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Data-driven targeted interventions have become a powerful tool for organizations to optimize business out-

comes by utilizing individual-level data from experiments. A key element of this process is the estimation

of Conditional Average Treatment Effects (CATE), which enables organizations to effectively identify dif-

ferences in customer sensitivities to interventions. However, with the growing importance of data privacy,

organizations are increasingly adopting Local Differential Privacy (LDP)—a privacy-preserving method

that injects calibrated noise into individual records during the data collection process. Despite its privacy-

protection benefits, we show that LDP can significantly compromise the predictive accuracy of CATE models

and introduce biases, thereby undermining the effectiveness of targeted interventions. To overcome this

challenge, we introduce a model auditing and calibration approach that improves CATE predictions while

preserving privacy protections. Built on recent advancements in cross-fitting, gradient boosting, and multi-

calibration, our method improves model accuracy by iteratively correcting errors in the CATE predictions

without the need for data denoising. As a result, we can improve CATE predictions while maintaining the

same level of privacy protection. Furthermore, we develop a novel local learning with global optimization

approach to mitigate the bias introduced by LDP noise and overfitting during the error correction process.

Our methodology, validated with simulation analyses and two real-world marketing experiments, demon-

strates superior predictive accuracy and targeting performance compared to existing methods and alternative

benchmarks. Our approach empowers organizations to deliver more precise targeted interventions while com-

plying with privacy regulations and concerns.

Keywords : targeted intervention, conditional average treatment effect estimation, differential privacy,

model calibration, gradient boosting
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1. Introduction

In the era of big data and advanced analytics, data-driven targeted interventions have become a

powerful tool for organizations. Leveraging randomized controlled experiments and individual-level

data, organizations can determine “who to target” based on observed individual characteristics,

which significantly enhances the effectiveness and efficiency of their interventions. Fundamental
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to these personalized interventions is the estimation of Conditional Average Treatment Effects

(CATEs), which quantify the average difference in outcomes between treated and untreated indi-

viduals with similar characteristics (Athey and Wager 2021, Hitsch et al. 2023). With compre-

hensive covariate information and accurate outcome measures, CATE estimation enables precise

and personalized decision-making. For example, in the field of marketing, CATE estimation helps

companies optimize their promotional budgets by identifying individuals who are most likely to

increase their purchases due to promotional efforts (e.g., Ascarza 2018, Lemmens and Gupta 2020,

Simester et al. 2020, Ellickson et al. 2022). This data-driven strategy allows companiess to focus

their resources on customers who respond most positively to interventions, thereby enhancing their

return on investment.

However, as organizations gather user information and enhance their targeting abilities, concerns

about the collection, storage, and safety of individual data are escalating. These concerns are shared

by both consumers and regulators, highlighting the urgent need for advanced technologies that can

ensure data confidentiality. While traditional privacy protection methods, such as anonymization

and de-identification, have been employed by most organizations, recent research and real-world

attacks have exposed their vulnerabilities, especially when faced with sophisticated adversaries

with access to auxiliary information (e.g., Sweeney 1997, Narayanan and Shmatikov 2008, Acquisti

and Gross 2009, Cohen 2022).

In response to these challenges, Differential Privacy (DP) (Dwork 2006) has emerged as a robust

solution, adopted by leading companies and organizations. However, DP was originally designed

to ensure privacy through a trusted central data curator, such as the US Census Bureau (Kenny

et al. 2021), and did not account for situations where data curators might not be reliable (e.g., an

organization suffering a data leak or misuse of its data). In these situations, it becomes necessary for

individuals to protect their personal data before sharing it. To address this need, Local Differential

Privacy (LDP) (Kasiviswanathan et al. 2011) has been proposed as an individual privacy protection

mechanism that does not rely on a trusted curator. LDP enables data owners (e.g., users) to protect

their data before it is shared with a central data curator (e.g., firms), thus ensuring privacy locally.

This is achieved by introducing calibrated noise into individual data entries before they are stored in

a database, making it challenging for attackers to extract precise information for re-identification,

even with access to the raw data. The adoption of LDP by major technology firms such as Apple

(Apple 2017) and Google (Erlingsson et al. 2014) underscores its importance in modern privacy

protection and has stimulated extensive discussions among business practitioners (Yu and Smith

2018, Forbes 2022).

While LDP provides strong privacy guarantees, it also presents significant challenges for CATE

estimation and targeted interventions. The random noise injected by LDP mechanisms can obscure
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individual characteristics and the outcome of interest, both of which are essential to understanding

differences in individual sensitivity toward an intervention. As a result, the noise intended to

enhance privacy can reduce the precision of CATE estimates and even introduce bias. This can

undermine organizations’ ability to implement effective targeted interventions, as the very measures

taken to preserve privacy can inadvertently compromise the quality of the data.

The objectives of this research are twofold. First, we examine the impact of local differential

privacy (LDP) on the performance of state-of-the-art conditional average treatment effect (CATE)

models. Our theoretical analysis shows that when LDP is used to protect the covariates, even

unbiased CATE estimators (when estimated using non-protected experiment data) can exhibit

heterogeneous bias across individuals with different covariates. This bias is particularly pronounced

in highly non-linear CATE models, which presents a significant challenge for advanced machine

learning techniques for CATE estimation, as they are specifically designed to uncover complex

relationships in the data. On the other hand, when LDP is applied to protect the outcome of

interest, an unbiased CATE model remains unbiased, but its variance will scale with the variance

of the injected noise. This increase in variance introduces instability into CATE models, leading

to less effective targeting policies. These findings imply that organizations would not necessarily

get an effective targeting policy with LDP-protected data due to the increased bias and variance

in CATE models, even when applying state-of-the-art methods on a large experiment dataset.

Second, we introduce the Model Auditing and Calibration approach, a post-processing method

designed to enhance the predictive performance of existing CATE models while maintaining the

same privacy guarantees. This solution utilizes an iterative adjustment procedure, commonly known

as boosting, to refine the initial model’s predictions based on their errors. Our approach addresses

three major challenges that arise when applying boosting to CATE estimation with data protected

by LDP. Firstly, since the true CATE is not directly observable, we propose to use a valid proxy of

CATEs, such as Robinson’s transformation, to provide a learning target for the boosting algorithm.

