

outperformed by a single switchback design (d=D). This implies that the remote interference is so

substantial that our randomized spatial clustering does not add value regardless the cluster size.
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Table 5 Variances of our design with different degrees of remote interference (non-uniform)

γ Neighborhood
Remote Merge d= 2 d= 3 d= 4 d= 5 Switchback

100 4.8 No 2.403(36) 0.0462(16) 0.0278(9) 0.0245(9) 0.0344
Yes 0.0478(16) 0.0124(11) 0.0142(7) 0.0192(7) -

200 2.4 No 4.231(36) 0.2288(16) 0.0455(9) 0.0478(9) 0.0344
Yes 0.0439(8) 0.0212(9) 0.0256(6) 0.0294(6) -

300 1.6 No 8.821(36) 0.4129(16) 0.1197(9) 0.0837(9) 0.0344
Yes 0.0401(2) 0.0280(7) 0.0329(5) 0.0345(5) -

400 1.2 No 19.23(16) 0.8643(16) 0.1615(9) 0.1421(9) 0.0344
Yes 0.0377(1.4) 0.0355(5) 0.0357(4) 0.0356(4) -

500 1.0 No 115.2(36) 1.351(16) 0.3042(9) 0.2020(9) 0.0344
Yes 0.0348(1.2) 0.0364(3) 0.0360(2) 0.0366(2) -

In the above simulation, we added edges uniformly at random. In some settings, however, there

could be an underlying structure. For instance, there might be a traveling pattern between a business

district (contains n1 units) and a residential district (contains n2 units), so we should expect n1×n2

edges capturing this remote interference. To this end, we adjust our simulation procedure as follows.

We first pick any two remote units randomly as before (e.g., coordinates (i1, i2) and (j1, j2)), and

then construct remote edges between the areas of 2 by 2 units containing (i1, i2) and (j1, j2). For

example, an edge connects (i1− 1, i2) and (j1, j2− 1). Thus, we add 16 (n1 = n2 = 4) remote edges in

this round. We finally iterate over many rounds till reaching γ edges.

In Table 5, we present the results by varying γ from 200 to 1000. We first keep using our proposed

design η†d with different cluster sizes (the first row in each case). Compared to the performance in

Table 4, the cluster-based designs are more tolerant to the contamination of remote interference. For

example, when γ =100, d=4 and d=5 still perform better than a single switchback experiment,

while this is not the case in Table 4. The intuition behind this observation is that when remote edges

are more concentrated, our clustering approach aggregates local units, and thus, the negative effect

of remote interference is naturally offset. That being said, the performance quickly deteriorates as

γ ≥ 200 under all cluster sizes, especially for small ones, because the remote interference is so strong

that local clustering is insufficient.

To overcome this limitation, we develop a heuristic algorithm that further improves our design

by leveraging the interference structure to obtain better clustering. We outline the key idea of the

algorithm and leave the details to Appendix B. Given two clusters of local regions that are farther

away, their treatment assignments should be sampled independently following our design. Suppose

that many regions from these two remote clusters are interfering with each other; we may consider

merging these two clusters as a single one so that they share the same treatment assignments. On the

one hand, this absorbs the remote interference between two clusters and thus reduces the propensity
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score of units; on the other, this introduces excess dependence between units that are not interfering.

Our heuristic algorithm carefully examines this tension and makes informed merging decisions.

Table 5, also show the performance using our heuristic algorithm for merging clusters (the second

row in each case). We observe a sharp improvement upon our original design, especially for large γ,

which justifies the idea behind our simple greedy heuristic. Up to γ = 300, the performance of d= 3 is

consistently the best as it strikes a good balance between maintaining sufficient number of clusters to

generate more data and absorbing sufficient amount of remote interference to reduce high propensity

scores, while all cluster sizes perform similarly as γ gets larger because the number of clusters is

small and the difference among clustering is minimal. More importantly, it suggests that choosing

our randomized spatial clustering with proper size not only performs well under the neighborhood

interference assumption, but also lays a good foundation for more sophisticated designs when the

assumption does not hold.

Performance under real networks. To further test our experimental design along with its

extension to the heuristic algorithm, we consider a real network structure abstracted from the data

of a ride-sharing platform in Singapore. We use a collection of one-month trips to characterize the

network structure. We illustrate the geohash map in Figure 7 on a 31× 20 lattice. Since we are only

interested in the service regions where the platform operates, only 255 local squares involved in the

trip data are defined to be valid units.

For each trip record in the data, we have the precise pickup and dropoff locations so that we know

exactly the local regions at which the trip starts and ends. For example, we take one CBD region as

the pickup region and visualize the density of its trips in Figure 8. We observe that a significant

portion of the trips is directed towards neighboring regions, a consideration already integrated

through our neighborhood interference assumption. For the remaining trips, their destinations mainly

cover the airport (on the right side of the map) as well as some other commercial and residential

areas.

To set up the network of spatial interference, besides the edges indicating all neighborhood

interference, we construct the remote interference by adding top γ edges that connect two regions

with the most frequent trips. Similar to the simulation above, we tabulate the performance of different

designs by vary γ in Table 6. It is not surprising to see that the variances without merging explode

with a few remote edges, and our heuristic algorithm substantially alleviates the issue for different

cluster sizes. The algorithm is also robust against large γ, when the number of clusters shrinks and

the performance gradually approaches the switchback one. More importantly, this sheds light on the

bias-variance trade-off from the interference structure. On the one hand, remote interference (e.g.,

trips) could exist between any two regions and thus no clustering could reduce the variance on a
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Figure 7 The geohash map of Singapore. Figure 8 The density of trips that start at one CBD

region (the blue star).

Table 6 Variances of our design with different degrees of remote interference
(real)

γ Neighborhood
Remote Merge d= 3 d= 4 d= 5 Switchback

0 - No 0.0033(42) 0.0034(27) 0.0044(19) 0.0344

200 5 No 0.3212(42) 0.1857(27) 0.0637(19) 0.0344
Yes 0.0096(23) 0.0109(17) 0.0128(14)

400 2.5 No 2.412(42) 0.9831(27) 0.1934(19) 0.0344
Yes 0.0126(17) 0.0143(14) 0.0155(12)

800 1.25 Yes 0.0195(15) 0.0196(12) 0.0201(9) 0.0344

1600 0.62 Yes 0.0238(12) 0.0247(11) 0.0248(8) 0.0344

3200 0.31 Yes 0.0271(10) 0.0283(9) 0.0304(6) 0.0344

6400 0.15 Yes 0.0320(7) 0.0322(5) 0.0324(3) 0.0344

Note: the performances without merging under γ = 400 are significantly worse than
a single switchback design and the numbers grow exponentially, so we only present
the performance with merging under large γ for clarity.

fully-connected network. On the other hand, ignoring all remote interference leads to the minimal

variance, but at the price of a potentially large bias. While a theoretical analysis of this trade-off is

beyond the scope of this paper, our new design with the heuristic algorithm essentially provides a

spectrum of solutions on the bias-variance frontier.

To conclude, we show in this section the superior performance of our new experimental design

along with its extended heuristic approach in different network settings. We demonstrate when the

cluster size d= 3 remains a good choice and when we should resort to a single switchback experiment

with clustering.

8.2. Comparison of Testing Efficiency

We now focus on exploring our ability to draw meaningful inferences after running an experiment

with our proposed design.
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We first justify the normal approximation following the same outcome model (14) with T = 401.

More specifically, we generate 100000 samples of the estimator τ̂ and conduct a Kolmogorov–Smirnov

test (Sprent 2012) for the null hypothesis that the samples come from a normal distribution. The

test returns an estimated p-value of 0.57, implying the normal approximation is reasonable. Figure 9

shows the histogram and the Q-Q plot that correspond to the distribution induced by τ̂−τ√
Var

η
†
3

(τ̂ |Y)
,

for which we numerically compute Var
η
†
3
(τ̂ |Y) using samples from the simulation.
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Figure 9 Normal approximation of τ̂ − τ using 100000 samples under the outcomes given in (14) with

αi,t = (1+ sin(πt/4)) ·U(0.5,1.5), βi,0 = 1, βi,1 =−0.05, βi,2 =−0.05, T = 401.

We then examine the effectiveness of inferences using different designs. In particular, we test the

null hypothesis (10) using the normal approximation. We not only calculate the IPW estimator (2)

based on the observed outcomes, but also estimate the variance by (13) for constructing normal

approximation, which further gives an estimated p-value p̂. We reject the null hypothesis if p̂ < 0.05.

By repeating this procedure 10000 times, we summarize the frequency of a null hypothesis that is

rejected (i.e. rejection rate).

We present the rejection rates as the number of periods T grows for three different designs of

experiments: (1) the optimal Bernoulli design ηBer of switchback experiments; (2) the switchback

experiments η† with temporal balancing; (3) our design of panel experiments η†3 with temporal

balancing and randomized spatial clustering under d∗ =3. We compare these designs under three

outcome models in Figure 10. First, we set βi,0 = βi,1 = βi,2 = 0 such that the true causal effect is

τ = 0. All three designs have small rejection rates slightly below the nominal level 0.05. Second,

we set βi,0 = 0.5, βi,1 = βi,2 =−0.025 which lead to a weak positive causal effect. In this case, the

Bernoulli design ηBer almost fails to reject the null. Adding the temporal balancing increases the

rejection rate, allowing more chances to detect the causal effect. Adding the randomized spatial

clustering further improves the efficiency considerably; Third, we scale the coefficients by 2 with

βi,0 = 1, βi,1 = βi,2 =−0.05 which lead to a stronger positive causal effect. Similar to before, both
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Figure 10 Rejection rates for testing the null hypothesis (10)
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Figure 11 Point estimates and confidence intervals for testing the null hypothesis (10)

temporal balancing and randomized spatial clustering help make the right decision more efficiently

than the Bernoulli design ηBer. In particular, our design η†3 only needs 15-25% as many time periods

as in the Bernoulli design ηBer to achieve the same rejection rate.

Furthermore, we plot the average point estimates and the average confidence intervals in Figure 11.