Secondly, correcting predictions using the proxy CATE can introduce additional bias, as the proxy

CATE may be severely biased due to the influence of the LDP noise. To overcome this problem,

we propose a local learning strategy that focuses on the subgroup most likely to yield a significant

improvement in accuracy. This approach enhances the efficiency of error correction by specifically

utilizing individuals who are informative for reducing bias. Lastly, adaptively learning from those

subgroups can result in overfitting bias. Therefore, we propose a global optimization approach that

minimizes the error over the entire population to set the adjustment scale for initial predictions.

This strategy mitigates the overfitting bias that may be introduced by local learning, resulting in

more accurate CATE estimation.
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Through extensive analyses using both simulated and real-world datasets, we present robust

evidence supporting the effectiveness of our proposed method when the data are protected by

LDP. By constructing scenarios where the covariates and the outcome variable are protected by

LDP, we showcase that our proposed solution significantly reduces bias and enhances the overall

accuracy of CATE models, thereby leading to more effective targeting policies. Beyond its improved

effectiveness, there are several compelling reasons for firms to implement our proposed solution.

First and foremost, our method does not require firms to denoise the LDP-protected data, ensuring

that the privacy guarantee of LDP remains uncompromised. Second, our approach is cost-efficient

as it circumvents the need for collecting additional experiment data to boost accuracy. Last but

not least, our solution can be readily implemented using standard machine learning models and

existing software packages, enabling firms to swiftly and efficiently deploy the model.

Our research makes three key contributions to the existing literature. Substantively, we provide

comprehensive evidence, including theoretical analyses, simulations, and empirical demonstrations,

to understand the impact of LDP on CATE estimation and targeting. Our study is the first

to address this issue, emphasizing the need for systematic evaluation across various data-driven

marketing practices. Methodologically, we introduce a novel method that improves the accuracy

of CATE models on data protected by LDP (and more generally, in the presence of noisy data).

This method synergistically combines concepts from causal inference, boosting, model calibration,

and multi-group fairness, and effectively reduces bias in CATE estimation when the experiment

data is protected by LDP. From a managerial perspective, our research provides decision-makers

with an effective pathway to address the accuracy loss when implementing privacy-protection

mechanisms. Our solution offers a practical tool for marketers to enhance targeting performance

while maintaining the same level of privacy guarantees. Furthermore, we showcase the potential

of post-processing as a promising approach to expand the Pareto frontier beyond the privacy-

accuracy trade-off. This highlights the practical relevance of our work and provides direction for

future methodological research on various marketing challenges involving privacy-protected data.

This paper is structured as follows. Section 2 outlines the connections to existing literature.

Section 3 provides a theoretical examination of the impact of LDP on popular CATE models.

Section 4 introduces the proposed solution and discuss its benefits. We evaluate the empirical

performance of the proposed solution using simulation studies in Section 5 and with two real-world

datasets in Section 6. Finally, we conclude in Section 7 with recommendations for future research.

2. Research Context and Related Literature

Our research intersects the rapidly developing fields of privacy-preserving technologies and per-

sonalized interventions. To contextualize, consider an online learning platform seeking to enhance
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course completion rates through targeted interventions. These interventions, such as personalized

email reminders, are based on a variety of factors, such as demographic information (e.g., edu-

cational background, pronouns, age) and past course records (e.g., courses passed or failed in

the past). To design an efficient targeting policy, the platform conducts a randomized controlled

experiment, with some students receiving emails and others not. Concerned about potential data

breaches, the platform anonymizes the experiment data to protect user identities. However, an

attacker with access to these anonymized data and public LinkedIn profiles could potentially de-

anonymize the data by matching the real identities on LinkedIn with the anonymized data, using

demographic information and course certificates posted on LinkedIn. This could allow the attacker

to access users’ true identities and their comprehensive historical course records in the experiment

data. Consequently, the platform may consider implementing local differential privacy (LDP) as

an additional measure to enhance the privacy protection of its users. LDP is a privacy-preserving

technology that adds noise to data to make it difficult to identify individuals. However, imple-

menting LDP can also hinder the platform’s ability to effectively target their emails, since the

noise introduced to protect privacy may degrade the quality of the data used for personalization.

This example highlights the challenges of designing personalized interventions that preserve user

privacy.

The majority of LDP literature concentrates on developing new privacy-protection mechanisms

and theoretically proving how these methods guarantee privacy (e.g., Kasiviswanathan et al. 2011,

Erlingsson et al. 2014, Ding et al. 2017). Recently, a few studies, like Niu et al. (2022), have begun

exploring methods for private CATE estimation within the centralized framework of differential

privacy. Research has also investigated the trade-off between privacy and accuracy, either within an

information-theoretic framework (Sarwate and Sankar 2014, Kalantari et al. 2018, Zhong and Bu

2022) or a statistical accuracy framework (Showkatbakhsh et al. 2018, Amin et al. 2019). Despite

the broad adoption of LDP by major tech companies, the impact of LDP data protection on

CATE estimation, along with its subsequent implications for targeted interventions, remain largely

unexplored in current literature. This research takes a pioneering step towards understanding the

influence of LDP on this important marketing practice.

Our research relates to the growing literature on targeting and CATE estimation. Prior studies

in this area have predominantly focused on developing new CATE models (e.g., Wager and Athey

2018, Künzel et al. 2019, Nie and Wager 2021, Kennedy 2020b) and applying them in various mar-

keting contexts, including customer retention strategies (Ascarza 2018, Lemmens and Gupta 2020,

Yang et al. 2023), membership subscription optimization (Simester et al. 2020, Yoganarasimhan

et al. 2022), pricing and promotions (Smith et al. 2021, Ellickson et al. 2022, Daljord et al. 2023,

Huang and Ascarza 2023), and catalog mailing campaigns (Hitsch et al. 2023). A relatively recent
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and increasingly important line of research focuses on the challenges posed by existing CATE

models in low signal-to-noise environments, which are typical when organizations employ LDP to

protect the outcome variable. For example, recent work by Huang and Ascarza (2023) has shown

that the variance of popular CATE models increases with the amount of unexplained variation in

the outcome variable. In response to this issue, they proposed a solution that leverages low-variance

signals in the data to reduce the noise in the outcome variable, thereby creating notably more effec-

tive targeting policies. Our work builds upon these contributions in two significant ways. Firstly,

we extend the theoretical investigation to situations where LDP affects not just the outcome vari-

able, but also the individual covariates. Secondly, as the solution proposed by Huang and Ascarza

(2023) is not applicable to LDP (given the absence of low-variance signals), we propose a different

approach to enhance the accuracy of CATE estimation and the effectiveness of targeting policies.