We observe that all the estimates are indeed unbiased and our design consistently achieves much

narrower confidence intervals. Specifically, in the third case, for getting the average confidence

interval above 0, our new design η†3 only needs 201 periods while in contrast, the other two designs

fail to do so within 401 periods. This further justifies that our design is more data-efficient.

9. Conclusion, Practical Suggestions, and Future Research Directions

In this paper, we study the design of panel experiments in the presence of spatial and temporal

interference. Motivated by ride-sharing applications, we model the spatial interference to happen over

a grid structure. We adopt a minimax optimization framework and cast the design of experiments

problem as a minimax optimization problem. We solve the problem by proposing a combination of

balanced design across time periods, and randomized spatial clustering across units. Our proposal of

experimental design is simple in nature, easy to implement in practice, and has good theoretical and

numerical performances. We also derive a new central limit theorem to make inferences.
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We conclude this paper by providing some practical suggestions for conducting experiments on

panels and pointing out some limitations of our methods that could lead to future research directions.

First, we consider the well-known unbiased IPW estimator in this paper. In practice, experimenters

could use some biased estimators such as Hajek estimator (Basu 2011), which usually significantly

reduces the variances. The key features of our design can still be applied as long as the experimenter

trades off between the volume of data and the degree of interference. Moreover, one can also

investigate the bias-variance trade-off regarding the assumption of the neighborhood spillover effect.

The larger an experimental unit is, the less degree of interference it suffers, which leads to less bias,

but at the cost of potentially larger variance. Practitioners should define the experimental unit

properly using their domain knowledge to strike a good balance in the spectrum of bias-variance

trade-off.

Second, we use the potential outcome framework together with non-parametric modeling of the

outcomes. If practitioners have good prior knowledge about the outcome model, such as the system

dynamics between units, and over time, they may incorporate such modeling to extend our design.

For example, if considering a Markovian system for the time series, one may have judicious use of

burn-in periods to considerably reduce the variance (Hu and Wager 2022).

Third, we design the experiment when the number of time periods T is fixed and exogenously

given. It is interesting to consider an adaptive version in which the experimenter could sequentially

monitor the outcomes of the experiment. This opens the room for adjusting the experiment or even

stopping the experiment earlier, especially when some domain knowledge guides the modeling of the

outcomes (Glynn et al. 2020, Johari et al. 2022a, Ham et al. 2022). We encourage future research to

pursue this direction.
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A. Appendix for Additional Results
A.1. Comparison between Balanced Design and Bernoulli Design

Theorem 2 in Bojinov et al. (2022) shows that the optimal Bernoulli design ηBer has the worst-case

variance VarηBer(τ̂) =
16T−56
(T−1)2

B2. This leads to the following corollary which compares our balanced

design and the optimal Bernoulli design ηBer.

Corollary 1. The relative performance of the worst-case variances between the balanced design

η† and the optimal Bernoulli design ηBer is given by

lim
T→∞

Varη†(τ̂)

VarηBer(τ̂)
= lim

T→∞

(T − 2)(T − 1)

(4T − 14)(T − 3)
=

1

4
.

We also conduct a simulation study to investigate the performance of our balanced design η†.

First of all, we set the outcomes Y to follow the worst-case structure in (5). For each numerical

experiment, we randomly sample an assignment path, compute the IPW estimator (2), and repeat

the procedure 10000 times to estimate the performance of the design. In Figure 12, the variance of

the balanced design is significantly lower than that of the optimal Bernoulli design. Note that both

designs are evaluated under the outcomes in (5), which correspond to the worst-case scenario for the

balanced design, but do not correspond to the worst-case scenario for the Bernoulli design. This

further justifies the robustness of the balanced design.
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Figure 12 The estimated variance for different

experimental periods under the outcomes given in (5) with

B = 3.
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Figure 13 The estimated variance for different

experimental periods under the outcomes given in (15)

with αt = 1+ sin(πt/4), β0 = 1, β1 = 1, ϵt ∼N (0,1).

Next, we consider the following outcome model that is studied in Bojinov et al. (2022):

Yt(wt−1:t) = αt +β0wt +β1wt−1 + ϵt (15)

where ϵt ∼N (0,1). In (15), αt depicts the base structure of the time series, β0 governs the direct

causal effect of the treatment, and β1 governs the carryover effect of the treatment. The causal effect
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Table 7 Variances under different outcome models with T = 101

αt β0 β1 Bernoulli design Balanced design

1+ sin(πt/4) 1 1 0.852 0.182(-78.6%)
1 0 0.533 0.152(-71.5%)
1 -1 0.314 0.143(-54.4%)

log(t) 1 1 3.706 0.264(-92.8%)
1 0 2.970 0.233(-92.1%)
1 -1 2.334 0.223(-90.5%)

of interest is τ = β0 +β1. We first let αt = 1+ sin(πt/4), β0 = 1, β1 = 1. In Figure 13, the balanced

design dominates the Bernoulli design. Our new design is an order of magnitude better than the

previous Bernoulli style design; for example, the balanced design with T = 41 has a lower variance

than the Bernoulli design with T = 181. This implies that the benefit of the balanced design is also

significant beyond the worst-case scenario. Moreover, we test different outcome models by changing

the parameters in (15) and lay out the corresponding variances in Table 7.

A.2. Variance Decomposition for Panels

Let us define

τ̂i =
1

T − 1

T∑
t=2

[
Yi,t(1)

1{WN (i),t−1:t = 1}
Pr(WN (i),t−1:t = 1)

−Yi,t(0)
1{WN (i),t−1:t = 0}
Pr(WN (i),t−1:t = 0)

]
. (16)

Then the variance could be rewritten as

Var
η
†
d
(τ̂ |Y) = 1

N 2

N∑
i=1

N∑
j=1

Cov(τ̂i, τ̂j)

where Cov(τ̂i, τ̂j) is the covariance of any two units i and j. Similar to the switchback experiments,

we introduce

St
i,j =

1

T − 1

T∑
t=2

(
Yi,t(1)+Yi,t+1(1)

2
−Y i(1)

)
·
(
Yj,t(1)+Yj,t+1(1)

2
−Y j(1)

)
,

Sc
i,j =

1

T − 1

T∑
t=2

(
Yi,t(0)+Yi,t+1(0)

2
−Y i(0)

)
·
(
Yj,t(0)+Yj,t+1(0)

2
−Y j(0)

)
,

Sct
i,j =

1

T − 1

T∑
t=2

(
Yi,t(1)−Yi,t(0)+Yi,t+1(1)−Yi,t+1(0)

2
− (Y i(1)−Y i(0))

)
·
(
Yj,t(1)−Yj,t(0)+Yj,t+1(1)−Yj,t+1(0)

2
− (Y j(1)−Y j(0))

)
.

where Y i(1) and Y i(0) refer to the average outcomes for treatment and control.
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Proposition 4. For any potential outcomes Y, the covariance of any two units i and j in the

cluster-based design η†d can be decomposed as

Cov(τ̂i, τ̂j) = θ0i,j(K,T )(S
t
i,j +Sc

i,j)
+θ1i,j(K,T )S

ct
i,j

+
θ2i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t(1)+Yi,t(0)Yj,t(0))

+
θ3i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t(0)+Yi,t(0)Yj,t(1))

+
θ4i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t+1(1)+Yj,t(1)Yi,t+1(1)+Yi,t(0)Yj,t+1(0)+Yj,t(0)Yi,t+1(0))

+
θ5i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t+1(0)+Yj,t(0)Yi,t+1(1)+Yi,t(0)Yj,t+1(1)+Yj,t(1)Yi,t+1(0)).

(17)

We derive this decomposition following the same idea of Theorem 1. Compared to the time series

experiments where the coefficients are simply characterized by T , the coefficients (θ0,θ1,θ2,θ3,θ4,θ5)

in the panel setting also depend on the randomized spatial clustering(i.e., Ki,j(ω;d)), which gives a

more sophisticated characterization. See the explicit expression of the coefficients and the complete

proof in Appendix C.4. We remark that (θ0,θ1,θ2,θ3) decrease in T with order O(1/T ) while (θ4,θ5)

decrease in T with order O(1/T 2). Despite the absence of closed-form expressions, this leads to

a structure similar to the single-unit case in (3). θ0 and θ1 are the coefficients we commonly see

in complete randomization; θ2 and θ3 are the coefficients that refer to the randomness from valid

observations on units i and j; θ4 and θ5 are the residual coefficients that decay much faster in T .

A.3. Inference for Panels

When it comes to the panel setting with N > 1, we still rely on variances introduced by random

assignments across time periods to make inferences. Note that this is different from the inferential

technique that is used for population/network interference (Han et al. 2024, Ugander and Yin 2020).

Using the variance Var
η
†
d
(τ̂ |Y) we have derived for randomized spatial clustering, we extend the

normal approximation in Theorem 4.

Corollary 2. Under Assumptions 1 - 3 and if Var
η
†
d
(τ̂ |Y) =Ω(1/T ), the limiting distribution

of the IPW estimator is a normal distribution, i.e., as T →∞,

τ̂ − τ√
Var

η
†
d
(τ̂ |Y)

D→N (0,1). (18)

This gives the nominal coverage that lim
T→∞

P(|τ̂ − τ | ≥ c(α)) = α, where α is the nominal level and

c(α) is the critical value of the normal distribution N (0,Var
η
†
d
(τ̂ |Y)).

We prove this in Appendix C.8 and provide an upper bound for the variance with an unbiased

estimate.
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Algorithm 1 Greedy Algorithm for Merging Clusters
Initialize with our randomized spatial clustering {C (ω;d),∀ω ∈ Ω2}, and compute the sum of

pair-wise propensity scores

Σe =
N∑
i=1

N∑
j=1

ei,j =
N∑
i=1

N∑
j=1

E[0.25Kj,j(ω;d)−Ki,j(ω;d)(1−1{Ki,j(ω;d) = 0})]
E[0.25Kj,j(ω;d)]

.