The novelty of our new method lies in its ability to achieve further accuracy in CATE predictions

without the need for additional data, such as short-term signals. This enables our approach to

function in a wider range of scenarios.

Substantively, our research aligns with the literature on covariate measurement errors, which

arises in our context when organizations inject noise into individual covariates to protect privacy.

Studies such as Chesher (1991) and Battistin and Chesher (2014) have demonstrated that mea-

surement errors in covariates can introduce bias into the estimation of regression coefficients and

treatment effects. Existing bias correction methods primarily adopt two strategies. The first strat-

egy utilizes a small validation set containing both noisy and clean variables to recover the error

distribution, which is then used to adjust parameter estimates derived from a larger dataset with

only noisy variables (e.g., Bound et al. 1989, Hsiao 1989, Carroll et al. 1999, Wang and Sulli-

van Pepe 2000, Chen et al. 2005, Hu and Ridder 2012, Yang et al. 2022). However, this method is

less than ideal in the context of privacy protection, as the collection of actual data from a small sub-

set of individuals can expose them to privacy risks. The second common approach treats the true

covariates as latent variables and recovers them using instrumental variables (e.g., Hausman et al.

1991, Newey 2001, Schennach 2007, Hu and Schennach 2008) or repeated measurements of noisy

variables (e.g., Li 2002, Schennach 2004a,b, Agarwal and Singh 2021). However, these approaches

require relatively strong assumptions, such as the availability of instrumental variables or repeated

measurements, which may not be applicable in many real-world situations. Complementing the

existing literature, we provide a comprehensive theoretical and empirical analysis of the impact of

covariate measurement errors on CATE estimation. We also propose a solution that does not rely

on the existence of clean data, instrumental variables, or repeated measurements.

Methodologically, our research finds its roots in the literature on calibration, a process aimed

at aligning predicted scores from a machine learning model with observed outcomes (Lichtenstein
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et al. 1977, Platt et al. 1999, Zadrozny and Elkan 2002, 2001, van der Laan et al. 2023). This

concept has been extended to address multi-group fairness by ensuring that predicted probabilities

are well-calibrated for all computationally identifiable subgroups (Hébert-Johnson et al. 2018,

Burhanpurkar et al. 2021). Building on this idea, Kim et al. (2019) developed a boosting algorithm

that iteratively refines predictions by focusing on specific subgroups where the classification model

underperforms and stops when the desired accuracy level is reached for each subgroup. In our

work, we extend this framework to CATE estimation and introduce novel techniques to identify key

subgroups and prevent overfitting. As we demonstrate in this research, these advances are crucial

for ensuring accurate CATE predictions.

3. Problem: Impact of LDP on CATE Estimation

We begin by studying the impact of LDP on CATE estimation. We investigate two realistic sce-

narios: (i) when the covariates are protected by LDP and (ii) when the outcome of interest is

protected by LDP. Before doing so, we first characterize the state-of-the-art CATE models, such as

T-learners and Causal Forests, as these are the class of models that we focus on in our theoretical

investigation.

3.1. Setup for CATE Estimation

Consider a decision maker aiming to improve a specific outcome (Yi) through an intervention with

two treatment conditions (Wi P t0,1u). The decision maker hypothesizes that the intervention could

potentially alter the value of Yi for each individual i, but the impact of this intervention may vary

among individuals with different characteristics. This heterogeneous impact is characterized as

the conditional average treatment effect (CATE), which measures the difference in expected out-

comes among individuals based on their treatment assignment and pre-treatment characteristics.

Mathematically, the CATE is defined as follows:

τpXiq ” ErYip1q|Xis ´ErYip0q|Xis,

where YipWiq is the potential outcome (Rubin 1974, Holland 1986) of individual i’s response given

the treatment condition Wi, and Xi denotes a set of pre-treatment characteristics that are believed

to moderate the treatment effect.

We assume that the decision maker conducts a randomized control experiment1 on a subset of

the individuals to estimate CATEs. We refer to the resulting outcomes (denoted as Y), treatment

assignments (denoted as W), and covariates (denoted as X ) as the “experiment data” (denoted as

D “ tY,W,X u). Within this context, the experiment data needs to satisfy the following assump-

tions:

1 For simplicity, we assume complete randomization in our analysis. However, our findings can be easily extended to
scenarios where the treatment assignment depends on the covariates Xi.
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Assumption 1. (Identification of CATE)

1. [Complete Randomization] The treatment assignment within the experiment set is independent

of their potential outcomes, i.e., Yip1q, Yip0q KK Wi.

2. [Overlap] The probability of an individual receiving (or not receiving) a treatment should always

be positive. This can be represented as follows: 0 ă PrWi “ 1|Xis ă 1 for any possible Xi.

3. [No Interference] The potential outcomes of each individual are independent of the treatments

received by other individuals, i.e., Yip1q, Yip0q KK Wj, @j ‰ i.

We examine several popular CATE models commonly used in practice, such as Causal Forests

(Wager and Athey 2018) and T-learners (Künzel et al. 2019). These models can be formally char-

acterized under the following assumption:

Assumption 2. (Class of CATE Estimators)

Let D denote the experiment data available for CATE estimation. For a given individual with

covariates xnew, the predicted CATE can be expressed as the difference between two associated

outcome models, i.e., pτpxnewq “ pµ1pxnewq ´ pµ0pxnewq. The outcome models can be expressed as a

weighted average of indivdual outcomes, given by:

pµwpxnewq “
ÿ

iPIo:Wi“w

pℓwi pxnew|DℓqYi,

where pℓwi pxnew|Dℓq is the weight function, Dℓ denotes the information in D that is utilized to deter-

mine the weight, and Io includes individuals in D that are used to generate outcome predictions.

Furthermore, we assume that the CATE model is estimated using honest estimation (Wager and

Athey 2018), whereby pℓwi pxnew|Dℓq is derived without using the outcome information of individuals

in Io. In this case, the weight function either depends only on the covariate information, or it is

estimated using a separate dataset that does not include any information about individuals in Io.

To understand this mathematical description intuitively, consider the case of a T-learner that

employs nearest neighbors for outcome modeling. This T-learner calculates CATEs by contrasting

predictions from two separate n-nearest neighbor models: one trained on the treatment group and

the other on the control group. In this setting, the predicted CATEs can be formulated as follows:

pτpxnewq “
ÿ

i: Wi“1

1rXi P N 1
npxnewqs

n
loooooooooomoooooooooon

pℓ1i pxnew|Dℓq

Yi ´
ÿ

i: Wi“0

1rXi P N 0
npxnewqs

n
loooooooooomoooooooooon

pℓ0i pxnew|Dℓq

Yi,

where Nw
n pxnewq denotes the set of n-nearest neighbors in the experiment data with treatment

assignment Wi “ w for the new individual. Here, Io includes all individuals in the experiment data,

while Dℓ consists of the covariates for every individual in D. Note that the weight functions in this

context adhere to the honest estimation assumption since they only use covariate information.
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As demonstrated in Huang and Ascarza (2023), the class of estimators described in Assumption 2

includes a wide range of CATE models, including T-learners and S-learners with varying outcome

models (Künzel et al. 2019) and Causal Forest (Wager and Athey 2018). In our theoretical proofs,

we extend our consideration to other CATE models that incorporate adjustment functions to reduce

observed heterogeneity in outcomes, such as the R-learner (Nie and Wager 2021) and DR-learner

(Kennedy 2020a). While these models are not discussed in detail here to maintain simplicity, the

primary conclusions remain consistent for them.

3.2. Impact of LDP on CATE Estimation

3.2.1. Differentially-private Covariates. We first examine the scenario where the covari-

ates are protected by LDP. This corresponds to cases where the data collector (e.g., a firm) is inter-

ested in protecting individual data such as demographic information, location, or past interactions

with the firm that are useful for determining the targeting rule. Our analysis specifically focuses on

mechanisms featuring an additive noise structure, which includes most commonly-employed LDP

methods such as the Laplace mechanism (Dwork et al. 2006, Kasiviswanathan et al. 2011) and

response randomization (Warner 1965, Erlingsson et al. 2014).2

Let’s imagine the data collector observes individual covariates that are protected by LDP. For

an individual i in the experiment data, the noisy covariate is denoted as rXi “ Xi `ηi, where ηi is

the vector of random noises injected to the covariates. For each element ηi,p in ηi (corresponding

to the noise added to p-th covariate of individual i), we assume its k-th moment σk ” Erηk
i,ps to be

non-negative for k P N, which holds for the Laplace and randomized response mechanisms. Notably,

larger moments indicate that the noises have a more pronounced effect on the data, thus enhancing

stronger privacy protection. For simplicity, we assume that the noise distribution is consistent

across all covariates. We refer to σk as the “maximum (k-th order) privacy level” that is applied

to protect all the covariates. Similarly, we assume the data collector only has access to the noisy

covariates of a “new” individual for CATE predictions, denoted as rxnew “ xnew ` ηnew, and each

noise component adheres to the same distribution. Despite this simplified scenario, our theoretical

2 The Laplace mechanism and response randomization are two widely-used techniques to achieve LDP. The Laplace
mechanism perturbs the actual value of a numeric variable with a Laplace noise. The amount of noise is determined
by the scale parameter of the Laplace distribution, which controls the level of privacy protection. On the other
hand, response randomization is used for discrete variables. It involves a coin flip to decide whether to disclose the
true value or report a randomly chosen alternative value, and the probability of reporting the truth controls the
privacy level in this technique. These two techniques have been proven to satisfy the definition of LDP and serve
as fundamental building blocks in the design of more advanced LDP mechanisms. Note that we can reformulate the
response randomization technique as the injection of additive noise in the following way. Consider a binary variable
X. The randomized response of X with flipping probability f can be expressed as rX “ X `1pX “ 1qη1 `1pX “ 0qη0,
where ´η1 „ Bernoullipfq and η0 „ Bernoullipfq. A similar argument can be applied to the dummy transformation
of a discrete variable with multiple possible values.
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findings can be readily extended to accommodate situations with varying noise distributions across

different covariates.

Our first objective is to characterize the factors that potentially affect the bias in the CATE

models introduced by the injected noise in LDP covariates. Conceptually, introducing noise into

covariates results in two main sources of errors: (1) When predicting CATE for any new individual,

the data collector must rely on the perturbed covariates (rxnew), instead of the actual covariates

(xnew), which can lead to significant prediction errors. (2) When estimating the CATE model,

the noise injected into the experiment data will introduce measurement error biases to the weight

functions (i.e., pℓ0 and pℓ1). More formally, we can characterize these two sources of bias with the

following theorem:

Theorem 1. (Bias Analysis: Differentially-Private Covariates)

Suppose that the CATE model is an unbiased estimator of the true CATE function in the absence

of LDP protection. Further, assume that both pτ and τ satisfy the smoothness conditions detailed

in Electronic Companion EC.1.1, allowing for the use of Taylor approximation. In the scenario

described above, the potential bias in the predicted CATE can be written as

E rpτprxnewq ´ τpxnewqs « ∆τ pxnewq
loooomoooon

Bias driven by ηnew

`
ÿ

iPIo: Wi“1

∆1
i pxnewq ´

ÿ

iPIo: Wi“0

∆0
i pxnewq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Bias driven by noises injected into the experiment set

.

The bias resulting from noise injected into the covariates of the new individual is given by

∆τ pxnewq “

K
ÿ

k“1

1

k!
σktrace

`

Bk
xnew

τpxnewq
˘

looooooooooooooooomooooooooooooooooon

«τprxnewq´τpxnewq

.

The bias introduced by noises in the experimental set is given by

∆w
i pxnewq “

K
ÿ

k“1

1

k!
σktrace

´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

looooooooooooooooooooooomooooooooooooooooooooooon

”∆ℓw
i pxnewq, the expected impact on the weight

E rYis ,

where X ℓ denotes the covariate information in Dℓ.

Proof: See Electronic Companion EC.1.1.