Initialize an indicator I(ω) = 1,∀ω ∈ Ω2 to record whether a clustering with certain shaking

parameter is allowed to conduct merging.

for iter = 1, 2, 3,... do

for ω ∈Ω2 do ▷ enumerate all shaking parameters

for C1,C2 ∈C (ω;d)×C (ω;d) do ▷ enumerate all pairs of clusters

Compute the new sum of pair-wise propensity scores Σ′
e(C1,C2) if two clusters C1,C2

were merged, and define ∆(C1,C2) =Σe −Σ′
e(C1,C2).

end for

if ∆(C1,C2)≤ 0 for all pairs then

I(ω) = 0

break

end if

Let C∗
1 ,C∗

2 = argmin∆(C1,C2) and merge clusters C∗
1 ,C∗

2 into a single cluster.

Update C (ω;d) to be the new clustering after merging, and update Σe =Σ′
e(C∗

1 ,C∗
2)

end for

if I(ω) = 0,∀ω ∈Ω2 then

break

end if

end for

Return the new design {C (ω;d),∀ω ∈Ω2} with merged clusters.

B. Appendix for Heuristic Algorithm
We provide the details of the heuristic algorithm. To balance the trade-off in merging two remote

clusters and calibrate the merging decision, we introduce the following pair-wise propensity score:

ei,j =
E[0.25Kj,j(ω;d)−Ki,j(ω;d)(1−1{Ki,j(ω;d) = 0})]

E[0.25Kj,j(ω;d)]
, (19)

which is inspired by the characterization of covariance between two units. See Appendix C.4 for the

details. Particularly, in the special case when i= j, this can be simplified as ei,i =
1

E[0.25Ki,i(ω;d)]
,

which reduces to the propensity score of unit i as T →∞. With the help of this new parameter, we

propose a greedy approach for merging clusters in Algorithm 1.
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C. Appendix for Complete Proofs
C.1. Proof of Theorem 1

We first compute several joint probabilities that will be used later. The propensity score

Pr(Wt−1:t = 1) = Pr(Wt−1:t = 0) =

(
T−3

(T−1)/2

)(
T−1

(T−1)/2

) = T − 3

4T − 8
,

where
(
n
k

)
stands for the combinatorial number of choosing k items from a total of n items. Similarly,

the probabilities that we can observe three and four consecutive treatment/control are

Pr(Wt−1:t+1 = 1) = Pr(Wt−1:t+1 = 0) =

(
T−4

(T−1)/2

)(
T−1

(T−1)/2

) = (T − 3)(T − 5)

(4T − 8)(2T − 6)
,

and

Pr(Wt−1:t+2 = 1) = Pr(Wt−1:t+2 = 0) =

(
T−5

(T−1)/2

)(
T−1

(T−1)/2

) = (T − 3)(T − 5)(T − 7)

(4T − 8)(2T − 6)(2T − 8)
.

Furthermore, we have

Pr(Wt−1:t = 1,Wt+1:t+2 = 0) = Pr(Wt−1:t = 0,Wt+1:t+2 = 1) =

(
T−5

(T−5)/2

)(
T−1

(T−1)/2

) = (T − 3)(T − 1)(T − 3)

(4T − 8)(2T − 6)(2T − 8)
.

Let δt,t′ denote the distance between two periods. We also introduce the shorthand notations:

λ0 =
T − 3

4T − 8
, λ1 =

T − 5

2T − 6
, λ2 =

T − 7

2T − 8
, λ3 =

T − 1

2T − 6
, λ4 =

T − 3

2T − 8
.

Then we define the following:

q+(δt,t′) =
Cov (1{Wt−1:t = 1},1{Wt′−1:t′ = 1})

Pr(Wt−1:t = 1)Pr(Wt′−1:t′ = 1)
=

Cov (1{Wt−1:t = 0},1{Wt′−1:t′ = 0})
Pr(Wt−1:t = 0)Pr(Wt′−1:t′ = 0)

=


1/λ0 − 1, δt,t′ = 0

λ1/λ0 − 1, δt,t′ = 1

λ1λ2/λ0 − 1, δt,t′ ≥ 2

and

q−(δt,t′) =−Cov (1{Wt−1:t = 1},1{Wt′−1:t′ = 0})
Pr(Wt−1:t = 1)Pr(Wt′−1:t′ = 0)

=−Cov (1{Wt−1:t = 0},1{Wt′−1:t′ = 1})
Pr(Wt−1:t = 0)Pr(Wt′−1:t′ = 1)

=


1, δt,t′ = 0

1, δt,t′ = 1

1−λ3λ4/λ0, δt,t′ ≥ 2

Now we are ready to analyze the variance. We first write the estimator as follows,

τ̂ =
1

T − 1

T∑
t=2

[
Yt(1)

1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

−Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

]
.



37

The variance of the estimator can be decomposed as

Var(τ̂ |Y) =Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)
+Var

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

+2Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

−Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)
.

We first examine the first part of the variance:

Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)

=
1

(T − 1)2

T∑
t=2

T∑
t′=2

Cov (1{Wt−1:t = 1},1{Wt′−1:t′ = 1})
Pr(Wt−1:t = 1)Pr(Wt′−1:t′ = 1)

Yt(1)Yt′(1)

=
q+(0)

(T − 1)2

T∑
t=2

Y 2
t (1)+

2q+(1)

(T − 1)2

T∑
t=2

Yt(1)Yt+1(1)+
q+(2)

(T − 1)2

T∑
t=2

∑
δt,t′≥2

Yt(1)Yt′(1).

Because of
T∑

t=2

(Yt(1)−Y (1))2 =
T∑

t=2

Y 2
t (1)−

1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(1),

T∑
t=2

(Yt(1)−Y (1))(Yt+1(1)−Y (1)) =
T∑

t=2

Yt(1)Yt+1(1)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(1),

we obtain the following reformulation:

Var

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

)

=
2T 2 − 13T +17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(1)−Y (1))2

+
2T 2 − 13T +17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(1)−Y (1))(Yt+1(1)−Y (1))

+
1

(T − 1)(T − 4)

T∑
t=2

Y 2
t (1)−

1

(T − 1)(T − 4)(T − 3)

T∑
t=2

Yt(1)Yt+1(1). (20)

By symmetry, we can characterize the part for control:

Var

(
1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

=
2T 2 − 13T +17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(0)−Y (0))2

+
2T 2 − 13T +17

(T − 1)(T − 4)(T − 3)2

T∑
t=2

(Yt(0)−Y (0))(Yt+1(0)−Y (0))

+
1

(T − 1)(T − 4)

T∑
t=2

Y 2
t (0)−

1

(T − 1)(T − 4)(T − 3)

T∑
t=2

Yt(0)Yt+1(0). (21)
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Next, it remains to examine the covariance between the outcomes of treatment and control:

Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

=
q−(δt,t′)

(T − 1)2

T∑
t=2

T∑
t′=2

Yt(1)Yt′(0) = Y (1)Y (0)− (T − 2)(T − 1)

(T − 3)(T − 4)(T − 1)2

T∑
t=2

∑
δt,t′≥2

Yt(1)Yt′(0).

Because of
T∑

t=2

(Yt(1)−Y (1))(Yt(0)−Y (0)) =
T∑

t=2

Yt(1)Yt(0)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(0),

T∑
t=2

(Yt(1)−Y (1))(Yt+1(0)−Y (0)) =
T∑

t=2

Yt(1)Yt+1(0)−
1

T − 1

T∑
t=2

T∑
t′=2

Yt(1)Yt′(0)

we obtain the following reformulation:

Cov

(
1

T − 1

T∑
t=2

Yt(1)
1{Wt−1:t = 1}
Pr(Wt−1:t = 1)

,− 1

T − 1

T∑
t=2

Yt(0)
1{Wt−1:t = 0}
Pr(Wt−1:t = 0)

)

=
2T − 5

(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(1)−Y (1))(Yt(0)−Y (0))

+
2T − 5

2(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(1)−Y (1))(Yt+1(0)−Y (0))

+
2T − 5

2(T − 4)(T − 3)(T − 1)

T∑
t=2

(Yt(0)−Y (0))(Yt+1(1)−Y (1))

− 1

(T − 4)(T − 1)

T∑
t=2

Yt(1)Yt(0)

+
1

2(T − 4)(T − 1)(T − 3)

T∑
t=2

Yt(1)Yt+1(0)+Yt(0)Yt+1(1). (22)

Next, we are going to rewrite (22) in a way that we can combine it with (20) and (21). Since we

have the following two equations

T∑
t=2

(Yt(1)−Y (1))(Yt+1(0)−Y (0))+
T∑

t=2

(Yt(0)−Y (0))(Yt+1(1)−Y (1))

=
T∑

t=2

(Yt(1)−Y (1))(Yt+1(1)−Y (1))+
T∑

t=2

(Yt(0)−Y (0))(Yt+1(0)−Y (0))

−
T∑

t=2

(Yt(1)−Yt(0)−Y (1)+Y (0))(Yt+1(1)−Yt+1(0)−Y (1)+Y (0))

and

2
T∑

t=2

(Yt(1)−Y (1))(Yt(0)−Y (0)) =
T∑

t=2

(Yt(1)−Y (1))2 +
T∑

t=2

(Yt(0)−Y (0))2
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−
T∑

t=2

(Yt(1)−Yt(0)−Y (1)+Y (0))2,

the covariance (22) can be cast as

2T − 5

2(T − 4)(T − 3)(T − 1)

(
T∑

t=2

(Yt(1)−Y (1))2 +
T∑

t=2

(Yt(0)−Y (0))2 −
T∑

t=2

(Yt(1)−Yt(0)−Y (1)+Y (0))2

)

+
2T − 5

2(T − 4)(T − 3)(T − 1)

(
T∑

t=2

(Yt(1)−Y (1))(Yt+1(1)−Y (1))+
T∑

t=2

(Yt(0)−Y (0))(Yt+1(0)−Y (0))

−
T∑

t=2

(Yt(1)−Yt(0)−Y (1)+Y (0))(Yt+1(1)−Yt+1(0)−Y (1)+Y (0))

)

− 1

(T − 4)(T − 1)

T∑
t=2

Yt(1)Yt(0)+
1

2(T − 4)(T − 1)(T − 3)

T∑
t=2

Yt(1)Yt+1(0)+Yt(0)Yt+1(1). (23)

Finally, putting three parts (20), (21), (23) together and using Sc, St, Sct,Rct, we derive the

variance of the estimator

Var(τ̂ |Y) = 8(T − 2)

(T − 3)2
(St +Sc)− (4T − 10)

(T − 3)(T − 4)
Sct +

Rct

(T − 4)

− 1

(T − 1)(T − 4)(T − 3)

T∑
t=2

(Yt(1)Yt+1(1)+Yt(0)Yt+1(0)−Yt(1)Yt+1(0)−Yt(0)Yt+1(1)) .

which can be finally rewritten as

Varη†(τ̂ |Y) =
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
− 4Sct +Rct − 2τ 2

T − 2

)
.