Theorem 1 offers critical insights into the bias resulting from LDP protection. Firstly, the bias

caused by the noise added to xnew can be characterized by ∆τ pxnewq, which measures the disparity

between the true CATE values on rxnew and xnew. This term depends on (i) the magnitude of the

noise, captured by σk, and (ii) the sensitivity of the true CATE function to minor fluctuations

around xnew, captured by trace
`

Bk
xnew

τpxnewq
˘

. When the underlying structure of the true CATE
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is highly nonlinear, the k-th order derivative could be non-zero for many values of k. This can

result in a large magnitude of bias, especially when the privacy level (σk) is high. Furthermore,

this bias element is independent of the CATE model in use, as it only depends on the true CATE

function. As a result, it is an irreducible bias, meaning that it cannot be eliminated by adjusting

the CATE model. The only way to reduce this bias is to remove the noise in the covariates of the

new individual.

Secondly, the bias arising from the noise within the experiment data, ∆w
i pxnewq, is influenced by

two primary factors: (i) the scale of noise introduced into the data, i.e., σk, and (ii) the expected

sensitivities of the weight functions toward noises in Dℓ, denoted as ∆ℓw

i pxnewq. For example,

consider the previously mentioned T-learner with nearest-neighbor method. In that case, the bias

magnitude depends on the extent to which the nearest neighbors of xnew within the experiment

data may shift due to the presence of noise. Significant changes would result in a greater bias.

Notably, when a machine learning model exhibits high complexity (e.g., a small value of n for the

nearest-neighbor estimator), the average sensitivity toward the noise will increase. This observation

suggests that sophisticated machine learning models might encounter significant bias when the

covariates are protected by LDP, particularly due to their inherent high non-linearity.

Next, we investigate the effect of LDP covariate noise injection on the variance of predicted

CATEs. As with our prior analysis, our goal is to identify and characterize the factors that influence

this variance. This leads us to the following theorem:

Theorem 2. (Variance Analysis: Differentially-Private Covariates)

Under the same setting and assumptions in Theorem 1, we can approximate the variance of the

predicted CATE for a specific xnew as follows:

Var rpτprxnewqs « Var rpτpxnewqs `

K
ÿ

k“1

1

pk!q2
σ2
kVar

“

∆k
pτ pxnewq

‰

`

K
ÿ

k“1

1

k!
Var

“

ηk
i,p

‰

E
“

Γk
pτ pxnewq

‰

loooooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooooon

pAq

`

2
K
ÿ

k“1

1

k!
σkνkpxnewq

loooooooooomoooooooooon

pBq

`
ÿ

k1‰k2

1

k1!

1

k2!
σk1σk2ζk1,k2pxnewq

loooooooooooooooooomoooooooooooooooooon

pCq

.

(1)

Here, ∆k
pτ pxnewq “ trace

`

Bk
pτpxnewq

˘

captures the k-th order influence of covariate noise on

the predicted CATE, and Γk
pτ pxnewq “ trace

`

Bk
pτpxnewq˝2

˘

represents the squared perturbation

of the predicted CATE caused by LDP noise.3 The term νkpxnewq “ Cov
“

pτpxnewq,∆k
pτ

‰

cap-

tures the covariance between the predicted CATE value (estimated on non-private data) and

3
˝2 denotes the Hadamard’s (i.e., element-wise) square operator.
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the k-th order change of predicted CATEs due to injected noises. Lastly, ζk1,k2pxnewq “

Cov
“

trace
`

Bk1
pτpxnewq

˘

, trace
`

Bk2
pτpxnewq

˘‰

measures how much the different orders of predicted

CATE differences are correlated with each other.

Proof: See Electronic Companion EC.1.2.

Theorem 2 demonstrates the mixed effects of LDP covariate noise on the variance of the predicted

CATE. In Equation (1), term pAq captures the increase in variance due to the additional random-

ness introduced by LDP protection. Since all the elements in pAq are strictly positive, this term

is increasing with the magnitude of injected noise, specifically with respect to σk and Var
“

ηk
i,p

‰

.

Term pBq reflects the relationship between the predicted CATE estimated using non-private data

(had it been available) and the influence of the injected noise on these predictions. If the injected

noise tends to increase the predictions for individuals already showing a positive CATE (such that

the covariance in pBq is positive), estimating CATE on injected noise will make even more extreme

predictions. Consequently, LPD will further increase the variance of the predicted CATE. On the

other hand, if this covariance is negative, the added noise would draw the predictions towards zero,

reducing the variance of the predicted CATE. Term pCq denotes the co-movement across k1-th

and k2-th order shifts in predicted CATEs. If these shifts tend to move in the same direction (i.e.,

having positive covariance), the variance is increased with larger σk. Conversely, if the k1-th and

k2-th order fluctuations are in opposite directions (i.e., having negative covariance), they will offset

each other, leading to no increase in variance.

Together, Theorems 1 and 2 highlight the inherent challenges in quantifying (and therefore cor-

recting) the bias and variance posed by LDP protection in real-world applications. Existing methods

for correcting covariate measurement error bias without auxiliary data quantify and remove the

bias by leveraging information about the noise distribution and making parametric assumptions

about the relationship between the desired outcome and the covariates (Battistin and Chesher

2014). However, this solution is not suitable for our context for several reasons. Firstly, the extent

of the bias and variance is linked to the higher-order derivatives of the CATE models. Estimating

these derivatives poses its own set of challenges, especially when dealing with complex machine

learning models that lack straightforward analytical solutions. Moreover, the impact of injected

noises on bias and variance vary based on the specific value of xnew. Accurately estimating these

impacts may be as difficult, if not more so, than the estimation of the CATE. Lastly, even if we

derive some formulas for these higher-order derivatives for a specific CATE model, such a method

would not be generalizable to other CATE models. These observations underscore the pressing

need for a data-driven approach that can both identify individuals with potentially large prediction

errors and correct those errors for any CATE model.
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3.2.2. Differentially-private Outcome. We now turn to the scenario in which the outcome

variable is protected by LDP. This applies to cases where the data curator intends to change

individual behaviors that could be exploited by potential attackers for re-identification, such as test

scores in classes, ratings of movies on social media, or clicks on a specific advertisement. Suppose

that the focal firm only has access to the LDP-protected outcome rYipWiq ” YipWiq ` ηi, where ηi

denotes the injected noise drawn from the same distribution for all i.

In this setting, estimating CATEs is challenging due to the increased noise in the outcome

variable. This noise is directly linked to the variance of ηi, which will lead to unstable CATE models

and less accurate predictions. We formally characterize this result in the following theorem:

Theorem 3. (Bias-Variance Analysis: Differentially-Private Outcome)

Consider a CATE model (pτ) that satisfies Assumption 2 and is an unbiased estimator of the true

CATE function when there is no LDP protection. Let pτ
rY be a CATE model estimated on a the

experiment data with the LDP-protected outcome rYi “ Yi ` ηi. Then,

1. (Bias) The CATE model pτ
rY is still an unbiased estimator for the true CATE, i.e.,

Erpτ
rY pxnewqs “ τpxnewq.

2. (Variance) The variance of the predicted CATE, Varrpτ
rY pxnewqs, is bounded within a range

that scales with the variance of the introduced noise, Varrηis. More formally, there exist con-

stants C1,C2 such that C1Varrηis ď Varrpτ
rY pxnewqs ď C2Varrηis when Varrηis ą C for some C.

Mathematically, this relationship can be expressed as Varrpτ
rY pxnewqs “ ΘpVarrηisq.

Proof: See Electronic Companion EC.1.3 and EC.1.4.

Theorem 3.1 demonstrates that applying LDP to the outcome variable does not affect the consis-

tency property of consistent CATE models. However, in practice, even consistent methods (e.g.,

Causal Forest) can be biased in small-sample scenarios (Wager and Athey 2018, Athey et al. 2019).

We investigate such cases via simulation analyses (Section 5) and find that, when the CATE model

is not unbiased (due to small sample size), the bias gets amplified when the outcome variable is

protected by LDP. Specifically, the magnitude of this bias is increasing with the privacy level of

the injected noise.

Furthermore, even if the CATE model remains unbiased with a small sample, Theorem 3.2 shows

that the noise introduced by LDP will increase the variance of the CATE predictions, as both the

upper bound and lower bound of Var rpτ
rY pxnewqs are monotonically increasing in Varrηis when the

variance of the injected noise is non-trivial. This increase in variance of the predicted CATEs leads

to higher mistargeting probability, as discussed in Huang and Ascarza (2023).
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3.2.3. Summary of Theoretical Analysis. In summary, our investigation into the impact

of LDP on CATE estimation reveals complex trade-offs between privacy protection and predictive

accuracy. When covariates are protected by LDP, the introduction of noise can generate significant

biases in the estimated CATEs, leading to potentially misleading targeting decisions. On the other

hand, when the outcome variable is protected by LDP, unbiased CATE models are subject to

increased variance while they can maintain their unbiasedness. This additional noise introduces

instability into CATE models, resulting in suboptimal targeting policies.

Importantly, these complex trade-offs between privacy protection and predictive accuracy are

moderated by several factors. Most notably, the bias and variance of the CATE predictions are

individual-specific (i.e., depend on xnew), and can vary substantially across different CATE models.

These findings motivate us to develop a generic data-driven method designed to improve the

precision of CATE predictions when data is under LDP protection. This approach is designed to

accommodate complex true CATE functions and be compatible with any CATE model.

4. Solution: Debiasing by Model Auditing and Calibration

We now describe our proposed solution, which is designed to mitigate the prediction errors resulting

from the noise injected by the LDP mechanism for any CATE models.

4.1. Solution Concept

Our solution employs the concept of post-processing in machine learning, which adjusts the raw

model predictions to better fit the specific needs of the problem at hand. This technique has been

utilized in a range of contexts, including improving model interpretability and ensuring valid infer-

ence (Chernozhukov et al. 2018b), optimizing model performance (Friedman 2001), and enhancing

model transportability (Kim et al. 2022). In our case, post-processing involves refining the predic-

tions of a CATE model that has been trained on data protected by LDP, with the aim of improving

its accuracy.

Specifically, the proposed solution builds on the gradient boosting algorithm (Friedman 2001).

Our iterative algorithm that starts with an initial CATE model. At each iteration, the algorithm

calculates the residual errors, which are the differences between the model’s predictions and the

proxy values of the true CATEs. A model called the calibrator is then trained to predict these

residual errors using the covariates. The predicted residual errors are then used to adjust the initial

predictions. The algorithm further optimizes the degree of adjustment by minimizing the squared

errors between the updated predictions and the proxy CATEs. By integrating the calibrator with

the initial model, a new ensemble CATE model is formed. This process is repeated, with each

subsequent model focusing on correcting the prediction errors made by its predecessor. As a result,

a progressive improvement in the accuracy of the CATE predictions is achieved.
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As we empirically demonstrate in Sections 5 and 6, our approach can significantly reduce the

prediction error caused by the injected noise in LDP data. Unlike alternative approaches that focus

on data cleansing (i.e., pre-processing the data to remove noise) or developing new (and more

robust) CATE models, our post-processing approach offers several significant advantages:

1. It maintains the desired privacy guarantee.4 Traditional approaches for correcting measure-

ment error attempt to denoise the data and recover the true variable. However, this approach

increases the privacy risk, as it increases the chances for an attacker to identify matches

between the experiment data and their auxiliary information. In contrast, a post-processing

approach preserves the privacy of the data by leaving the LDP noise in place. This minimizes

the potential for re-identification of individuals.

2. It does not depend on additional data collection or assumptions. Many existing strategies for

bias correction in the presence of covariate measurement error rely on either (i) leveraging

auxiliary information such as a small noise-free sample (e.g., Yang et al. 2022) or instru-

mental variables (e.g., Hu and Schennach 2008), or (ii) assuming that the noisy covariates

are repeated measurements of some low-dimensional characteristics and removing noise by

constructing latent variables that approximate those characteristics (e.g., Agarwal and Singh

2021). However, the effectiveness of these approaches rests on relatively strong assumptions

and the collection of clean data, which is often infeasible, especially in the context of privacy

protection.

3. It is model-agnostic. As we demonstrate in our empirical sections, our proposed solution

enhances the performance of a wide range of CATE models, including popular models such

as meta-learners (Künzel et al. 2019), R-learner (Nie and Wager 2021), and Causal Forest

(Wager and Athey 2018). This generalizability is particularly appealing for organizations, as it

enables them to employ any off-the-shelf CATE model for the initial predictions and enhance

their accuracy and targeting performance using our post-processing algorithm.

4.2. Challenges in Algorithm Development

While gradient boosting has shown remarkable success in supervised learning problems (e.g., Chen

and Guestrin 2016), its application to CATE estimation, especially in situations with substantial

noise, presents several challenges.