C.2. Proof of Theorem 2 (1)

Lemma 1. The worst-case outcomes must satisfy the following structure:

Yt(1) = Yt(0) =

{
B 2≤ t≤ s,

0 t > s.
(24)

We first expand the variance by definition and have the following:

(T − 1)2 ·Varη†(τ̂ |Y) =
T∑

t=2

T∑
t′=2

(
q+(δt,t′)Yt(1)Yt′(1)+ q+(δt,t′)Yt(0)Yt′(0)

+ q−(δt,t′)Yt(1)Yt′(0)+ q−(δt,t′)Yt(0)Yt′(1)
)
.

This is a quadratic function with variables Yt(1), Yt(0),∀t∈ {2,3, . . . , T}. To show it is also convex,

we can rewrite the summation as y′Σy, where y ∈R2(T−1) is the vector of all variables and Σ is a

symmetric matrix of coefficients. Because variance is non-negative, we know that y′Σy≥ 0 for any

y, which implies that Σ is PSD and the function is convex in y. Since the inner optimization is a
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minimization in a bounded feasible region, the worst-case solution can be attained at one of the

extreme points. That is,

Yt(1)∈ {0,B}, Yt(0)∈ {0,B},∀t.

Next, given any outcomes at the extreme point, we will argue that transforming into the structure

(24) leads to a larger variance. To see this, we need to carefully analyze the coefficients of Σ. It is easy

to check that both q+(δt,t′) and q−(δt,t′) are decreasing in δt,t′ . Therefore, the closer two outcomes

B, the more they contribute to the variance. Suppose we are given some outcomes at the extreme

point and there are T1 periods whose outcome of treatment is B while T0 periods whose outcome of

control is B. W.L.O.G., assuming T1 ≥ T0, let us consider the following alternative outcomes:

Yt(1) =

{
B 2≤ t≤ T1 +1

0 otherwise
, Yt(0) =

{
B T1−T0

2
+2≤ t≤ T1+T0

2
+1

0 otherwise
(25)

We evaluate the variance of the alternative outcomes using the monotonicity of q+(δt,t′) and q−(δt,t′).

Since the alternative outcomes group B together with the minimal distance, the variance from the

outcomes of treatment(control) increases. Moreover, because the alternative outcomes synchronize

the outcomes between treatment and control as much as possible, the covariance from the outcomes

between treatment and control increases as well. Together, the alternative outcomes achieve a larger

variance.

Lastly, it remains to show that further transforming (25) into (24) generates a larger variance.

Essentially, the transformation is doing

Yt(1) =B =⇒ Yt(1) = 0,
T1 +T0

2
+2≤ t≤ T1 +1

Yt(0) = 0=⇒ Yt(0) =B, 2≤ t≤ T1 −T0

2
+1.

This can be illustrated using the examples in Figure 14 with T = 9. To see that the variance increases,

Figure 14 Transform outcomes from (25) to (24).

we need to show that the covariance between blue outcomes and red outcomes is getting larger. That

is,

(T1−T0)/2+1∑
t=2

(T1−T0)/2+1∑
t′=2

q−(δt,t′)≥
T1+1∑

t=(T1+T0)/2+2

(T1−T0)/2+1∑
t′=2

q+(δt,t′).
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It is sufficient to show that

(T1−T0)/2+1∑
t′=2

q−(δt,t′)≥
(T1−T0)/2+1∑

t′=2

q+(δt,t′),∀ 2≤ t≤ T1 −T0

2
+1.

Because of the monotonicity of q+(·) and q−(·), it suffices to show that

(T1−T0)/2−1∑
δt,t′=0

q−(δt,t′)≥
(T1−T0)/2∑
δt,t′=1

q+(δt,t′).

Plugging in the expressions, this is equivalent to(
T1 −T0

2
− 2

)(
q−(2)− q+(2)

)
+ q−(0)+ q−(1)− q+(1)− q+(2)≥ 0

⇐⇒−
(
T1 −T0

2
− 2

)
4(T − 1)

(T − 3)2(T − 4)
− (T − 7)(T − 5)(4T − 8)

(2T − 8)(2T − 6)(T − 3)
− (T − 5)(4T − 8)

(2T − 6)(T − 3)
+4≥ 0.

Since T1 −T0 is bounded above by T−1
2

, it suffices to show that

− 2(T − 5)(T − 1)

(T − 3)2(T − 4)
− (T − 7)(T − 5)(4T − 8)

(2T − 8)(2T − 6)(T − 3)
− (T − 5)(4T − 8)

(2T − 6)(T − 3)
+4≥ 0

⇐⇒− (T − 5)(3T − 7)

(T − 3)2
+4≥ 0

⇐⇒(T − 1)2

(T − 3)2
≥ 0.

Hence, the worst-case outcomes must obey the structure that:

Yt(1) = Yt(0) =

{
B 2≤ t≤ s,

0 t > s.

From Lemma 1, we know that the worst-case outcomes obey the following structure

Yt(1) = Yt(0) =

{
B 2≤ t≤ s,

0 t > s.

We seek to show that s= T+1
2

by contradiction.

Suppose that s < T+1
2

, then we can set Ys+1(1) = Ys+1(0) =B. In this way, we have one more pair

of outcomes B which contributes to the variance. To show that the variance increases, it is equivalent

to prove that

q+(0)+ q−(0)+ 2
s∑

δt,t′=1

(q+(δt,t′)+ q−(δt,t′))≥ 0

Since q+(δt,t′)+ q−(δt,t′) takes negative value when δt,t′ ≥ 2, it is sufficient to show that

q+(0)+ q−(0)+ 2

(T−3)/2∑
δt,t′=1

(q+(δt,t′)+ q−(δt,t′))≥ 0
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Plugging in the expressions of q+ and q−, we have

q+(0)+ q−(0)+ 2

(T−3)/2∑
δt,t′=1

(q+(δt,t′)+ q−(δt,t′)) =
8(T − 2)

(T − 3)2
> 0.

In the other way around when s > T+1
2

, then we can set Ys−1(1) = Ys−1(0) = 0. Following the similar

argument, it is sufficient to show that

−q+(0)− q−(0)− 2

(T−1)/2∑
δt,t′=1

(q+(δt,t′)+ q−(δt,t′))≥ 0

Plugging in the expressions again, we have

−q+(0)− q−(0)− 2

(T−1)/2∑
δt,t′=1

(q+(δt,t′)+ q−(δt,t′)) =
8(T − 2)

(T − 3)2
> 0.

Hence, the variance reaches the maximum when s= T+1
2

.

To further derive the worst-case variance, we can simply use the variance decomposition (3).

Note that the last three parts are all zero, the worst-case variance can be calculated by

Varη†(τ̂) =
8(T − 2)2

(T − 3)2(T − 1)
(St +Sc) =

4(T − 2)

(T − 3)(T − 1)
B2.

C.3. Proof of Theorem 2 (2)

Lemma 2. Let us consider two consecutive time periods t and t+1. For any symmetric design,

we have the following inequality:

1

Pr(Wt−1:t = 1)
− 1+

Pr(Wt−1:t = 1,Wt:t+1 = 1)

Pr(Wt−1:t = 1)Pr(Wt:t+1 = 1)
− 1+

1

Pr(Wt:t+1 = 1)
− 1+

Pr(Wt−1:t = 1,Wt:t+1 = 1)

Pr(Wt−1:t = 1)Pr(Wt:t+1 = 1)
− 1≥ 4

(26)

We first reformulate the inequality as

Pr(Wt−1:t = 1)+2Pr(Wt−1:t = 1,Wt:t+1 = 1)+Pr(Wt:t+1 = 1)

≥ 8Pr(Wt:t+1 = 1)Pr(Wt:t+1 = 1).
(27)

Now let us focus on three time periods: t− 1, t and t+1. There are 8 possible assignment paths. We

layout 4 of them and the remaining ones are just symmetric:

Wt−1:t+1 ∈ {(1,1,1), (1,1,0), (0,1,1), (1,0,1)}.

with their probability mass denoted as a3, a2,1, a2,2, a2,3 respectively. Then we can characterize the

probabilities in the inequality using these a:

a3 + a2,1 +2a3 + a3 + a2,2 ≥ 8(a3 + a2,1)(a3 + a2,2).
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Since a3 + a2,1 + a2,2 + a2,3 = 0.5, it is equivalent to show

2(a3 + a2,1 + a2,2 + a2,3)(4a3 + a2,1 + a2,2)≥ 8(a3 + a2,1)(a3 + a2,2).

Notice that a2,3 only appears on the left-hand-side, so it is sufficient to show

2(a3 + a2,1 + a2,2 + a2,3)(4a3 + a2,1 + a2,2)≥ 8(a3 + a2,1)(a3 + a2,2).

which can be further simplified as

(a2,1 − a2,2)
2 + a3(a2,1 + a2,2)≥ 0.

This is true for any a.

In the proof of Lemma 1, we rewrite the variance by introducing y ∈R2(T−1) to denote the vector

of outcomes. Our original minimax problem is equivalent to

(T − 1)2 ·Var(τ̂) =min
Σ

max
y∈[0,B]

yTΣy,

where Σ is some covariance matrix that can be mapped from a feasible design and the adversary

finds an outcome vector to maximize the variance. To get a lower bound of the optimal worst-case

variance, we consider a randomized feasible solution ỹ regardless of the covariance matrix in the

outer optimization. We first combine every two time periods as a group, so we have overall n= T−1
2

groups. We then randomly pick half of the groups and set their corresponding outcomes to B and

others to 0. Let h(i) denote the group of some outcome ỹi. In this way, for any two outcomes ỹi and

ỹj from the same group(i.e. h(i) = h(j)), E[ỹiỹj ] = 1
2
B2; for any two outcomes from different groups,

E[ỹiỹj] = n−2
4(n−1)

B2. Now we can bound the inner optimization as follows:

max
y∈[0,B]

yTΣy≥E
[
ỹTΣỹ

]
=

∑
h(i)=h(j)

Σi,j

1

2
B2 +

∑
h(i)̸=h(j)

Σi,j

n− 2

4(n− 1)
B2

=
∑

h(i)=h(j)

Σi,j

n

4(n− 1)
B2 +

∑
∀i,j

Σi,j

n− 2

4(n− 1)
B2

Note that the last term is non-negative, so it implies that

max
y∈[0,B]

yTΣy≥
∑

h(i)=h(j)

Σi,j

n

4(n− 1)
B2.