Challenge 1: The inability to directly observe the true CATE makes it challenging to

establish a direct learning target for the gradient boosting algorithm.

4 It is well-established that the output of a differentially-private algorithm can be post-processed or manipulated
without compromising the privacy guarantees provided by the original algorithm (Kasiviswanathan et al. 2011, Dwork
et al. 2014). This property allows further analysis and computation to be performed on the CATE modes estimated
using LDP data while preserving its privacy guarantees.
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The direct application of gradient boosting to CATE estimation is not straightforward due to

the unobservable nature of the true CATE. Unlike traditional machine learning tasks such as

classification or regression where the target variable is directly observable, CATE, which represents

the individual-level incremental effect of an intervention, is not directly measurable (Rubin 1974).

This introduces complexities in setting a direct learning target for the gradient boosting algorithm,

which typically relies on observed targets for model construction.

Therefore, we must rely on proxy variables to approximate the true CATE. Several techniques

such as Robinson’s transformation (Nie and Wager 2021) or the doubly robust score (Kennedy

2020b) have been used to tackle this issue. In our method, we employ Robinson’s transformation

(Nie and Wager 2021) to approximate the true CATE:

qτi “
Yi ´ pmpXiq

Wi ´ pepXiq
,

where pmpXiq is a model for the conditional mean outcome ErYi|Xis, and pepXiq is a model for the

propensity score PrWi|Xis.
5 By calculating the difference between the predicted CATE and qτi, we

obtain the proxy residual qτi ´ pτpXiq that serves as the learning target for the boosting algorithm.

Challenge 2: The proxy variable derived under LDP may be severely biased due to

the injected noise. This could potentially lead the boosting algorithm to learn from

wrong signals, rather than correcting predictions based on the true error.

As highlighted in Section 3, the noise introduced through LDP can substantially impact CATE

estimators. Similarly, this noise also make qτi a biased proxy of the true CATE. To illustrate this

point, let us express the proxy variable derived under LDP as follows:

qτi “
pYi ` ηY

i q ´ pm
rY pXi `ηX

i q

Wi ´ pepXi `ηX
i q

,

where ηY
i represents the noise injected into the outcome variable, and ηX

i denotes the noises injected

into the covariates. It is clear that the variance of the proxy variable qτi increases as the variance

of ηY
i increases. Furthermore, the noise injected into Yi can also increase the bias of pm

rY when it

is a highly non-linear model like random forest (Arlot and Genuer 2014). On the other hand, the

noise ηX
i in the covariates will cause measurement error bias for the nuisance models (pm and pe).

As a result, qτi becomes a biased and/or high-variance proxy for the true CATE. In this situation,

adjusting predictions using the proxy CATE can introduce additional bias, as the proxy CATE

may be severely biased due to the influence of the LDP noise.

5 In situations where the treatment assignment is completely randomized, we can use the treatment proportion as
the propensity score instead of building a model.
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To overcome this challenge, we introduce a local learning strategy. Rather than relying on the

proxy residual error across the entire population, we direct our focus to a specific subgroup of

individuals who: (i) have a significant “true error”, and (ii) can significantly enhance the predictive

accuracy of the initial model. Specifically, we first group customers by their predicted CATE

values to identify customers with significant true errors. This strategy is effective because CATE

models that generate extreme predictions, i.e., large positive or negative values, are more likely

to be inaccurate due to the injected noise (Proposition 1). Therefore, subgroups with extreme

predictions may be more informative in updating the model. Next, we update the initial model

using the subgroup that can yield the best performance improvement. This step ensures that the

algorithm always corrects the error in the most efficient manner. We provide details of this strategy

in Section 4.3.

Challenge 3: Adaptive learning from subgroups can result in overfitting bias.

The process of selecting the most informative subgroup for model correction (i.e., local learning)

can inherently lead to overfitting. Overfitting occurs when the model is excessively complex and

fits the training data too closely, which can reduce its ability to predict out-of-sample observations

accurately. This risk becomes particularly pronounced during the algorithm’s later iterations, where

the method might inadvertently identify subgroups that reduces the residual error on the current

data, but not applicable to the larger population. This issue is a well-documented drawback when

models are adaptively constructed (e.g., Varma and Simon 2006, Cawley and Talbot 2010, Berk

et al. 2013, Dwork et al. 2015).

To address this challenge, we augment the local learning strategy with a global optimization

approach, whereby the degree of adjustment based on the learned calibrator (commonly known as

the step size) is determined by minimizing the sum of squared residuals across all individuals in the

calibration set, rather than just those within the subgroup used to construct the calibrator. This

approach considers information from the entire calibration set, mitigating the risk of overfitting

posed by the local learning technique. In Section 4.3, we provide a detailed discussion on how to

determine the optimal step size and why global optimization can indeed mitigate overfitting.

4.3. Solution Details: Debiasing by Model Auditing and Calibration

The discussion so far has highlighted the complexities in applying gradient boosting in our specific

context, along with the conceptual solution. Now, we delve into the details of our proposed solution,

which we call Debiasing by Model Auditing and Calibration. The pseudo-code for the algorithm

is outlined in Algorithm 1. In the remaining of this section, we describe the main steps in the

algorithm and explain its implementation details.
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Algorithm 1 Debiasing by Model Auditing and Calibration

Input: Q P N, R P N

Output: pτpXiq

Data: Experiment Data D “ tDtrain,Dcal,Dvalu

Construct the conditional mean model pm and the propensity score model pe using Dtrain.

Derive the Robinson’s transformations qτi “
Yi´xmpXiq

Wi´pepXiq
for i P tDcal,Dvalu.

Construct the initial CATE model pτ r0spXiq using Dtrain and generate predictions for Dcal.

Divide Dcal into Q subgroups (G1
cal, ¨ ¨ ¨ ,GQ

cal) based on the (sorted) predictions from pτ r0s.

for r “ 1, ¨ ¨ ¨ ,R do

Calculate the proxy residual error qτi ´ pτ rr´1spXiq for i P Dcal.

for q “ 1, ¨ ¨ ¨ ,Q do

(Local Learning) Use individuals within the calibration set Gq
cal to construct a machine

learning model, denoted as pcrrs
q pXiq, which is trained to predict qτi ´ pτ rr´1spXiq using Xi.