Then it remains to investigate Σi,j when two outcomes ỹi and ỹj are from the same group(i.e. two

consecutive periods). Let us focus on what will happen in one group. First of all, it is easy to observe

that the following is true for any design:

1− Pr(Wt−1:t = 0,Wt:t+1 = 1)

Pr(Wt−1:t = 0)Pr(Wt:t+1 = 1)
= 1− Pr(Wt−1:t = 0,Wt−1:t = 1)

Pr(Wt−1:t = 0)Pr(Wt−1:t = 1)
= 1
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We have 4 such pairs in one group, so they contribute 8n
4(n−1)

B2 to the variance. Next, if we set

the assignments in the above equation to be jointly 0 or 1, we are not able to know the exact

values. Fortunately, based on Lemma 2, we can still bound the variance to which they contribute by
8n

4(n−1)
B2. Lastly, as we have n groups, we get the lower bound

max
y∈[0,B]

yTΣy≥ n
(8+8)n

4(n− 1)
B2 =

4n2

n− 1
B2 =

2

T − 3
B2.

C.4. Proof of Proposition 4

For ease of exposition, we use Ki,j as a shorthand notation for Ki,j(ω;d). This is a random variable

whose distribution is governed by cluster size d and realization is determined by shaking parameters

ω. We first extend our notations to the panel setting. Specifically, for each pair of units i∈ [N ] and

j ∈ [N ], we introduce q+i,j(δt,t′) and q−i,j(δt,t′) as functions of δt,t′ :

q+i,j(δt,t′) =
Cov(1{WN (i),t−1:t = 1},1{WN (j),t′−1:t′ = 1})

Pr(WN (i),t−1:t = 1)Pr(WN (j),t′−1:t′ = 1)

=



E[λKj,j−Ki,j
0 ]

E[λKj,j
0 ]

− 1, δt,t′ = 0

E[λKj,j−Ki,j
0 λ

Ki,j
1 ]

E[λKj,j
0 ]

− 1, δt,t′ = 1

E[λKj,j−Ki,j
0 (λ1λ2)

Ki,j ]

E[λKj,j
0 ]

− 1, δt,t′ ≥ 2

and

q−i,j(δt,t′) =−
Cov(1{WN (i),t−1:t = 1},1{WN (j),t′−1:t′ = 0})

Pr(WN (i),t−1:t = 1)Pr(WN (j),t′−1:t′ = 0)

=



1− E[λKj,j−Ki,j
0 1{Ki,j = 0}]

E[λKj,j
0 ]

, δt,t′ = 0

1− E[λKj,j−Ki,j
0 1{Ki,j = 0}]

E[λKj,j
0 ]

, δt,t′ = 1

1− E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j ]

E[λKj,j
0 ]

, δt,t′ ≥ 2

Then, similar to the single-unit case, we have

(T − 1)2 ·Cov(τ̂i, τ̂j) =
T∑

t=2

T∑
t′=2

(
q+i,j(δt,t′)Yi,t(1)Yj,t′(1)+ q+i,j(δt,t′)Yi,t(0)Yj,t′(0)

+ q−i,j(δt,t′)Yi,t(1)Yj,t′(0)+ q−i,j(δt,t′)Yi,t(0)Yj,t′(1)
)
.

This is equivalent to

(T − 1)2 ·Cov(τ̂i, τ̂j) =
T∑

t=2

(
q+i,j(0)(Yi,t(1)Yj,t(1)+Yi,t(0)Yj,t(0))+ q−i,j(0)(Yi,t(1)Yj,t(0)+Yi,t(0)Yj,t(1))

)
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+
T∑

t=2

q+i,j(1) (Yi,t(1)Yj,t+1(1)+Yj,t(1)Yi,t+1(1)+Yi,t(0)Yj,t+1(0)+Yj,t(0)Yi,t+1(0))

+
T∑

t=2

q−i,j(1) (Yi,t(1)Yj,t+1(0)+Yi,t(0)Yj,t+1(1)+Yj,t(1)Yi,t+1(0)+Yj,t(0)Yi,t+1(1))

+
T∑

t=2

T∑
t′:δt,t′≥2

q+i,j(2) (Yi,t(1)Yj,t′(1)+Yi,t(0)Yj,t′(0))

+
T∑

t=2

T∑
t′:δt,t′≥2

q−i,j(2) (Yi,t(1)Yj,t′(0)+Yi,t(0)Yj,t′(1))

which can be reformulated as

(T − 1)2 ·Cov(τ̂i, τ̂j)

=
T∑

t=2

(q+i,j(0)− q+i,j(2))(Yi,t(1)Yj,t(1)+Yi,t(0)Yj,t(0))

+
T∑

t=2

(q−i,j(0)− q−i,j(2))(Yi,t(1)Yj,t(0)+Yi,t(0)Yj,t(1))

+
T∑

t=2

(q+i,j(1)− q+i,j(2))(Yi,t(1)Yj,t+1(1)+Yj,t(1)Yi,t+1(1)+Yi,t(0)Yj,t+1(0)+Yj,t(0)Yi,t+1(0))

+
T∑

t=2

(q−i,j(1)− q−i,j(2))(Yi,t(1)Yj,t+1(0)+Yi,t(0)Yj,t+1(1)+Yj,t(1)Yi,t+1(0)+Yj,t(0)Yi,t+1(1))

+ q+i,j(2)(T − 1)2(Y i(1)Y j(1)+Y i(0)Y j(0))+ q−i,j(2)(T − 1)2(Y i(1)Y j(0)+Y i(0)Y j(1)).

We further rewrite this by absorbing the terms in the last line with Sc
i,j, S

t
i,j, S

ct
i,j:

(T − 1)2 ·Cov(τ̂i, τ̂j)

= (T − 1)2(−q+i,j(2)− q−i,j(2))(S
t
i,j +Sc

i,j)

+ (T − 1)2q−i,j(2)S
ct
i,j

+(q+i,j(0)+
T − 3

2
q+i,j(2))

T∑
t=2

(Yi,t(1)Yj,t(1)+Yi,t(0)Yj,t(0))

+ (q−i,j(0)+
T − 3

2
q−i,j(2))

T∑
t=2

(Yi,t(1)Yj,t(0)+Yi,t(0)Yj,t(1))

+ (q+i,j(1)+
T − 5

4
q+i,j(2))

T∑
t=2

(Yi,t(1)Yj,t+1(1)+Yj,t(1)Yi,t+1(1)+Yi,t(0)Yj,t+1(0)+Yj,t(0)Yi,t+1(0))

+ (q−i,j(1)+
T − 5

4
q−i,j(2))

T∑
t=2

(Yi,t (1)Yj,t+1(0)+Yj,t(0)Yi,t+1(1)+Yi,t(0)Yj,t+1(1)+Yj,t(1)Yi,t+1(0)) .
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Plugging in the expressions of q+ and q−, we finally have the variance decomposition shown in

Theorem 4 where the coefficients are given by

θ0i,j(K,T ) =
E[λKj,j−Ki,j

0 ((λ3λ4)
Ki,j − (λ1λ2)

Ki,j )]

E[λKj,j
0 ]

θ1i,j(K,T ) =

(
1− E[λKj,j−Ki,j

0 (λ3λ4)
Ki,j ]

E[λKj,j
0 ]

)

θ2i,j(K,T ) =
1

(T − 1)

(
E[λKj,j−Ki,j

0 ]

E[λKj,j
0 ]

+
T − 3

2

E[λKj,j−Ki,j
0 (λ1λ2)

Ki,j ]

E[λKj,j
0 ]

− T − 1

2

)

θ3i,j(K,T ) =
1

(T − 1)

(
T − 1

2
− E[λKj,j−Ki,j

0 1{Ki,j = 0}]
E[λKj,j

0 ]
− T − 3

2

E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j ]

E[λKj,j
0 ]

)

θ4i,j(K,T ) =
1

(T − 1)

(
E[λKj,j−Ki,j

0 λ
Ki,j
1 ]

E[λKj,j
0 ]

+
T − 5

4

E[λKj,j−Ki,j
0 (λ1λ2)

Ki,j ]

E[λKj,j
0 ]

− T − 1

4

)

θ5i,j(K,T ) =
1

(T − 1)

(
T − 1

4
− E[λKj,j−Ki,j

0 1{Ki,j = 0}]
E[λKj,j

0 ]
− T − 5

4

E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j ]

E[λKj,j
0 ]

)
.

C.5. Proof of Theorem 3

We prove the results by first generalizing Lemma 1 to the panel setting.

Lemma 3. The worst-case outcomes for our design η†d must satisfy the following structure:

∀i∈ [N ], there is some αd,i > 0 such that

Yi,t(1) = Yi,t(0) =

{
B 2≤ t≤ αd,iT,

0 t > αd,iT.
(28)

Note that the variance is still a convex function of potential outcomes so the worst-case solution

remains to be one of the extreme points that Yi,t(1), Yi,t(0) ∈ {0,B},∀i, t. Similar to the proof of

Theorem 2, our goal is to show that transforming any extreme point to the one with the structure

(28) gives a larger variance.

First of all, we notice that both q+i,j(δt,t′) and q−i,j(δt,t′) are decreasing in δt,t′ for all i, j ∈ [N ].

Therefore, following the same argument in Appendix C.2, grouping and synchronizing treatment

and control outcomes with B for both units i and j enhances their covariance Cov(τ̂i, τ̂j). Since the

variance could be written as Var(τ̂) = 1
N2

N∑
i

N∑
j

Cov(τ̂i, τ̂j), the total variance is maximized as well.

Precisely, we obtain the following extreme point for each unit i:

Yi,t(1) =

{
B 0.5(1−αt

d,i)T ≤ t≤ 0.5(1+αt
d,i)T

0 otherwise
, Yi,t(0) =

{
B 0.5(1−αc

d,i)T ≤ t≤ 0.5(1+αc
d,i)T

0 otherwise

(29)

where αt
d,i and αc

d,i indicate the proportion of periods whose outcomes are B for treatment and

control, respectively. Compared to the single-unit case, now we have multiple units with potentially

different αt
d,i and αc

d,i.
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Next, we are going to modify the outcomes to meet the desired structure. We still borrow the idea

in Appendix C.2 that suggests for unit i∈ [N ] with αt
d,i ≥ αc

d,i, we do the following transformation:

Yi,t(1) =B =⇒ Yi,t(1) = 0, 0.5(1+αt
d,i)T ≤ t≤ 0.5(1+αc

d,i)T

Yi,t(0) = 0=⇒ Yi,t(0) =B, 0.5(1−αt
d,i)T ≤ t≤ 0.5(1−αc

d,i)T.

Figure 15 Transforming outcomes of unit i

Figure 16 Transforming outcomes of unit j

There are two cases for analyzing the change of covariance Cov(τ̂i, τ̂j) for each pair of units i, j.

Case 1: αt
d,i ≥ αc

d,i, α
t
d,j ≥ αc

d,j. We illustrate the transformation in this case using Figure 15 and

16 for instance. In this way, the only parts that may change Cov(τ̂i, τ̂j) are (i) the covariance between

the blue outcomes and the green outcomes; (ii) the covariance between the red outcomes and the

yellow outcomes. These two parts are actually equal due to the symmetry, so we just need to show

that (i) increases, which is true if

0.5(1−αc
d,j)T∑

t=0.5(1−αt
d,j

)T

0.5(1−αc
d,i)T∑

t′=0.5(1−αt
d,i

)T

q−i,j(δt,t′)≥
0.5(1−αc

d,j)T∑
t=0.5(1−αt

d,j
)T

0.5(1+αt
d,i)T∑

t′=0.5(1+αc
d,i

)T

q+i,j(δt,t′). (30)

It suffices to show that

0.5(1−αc
d,i)T∑

t′=0.5(1−αt
d,i

)T

q−i,j(δt,t′)≥
0.5(1+αt

d,i)T∑
t′=0.5(1+αc

d,i
)T

q+i,j(δt,t′),∀0.5(1−αt
d,j)T ≤ t≤ 0.5(1−αc

d,j)T.

Note that we are not able to use the sufficient condition in Appendix C.2 because q+i,j(δt,t′) could be

larger than q−i,j(δt,t′) if Ki,j is large. Nonetheless, the asymptotic view of T simplifies the problem. It

is sufficient to show that as T →∞,

q−i,j(0)+ q−i,j(1)+ ((αt
d,i −αc

d,i)T − 2)q−i,j(2)≥ (αt
d,i −αc

d,i)Tq
+
i,j(2). (31)
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Expanding the expressions of q−i,j and q+i,j, we have

q−i,j(2)− q+i,j(2) =O(1/T 2)

q−i,j(2) =O(1/T ), q+i,j(2) =O(1/T )

q−i,j(0)≥ 0, q−i,j(1)≥ 0.

Therefore, the condition (31) holds as T →∞.

Case 2: αt
d,i ≥ αc

d,i, α
t
d,j ≤ αc

d,j. We follow the same argument above by modifying the coefficients

in (30), which gives

0.5(1−αt
d,j)T∑

t=0.5(1−αc
d,j

)T

0.5(1−αc
d,i)T∑

t′=0.5(1−αt
d,i

)T

q+i,j(δt,t′)≥
0.5(1−αt

d,j)T∑
t=0.5(1−αc

d,j
)T

0.5(1+αt
d,i)T∑

t′=0.5(1+αc
d,i

)T

q−i,j(δt,t′). (32)

It is sufficient to show that as T →∞,

q+i,j(0)+ q+i,j(1)+ ((αt
d,i −αc

d,i)T − 2)q+i,j(2)≥ (αt
d,i −αc

d,i)Tq
−
i,j(2).

This is true following a similar argument as above.

Therefore, after the transformation, treatment and control have the same proportion of outcomes

with B: αd,i = 0.5(αt
d,i+α

c
d,i). This shows that the worst-case outcomes must satisfy the structure in

(28).

Now we are ready to conclude the theorem by refining the structure derived in Lemma 3. In

particular, we aim to show that there is a common threshold parameter αd such that

αd,1 = αd,2 = · · ·= αd,N = αd.

Suppose this is not true and units have different threshold parameters. For example, we have

αd,j =min
l
αd,l < αd,i =max

l
αd,l. In this case, we do the following transformation for some small

constant ϵ > 0:

Yi,t(1) = Yi,t(0) =B =⇒ Yi,t(1) = Yi,t(0) = 0, (αd,i − ϵ)T < t≤ αd,iT,

Yj,t(1) = Yj,t(0) = 0=⇒ Yj,t(1) = Yj,t(0) =B,αd,jT < t≤ (αd,j + ϵ)T.

By doing so, for each unit l /∈ {i, j}, we transfer part of the covariance Cov(τ̂i, τ̂l) to the covariance

Cov(τ̂j, τ̂l). We analyze them accordingly.

Change of Cov(τ̂j, τ̂l): Adding ϵT periods of B to the unit j gives the change of covariance

1

(T − 1)2

(αd,j+ϵ)T∑
t=αd,jT

2(q+j,l(0)+ q−j,l(0))+ 4(q+j,l(1)+ q−j,l(1))+ 2(αd,lT − 3)(q+j,l(2)+ q−j,l(2)).
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As T →∞, since q+j,l(2)+ q−j,l(2) =
E[0.25Kl,l−Kj,l(−8 ·Kj,l0.25

Kj,l)]

E[0.25Kl,l ] ·T
+ o(1/T ), this becomes

2ϵT

(T − 1)2

(
E[0.25Kl,l−Kj,l ]

E[0.25Kl,l ]
− E[0.25Kl,l−Kj,l1{Kj,l = 0}]

E[0.25Kl,l ]

)
+

4ϵT

(T − 1)2

(
E[0.25Kl,l−Kj,l0.5Kj,l ]

E[0.25Kl,l ]
− E[0.25Kl,l−Kj,l1{Kj,l = 0}]

E[0.25Kl,l ]

)
+

ϵT

(T − 1)2
E[0.25Kl,l−Kj,l(−8 ·Kj,l0.25

Kj,l)]

E[0.25Kl,l ]
+ o(1/T )

=
ϵ

T

E[0.25Kl,l−Kj,l(2+4 · 0.5Kj,l − 61{Kj,l = 0})− 16 ·αd,lKj,l0.25
Kj,l ]

E[0.25Kl,l ]
+ o(1/T ).

Notice that for any K, we have

0.25Kl,l−Kj,l(2+4 · 0.5Kj,l − 61{Kj,l = 0}− 16 ·αd,lKj,l0.25
Kj,l)≥ 0,

which implies that the change of covariance is non-negative.

Change of Cov(τ̂i, τ̂l): Removing ϵT periods of B from the unit i gives the change of covariance

− 1

(T − 1)2

αd,iT∑
t=(αd,i−ϵ)T

2αd,lT (q
+
i,l(2)+ q−i,l(2))≥ 0

Figure 17 Transforming outcomes of units i and j.

The discussion above handles the impact of our transformation on the covariance of units other

than i and j. Then it remains to consider the change of Cov(τ̂i, τ̂i), Cov(τ̂j, τ̂j) and Cov(τ̂i, τ̂j), which

is illustrated in Figure 17 for instance. When making the transformation, the covariance between

blue outcomes and black outcomes remains unchanged due to the symmetry of units, and the only

part we need to study is the covariance between blue outcomes and red outcomes, which is precisely

ϵT

(T − 1)2
2(q+i,j(0)+ q−i,j(0))+ 4(q+i,j(1)+ q−i,j(1))+ 2((αd,i −αd,j − ϵ)T − 3)(q+i,j(2)+ q−i,j(2))

− ϵT

(T − 1)2
2(αd,i −αd,j − ϵ)T (q+i,i(2)+ q−i,i(2)).

Again, following the same argument as before, we can show it is non-negative. Therefore, the

transformation does not decrease the total variance.

To prove that all threshold parameters must be equal, we do the following. Suppose αd,j′ is the

second smallest threshold and αd,i′ is the second largest threshold. Let ϵ=min{αd,i−αd,i′ , αd,j′−αd,j}.
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After doing the transformation above, we will update the threshold parameters so that two units

will have equal smallest(or largest) threshold parameters. Then we could “merge” these two units for

later transformation. For instance, if αd,j′ = αd,j , then for the next step, we will add ϵT
2

periods of B

to both units i and j. The analysis above can still be applied and we keep doing the transformation

until all units have the same threshold parameter αd satisfying the structure in (8).

Finally, we will derive the size of αd in the worst-case outcomes. Suppose that we are given the

outcomes that satisfy the worst-case structure with threshold αdT . Let us investigate the change of

variance if we add one more period with B for all units, which is precisely

1

N 2(T − 1)2

N∑
i=1

N∑
j=1

2(q+i,j(0)+ q−i,j(0))+ 4

αdT∑
δt,t′=1

(q+i,j(δt,t′)+ q−i,j(δt,t′))


=

1

N 2(T − 1)2

N∑
i=1

N∑
j=1

(
2(q+i,j(0)+ q−i,j(0))+ 4(q+i,j(1)+ q−i,j(1))+ 4(αdT − 3)(q+i,j(2)+ q−i,j(2))

)
.

As T →∞, this could be simplified as

1

N 2T 2

N∑
i=1

N∑
j=1

E[0.25Kj,j−Ki,j (2+4 · 0.5Ki,j − 32 ·αdKi,j0.25
Ki,j − 61{Ki,j = 0})]

E[0.25Kj,j ]
+ o(1/T 2).

One can check this by revisiting the switchback experiments (i.e. d =D) when Ki,j ≡ 1. When

αd = 0.5, the change of variance is zero so it hits the worst-case variance as we showed in Theorem 2.

In general, to derive the value of αd for attaining the asymptotically worst-case variance, we simply

solve the following linear equation:

αd

N∑
i=1

N∑
j=1

E[0.25Kj,j−Ki,j16Ki,j0.25
Ki,j ]

E[0.25Kj,j ]
=

N∑
i=1

N∑
j=1

E[0.25Kj,j−Ki,j (1+2 · 0.5Ki,j − 31{Ki,j = 0})]
E[0.25Kj,j ]

.

Since we consider the scaling regime when N →∞, units are homogeneous with equal E[0.25Kj,j ].

This leads to

αd =min


N∑
i=1

N∑
j=1

E[0.25Kj,j−Ki,j (1+2 · 0.5Ki,j − 31{Ki,j = 0})]

N∑
i=1

N∑
j=1

E[0.25Kj,j16Ki,j]

,1

 .

Finally, we compute the asymptotically worst-case variance

Var
η
†
d
(τ̂) =

αdB
2

N 2T

N∑
i=1

N∑
j=1

E[4Ki,j−Kj,j (2+4 · 2−Ki,j − 16 ·αdKi,j4
−Ki,j − 61{Ki,j = 0})]

E[4−Kj,j ]
.
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C.6. Proof of Theorem 4

Let us first define

ξT (t, t
′, s, s′) =


4T−8

(T−1)(T−3)
Yt′(1) t′ = t+1,2≤ s ̸= s′ ≤ T+1

2
,

− 4T−8
(T−1)(T−3)

Yt′(0) t′ = t+1, T+1
2

≤ s ̸= s′ ≤ T,

0 otherwise.

(33)

Let π be a random permutation that shuffles the original indices:

{2,3, . . . , T − 1, T}→ {π(2), π(3), . . . , π(T − 1), π(T )}.

Given these, we can rewrite the estimator as

τ̂ =
T∑

t̸=t′

ξT (t, t
′, π(t), π(t′)). (34)

where
T∑

t ̸=t′
indicates

T∑
t=2

T∑
t′=2:t̸=t′

. To derive the normal approximation of this, we adopt Stein’s method

of exchange pairs for double-index permutation statistics proposed in Reinert and Röllin (2009).

Specifically, they construct an exchangeable pair as follows. Let t and t′ be distributed uniformly

over 1, . . . , T − 1 conditioned that t ̸= t′. Define the permutation π′ = (π(t)π(t′)) ◦π so that π′ is the

permutation where π′(s) = π(s) for all k ̸= t, t′, and where π′(t) = π(t′) and π′(t′) = π(t). Let V1 = τ̂ ,

and we define the other two random variables for proof purposes:

V2 =
1

T − 1

T∑
t=2

T∑
s,s′

ξT (t, s, π(t), s
′), V3 =

1

T − 1

T∑
t=2

T∑
s,s′

ξT (s, t, s
′, π(t)).

Then we have V ′ = (V ′
1 , V

′
2 , V

′
3 ) =V (π′) to be the estimators with the exchange pair. For the random

exchange pair (t, t′), we have the following equations:

V ′
1 −V1 = ξT (t, t+1, π(t′), π(t+1))+ ξT (t

′, t′ +1, π(t), π(t′ +1))

+ ξT (t− 1, t, π(t− 1), π(t′))+ ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+1, π(t), π(t+1))− ξT (t
′, t′ +1, π(t′), π(t′ +1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′),

V ′
2 −V2 =

1

T − 1

T∑
s=2

ξT (t, t+1, π(t′), s)+
1

T − 1

T∑
s=2

ξT (t
′, t′ +1, π(t), s)

− 1

T − 1

T∑
s=2

ξT (t, t+1, π(t), s)− 1

T − 1

T∑
s=2

ξT (t
′, t′ +1, π(t′), s),

V ′
3 −V3 =

1

T − 1

T∑
s=2

ξT (t− 1, t, s, π(t′))+
1

T − 1

T∑
s=2

ξT (t
′ − 1, t′, s, π(t))

− 1

T − 1

T∑
s=2

ξT (t− 1, t, s, π(t))− 1

T − 1

T∑
s=2

ξT (t
′ − 1, t′, s, π(t′)).
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They further satisfy that

EV (V ′ −V ) =−ΛV +R (35)

where

Λ=
2

T − 2

 2T−3
T−1

−1 −1
0 1 0
0 0 1

 , R=

− 2

(T − 1)(T − 2)

T∑
t,t′

ξT (t, t
′, π(t′), π(t)),0,0

 .

To be self-contained, we re-state the following theorem to show the asymptotic normality.

Theorem 2 in Reinert and Röllin (2009). Assume that (V ,V ′) is an exchangeable pair of random

vectors such that

E[V ] = 0, E[V V t] =Σ,

with Σ∈R3×3 symmetric and positive definite. If (35) holds and Z has a 3-dimensional standard

normal distribution, we have for every three times differentiable function h,∣∣Eh(V )−Eh
(
Σ1/2Z

)∣∣≤ |h|2
4
A+

|h|3
12

B+

(
|h|1 +

3

2
∥Σ∥1/2|h|2

)
where

γ(i) =
3∑

m=1

∣∣∣(Λ−1
)
m,i

∣∣∣
A=

3∑
i,j=1

γ(i)
√

VarEV (V ′
i −Vi)

(
V ′
j −Vj

)
,

B =
3∑

i,j,k=1

γ(i)E
∣∣(V ′

i −Vi)
(
V ′
j −Vj

)
(V ′

k −Vk)
∣∣ ,

C =
3∑

i=1

γ(i)
√
VarRi.

To apply the theorem, we first note that E[V ] = 0 may not hold. Nevertheless, we can simply

de-mean V by E[V ], and thus the condition is satisfied. Next, it is easy to see γ =O(T ) and we

need to characterize A,B,C using (33):

• A: Let us use the analysis of VarEV (V ′
1 −V1)

2 as instance. First of all, we have

EV (V ′
1 −V1)

2 =
1

(T − 1)(T − 2)

T∑
t̸=t′

(V1(π
′)−V1))

2

=
1

(T − 1)(T − 2)

T∑
t̸=t′

(ξT (t, t+1, π(t′), π(t+1))+ ξT (t
′, t′ +1, π(t), π(t′ +1))

+ ξT (t− 1, t, π(t− 1), π(t′))+ ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+1, π(t), π(t+1))− ξT (t
′, t′ +1, π(t′), π(t′ +1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′)))2.
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Let π′ be the permutation with the exchange pair t, t′ and π′′ be the permutation with the

exchange pair s, s′. To analyze the variance of EV (V ′
1 −V1)

2, it suffices to see that

Cov((V1(π
′)−V1))

2, (V1(π
′′)−V1))

2) =O

(
1

T 4

)
.

This further leads to

√
VarEV (V ′

1 −V1)2 =O

(
1

T 2

)
Following the same procedure, we can obtain that

√
VarEV (V ′

i −Vi)
(
V ′
j −Vj

)
=O

(
1

T 2

)
.

• B: Let us use the analysis of E[|(V ′
1 − V1)

3|] as instance. We take the conditioning on the

exchange pair (t, t′), which gives

E[|(V ′
1 −V1)

3|] = 1

(T − 1)(T − 2)

T∑
t̸=t′

E[|(ξT (t, t+1, π(t′), π(t+1))+ ξT (t
′, t′ +1, π(t), π(t′ +1))

+ ξT (t− 1, t, π(t− 1), π(t′))+ ξT (t
′ − 1, t′, π(t′ − 1), π(t))

− ξT (t, t+1, π(t), π(t+1))− ξT (t
′, t′ +1, π(t′), π(t′ +1))

− ξT (t− 1, t, π(t− 1), π(t))− ξT (t
′ − 1, t′, π(t′ − 1), π(t′)))3|]≤

(
8B

T

)3

=O

(
1

T 3

)

Following the same procedure, we can obtain that E
∣∣(V ′

i −Vi)
(
V ′
j −Vj

)
(V ′

k −Vk)
∣∣=O

(
1

T 3

)
.

• C: Since R2 =R3 = 0, we simply need to consider R1.

√
VarR1 =

2

(T − 1)(T − 2)

√√√√√Var

 T∑
t ̸=t′

ξT (t, t′, π(t′), π(t))


=

2

(T − 1)(T − 2)

√
Var (V1) =O

(
1

T 2.5

)
Putting A,B,C together, we have

∣∣Eh(V )−Eh
(
Σ1/2Z

)∣∣=O

(
1

T

)
.

Note that Σ
1/2
1,1 =

√
Varη†(τ̂) has an order of 1√

T
. If we normalize V1 by the standard deviation, this

leads to the typical rate of convergence O
(

1√
T

)
for asymptotic normality.
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Figure 18 The 2× 2 example

C.7. Proof of Proposition 3

We first write the original variance decomposition (3):

Varη†(τ̂ |Y) =
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
− 4Sct +Rct − 2τ 2

T − 2

)
Removing the non-positive parts gives

Varη†(τ̂ |Y)≤
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
+Rct

)
Next, because of the non-negative outcomes, we have

Rct =

∑T

t=2 τ
2
t

(T − 1)
≤
∑T

t=2 Y
2
t (1)+Y 2

t (0)

(T − 1)
.

This finally leads to the upper bound

Varη†(τ̂ |Y)≤
(T − 2)

(T − 3)(T − 4)

(
8(T − 4) (St +Sc)

T − 3
+

∑T

t=2 Y
2
t (1)+Y 2

t (0)

(T − 1)

)
Following the similar argument in Imbens and Rubin (2015), we obtain an unbiased estimate for the

upper bound

σ̂2
U =

(T − 2)

(T − 3)2(T − 4)

(
8(T − 4)

(
Ŝt + Ŝc

)
+

4(T − 2)
∑T

t=2 Y
2
t 1{wt−1 =wt}

(T − 1)

)

where Ŝt, Ŝc are the sample estimates and Yt is the observed outcome.

C.8. Proof of Corollary 2

Central Limit Theorem To do the inference over the panel, we follow the proof idea of the

normal approximation C.6 derived for the single-unit case. Let us consider the toy example (Figure 18)

to illustrate how we extend the double-index permutation statistics in (33). We construct the random

permutations for each unit:

{2,3, . . . , T − 1, T}→ {πi(2), πi(3), . . . , πi(T − 1), πi(T )}.

and we set π(t) = (π1(t), π2(t), π3(t), π4(t)). We rewrite the global average treatment effect as

τ̂ =
1

4

4∑
i=1

T∑
t̸=t′

ξiT (t, t
′,π(t),π(t′))
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where

ξiT (t, t
′,s,s′) =


(4T−8)3

(T−1)(T−3)3
Yi,t′(1) t′ = t+1,2≤ sj ̸= s′j ≤ T+1

2
,∀j ∈N (i),

− (4T−8)3

(T−1)(T−3)3
Yi,t′(0) t′ = t+1, T+1

2
≤ sj ̸= s′j ≤ T,∀j ∈N (i),

0 otherwise.

(36)

We define V as follows:

V1 =
1

4

4∑
i=1

T∑
t ̸=t′

ξiT (t, t
′,π(t),π(t′))

V2 =
1

4(T − 1)

4∑
i=1

T∑
s=2

T∑
t̸=t′

ξiT (s, t,π(s),π(t
′))

V3 =
1

4(T − 1)

4∑
i=1

T∑
s=2

T∑
t̸=t′

ξiT (t, s,π(t
′),π(s))

Now for the exchange pair (t, t′), we do the swapping for all permutations such that π′(t) =π(t′) and

we define V ′ accordingly. After some calculations, we could derive the same structure EV (V ′−V ) =

ΛV +R as in the single-unit case. Since ξiT (t, t′,s,s′) preserves the same order 1
T

as in the single-unit

case, following the same argument in A.3 gives:∣∣Eh(V )−Eh
(
Σ1/2Z

)∣∣=O

(
1

T

)
. (37)

We can easily generalize the argument to more units with any clustering. The only difference is that

we need to calibrate ξiT (t, t′,s,s′) based on its propensity score P(WN (i),t−1:t = 1). Finally, we have

τ̂ − τ√
Var

η
†
d
(τ̂ |Y)

D→N (0,1), as T →∞.

Variance Estimation Similar to the single-unit case, we further derive a conservative variance

estimate for the panel setting. To this end, we write down the variance as:

Var
η
†
d
(τ̂ |Y) = 1

N 2

N∑
i=1

N∑
j=1

θ0i,j(K,T )(S
t
i,j +Sc

i,j)

+
1

N 2

N∑
i=1

N∑
j=1

θ1i,j(K,T )S
ct
i,j

+
1

N 2

N∑
i=1

N∑
j=1

θ2i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t(1)+Yi,t(0)Yj,t(0))

+
1

N 2

N∑
i=1

N∑
j=1

θ3i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t(0)+Yi,t(0)Yj,t(1)).

+
1

N 2

N∑
i=1

N∑
j=1

θ4i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t+1(1)+Yj,t(1)Yi,t+1(1)+Yi,t(0)Yj,t+1(0)+Yj,t(0)Yi,t+1(0))

+
1

N 2

N∑
i=1

N∑
j=1

θ5i,j(K,T )

T − 1

T∑
t=2

(Yi,t(1)Yj,t+1(0)+Yj,t(0)Yi,t+1(1)+Yi,t(0)Yj,t+1(1)+Yj,t(1)Yi,t+1(0)).
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In order to provide an upper bound for the variance, we need to analyze the sign of all coefficients.

We first prove that θ1i,j(K,T )≤ 0. To see this, it suffices to show that

E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j ]≥E[λK(j,j)
0 ].

We derive this inequality by conditioning on Ki,j. When Ki,j = 0, we have

E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j |Ki,j = 0] =E[λKj,j
0 |Ki,j = 0].

When Ki,j ≥ 1, as λ3λ4 ≥ λ0, we have

E[λKj,j−Ki,j
0 (λ3λ4)

Ki,j |Ki,j ≥ 1]≥E[λKj,j
0 |Ki,j ≥ 1].

Putting two scenarios together, we show that θ1i,j(K,T )≤ 0.

We then prove that θ2i,j(K,T )≥ 0, θ3i,j(K,T )≤ 0, θ4i,j(K,T )≤ 0, θ5i,j(K,T )≥ 0. Let us take θ3i,j(K,T )

as an example, and the argument for the remaining ones are almost the same. To see θ3i,j(K,T )≤ 0,

it suffices to show that

T − 1

2
E[λKj,j

0 ]−E[λKj,j−Ki,j
0 1{Ki,j = 0}]− T − 3

2
E[λKj,j−Ki,j

0 (λ3λ4)
Ki,j ]≤ 0.

We take the conditioning on Ki,j. When Ki,j = 0, LHS becomes

T − 1

2
E[λKj,j

0 |Ki,j = 0]−E[λKj,j
0 |Ki,j = 0]− T − 3

2
= 0.

When Ki,j ≥ 1, LHS becomes

T − 1

2
E[λKj,j

0 |Ki,j ≥ 1]− T − 3

2
E[λKj,j−Ki,j

0 (λ3λ4)
Ki,j |Ki,j ≥ 1]

<
T − 1

2
E[λKj,j

0 |Ki,j ≥ 1]− T − 1

2
E[λKj,j

0 |Ki,j ≥ 1] = 0

where the inequality holds because
λ3λ4

λ0

=
(T − 1)(T − 2)

(T − 3)(T − 4)
>

(T − 1)

(T − 3)
. Putting two scenarios together

by the tower rule, we prove that θ3i,j(K,T )≤ 0.

Now we are ready to derive an upper bound for the variance. First of all, unlike the single-unit case

where the variance of treatment effect is definitely non-negative, we can not guarantee the covariance

of treatment effect Sct
i,j between units i and j is non-negative. This could be an assumption if one

finds it reasonable in the business context. For example, for both units, the revenue gains of a new

algorithm might be high in peak hours and low in non-peak hours. We impose this assumption first

to give a variance estimate and get back later to discuss the case when it does not hold.

For the remaining terms with positive coefficients, we use the basic inequality to obtain an upper

bound, e.g.

Yi,t(1)Yj,t(1)≤
Y 2
i,t(1)+Y 2

j,t(1)

2
.
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For the terms with negative coefficients, we use the non-negativity to obtain an upper bound, e.g.

−Yi,t(1)Yj,t(1)≤ 0.

Finally, we obtain the following upper bound of the variance:

Var
η
†
d
(τ̂ |Y)

≤ 1

N 2

N∑
i=1

N∑
j=1

(
θ0i,j(K,T )(S

t
i,j +Sc

i,j)+
θ2i,j(K,T )+ 2θ5i,j(K,T )

T − 1

T∑
t=2

Y 2
i,t(1)+Y 2

i,t(0)+Y 2
j,t(1)+Y 2

j,t(0)

2

)
.

Using the same technique in the single-unit case, we construct the following unbiased estimate:

σ̂2
U =

1

N 2

N∑
i=1

N∑
j=1

θ0i,j(K,T )(Ŝ
t
i,j + Ŝc

i,j)

+
1

N 2

N∑
i=1

N∑
j=1

θ2i,j(K,T )+ 2θ5i,j(K,T )

2(T − 1)

T∑
t=2

(
Y 2
i,t1{wN (i),t−1:t ∈ {1,0}}
P(WN (i),t−1:t = 1)

+
Y 2
j,t1{wN (j),t−1:t ∈ {1,0}}
P(WN (j),t−1:t = 1)

)
where

Ŝt
i,j =

T∑
t=2

(
Yi,t−1 +Yi,t − 2

∑T
t′=2

Yi,t·1{wN(i),t′−1:t′=1}∑T
t′=2

1{wN(i),t′−1:t′=1}

)(
Yj,t−1 +Yj,t − 2

∑T
t′=2

Yj,t·1{wN(j),t′−1:t′=1}∑T
t′=2

1{wN(j),t′−1:t′=1}

)
1{wN (i)∪N (j),t−2:t = 1}

4

(
T∑

t=2

1{wN (i)∪N (j),t−2:t = 1}− 1

)
and Ŝc

i,j is defined similarly.

Suppose the assumption on non-negative covariance of treatment effect is not valid, given that

Sct
i,j between two specific units is inestimable, we need some reformulation. In particular, we write

Sct
i,j =S

c
i,j +St

i,j −
1

T − 1

T∑
t=2

(
Yi,t(1)+Yi,t+1(1)

2
−Y i(1)

)(
Yj,t(0)+Yj,t+1(0)

2
−Y j(0)

)

− 1

T − 1

T∑
t=2

(
Yj,t(1)+Yj,t+1(1)

2
−Y j(1)

)(
Yi,t(0)+Yi,t+1(0)

2
−Y i(0)

)
=Sc

i,j +St
i,j +Y i(1)Y j(0)+Y i(0)Y j(1)

− 1

4(T − 1)

T∑
t=2

(Yi,t(1)Yj,t(0)+Yi,t+1(1)Yj,t(0)+Yi,t(1)Yj,t+1(0)+Yi,t+1(1)Yj,t+1(0))

− 1

4(T − 1)

T∑
t=2

(Yj,t(1)Yi,t(0)+Yj,t+1(1)Yi,t(0)+Yj,t(1)Yi,t+1(0)+Yj,t+1(1)Yi,t+1(0)) .

Given that θ1i,j(K,T )≤ 0, we have a new upper bound

Var
η
†
d
(τ̂ |Y)≤ 1

N 2

N∑
i=1

N∑
j=1

(
(θ0i,j(K,T )+ θ1i,j(K,T ))(S

t
i,j +Sc

i,j)
)

+
1

N 2

N∑
i=1

N∑
j=1

θ2i,j(K,T )+ 2θ5i,j(K,T )− θ1i,j(K,T )

T − 1

T∑
t=2

Y 2
i,t(1)+Y 2

i,t(0)+Y 2
j,t(1)+Y 2

j,t(0)

2
,

for which an unbiased estimate can be constructed as above.
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