(Global Optimization) Determine the step size by minimizing the R-loss across all the

individuals in Dcal:

ρrrs
q “ argmin

ρ

ÿ

iPDcal

“

pτ rr´1spXiq ` ρpcrrs
q pXiq ´ qτi

‰2

end

Pick the subgroup that leads to the smallest R-loss in the validation set:

q‹ “ argmin
qPt1,¨¨¨ ,Qu

ÿ

iPDval

“

pτ rr´1spXiq ` ρrrs
q pcrrs

q pXiq ´ qτi
‰2
.

Generate new predictions for the validation set:

pτnewpXiq “ pτ rr´1spXiq ` ρ
rrs

q‹ pc
rrs

q‹ pXiq, i P Dval.

if
ř

iPDval
rpτnewpXiq ´ qτis

2
´
ř

iPDval
rpτ rr´1spXiq ´ qτis

2 ă 0 then

Update the CATE model:

pτ rrspXiq “ pτ rr´1spXiq ` ρ
rrs

q‹ pc
rrs

q‹ pXiq.

end

else
Stop the boosting algorithm and return pτ rr´1s.

end
end
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4.3.1. Iterative Error Correction Using Gradient Boosting. The core of our approach

relies on the concept of gradient boosting. This method involves constructing a calibrator to correct

the errors made by the previous ensemble of models (including the initial predictor and the cali-

brators). Often, a step-size learning procedure is employed to adjust the rate of error correction.

Specifically, following the notation introduced earlier, each step aims to create a new ensemble

model based on the following update rule:

pτ rrspXiq “ pτ rr´1spXiq ` ρrrs
pcrrspXiq, (2)

where pcrrspXiq denotes the calibrator at each step r, and ρrrs represents its step size.

Gradient boosting performs gradient descent on a loss function to guide the error reduction (i.e.,

determine ρrrs and pcrrs) from the preceding ensemble. Each calibrator is trained to move in the

direction that most effectively reduces the residual, which is the negative gradient of a squared-error

loss function. Our goal is to minimize the R-loss function (Nie and Wager 2021)

Lppτ rr´1s,qτq “
1

2

ÿ

i

“

pτ rr´1spXiq ´ qτi
‰2
,

and its the negative gradient is

´
BLppτ rr´1s,qτq

Bpτ rr´1spXiq
“ qτi ´ pτ rr´1spXiq.

Therefore, the calibrator pcrrs is designed to predict the negative gradient for unseen individuals,

which can be accomplished by building a machine learning model of qτi ´pτ rr´1spXiq on Xi. We refer

to the step of estimating the residuals as model auditing, as it evaluates the error made by the

CATE model. The subsequent updating step is termed model calibration, as it refines the CATE

model for enhanced accuracy.

There are two common methods to determine the step size in (2). The first approach is to

fix the step size, ρrrs “ ρ, at each step and perform cross-validation to identify the optimal step

size (Beygelzimer et al. 2015, Chen and Guestrin 2016). The second approach utilizes the steepest

descent approach (Friedman 2001, 2002), where ρrrs is determined by minimizing the R-loss in each

adjustment. Our algorithm adapts the steepest descent approach with novel modifications required

to overcome Challenge 3. (Further details in Section 4.3.3 and 4.3.4.)

4.3.2. Sample Splitting and Roles of Each Dataset. We partition the experiment data

D into three subsets, namely Dtrain,Dcal,Dval. Each subset plays a distinct role for the algorithm:

Dtrain is used for constructing the initial CATE model pτ r0s as well as training the conditional mean

and propensity models (pm and pe) essential for Robinson’s transformation, Dcal is used for model
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auditing and calibration, and Dval is used for subgroup selection and to determine when to stop

the algorithm. The rationale for this partitions stems from multiple considerations.

First, it is essential to use distinct datasets for the initial CATE model construction and model

calibration. If the same observation i is used for creating the initial CATE model (pτ r0s) and perform

model calibration, the prediction error of the initial CATE model (pτ r0spXiq ´ τpXiq) and the proxy

error of Robinson’s transformation (qτi ´τpXiq) will be positively correlated, as they are both driven

by the LDP noise injected into the same individual. In this case, the true prediction error will be

canceled out in the residual error since

qτi ´ pτ r0spXiq “ rqτi ´ τpXiqs ´ rpτ r0spXiq ´ τpXiqs.

As a result, the residual error would not be an informative learning target for the true prediction

error. To break this correlation, we use a distinct dataset, namely Dcal, independent of Dtrain, for

model calibration. In this case, the bias of pτ r0s is largely driven by the noise in Dtrain, while the

bias of qτi is largely driven by the noise of i P Dcal. Note that both the challenge and the practice

of using sample splitting to address this problem have been extensively discussed in the literature

on statistical inference involving nuisance models (Newey and Robins 2018, Mackey et al. 2018,

Foster and Syrgkanis 2019) and CATE estimation (Wager and Athey 2018, Nie and Wager 2021,

Semenova and Chernozhukov 2021, Kennedy 2020b).6

Second, when constructing Robinson’s transformation (qτi) for i P Dcal, it is crucial to ensure that

the nuisance models (pm and pe) are estimated using independent data to ensure that the estimation

errors of these models will not cause significant bias when learning from qτi (Semenova and Cher-

nozhukov 2021, Nie and Wager 2021). To achieve this, we similarly utilize Dtrain to construct the

nuisance models in the Robinson’s transformation.

Third, we use a holdout set Dval to guide subgroup selection and to evaluate out-of-sample pre-

dictive accuracy during the iterative error correction process. The use of an independent validation

set is a pivotal step, as it enables us to assess the generalization performance of the calibrated

model and stop the algorithm once we observe no substantial improvements. This strategy helps

mitigate the risk of overfitting and enhances the reliability of the algorithm.

While dividing the entire sample into three subsets may initially seem restrictive in terms of sam-

ple size, we can further enhance the sample size efficiency by swapping the roles of Dtrain,Dcal,Dval,

repeating Algorithm 1, and averaging the resulting predictions. This process is known as cross-

fitting and is frequently utilized in procedures that require sample splitting (e.g. Newey and Robins

2018, Chernozhukov et al. 2018a, Nie and Wager 2021, Kennedy 2020b).

6 Essentially, employing sample splitting is essential to fulfill the Neyman orthogonality condition (Chernozhukov
et al. 2018a). This condition ensures that any bias in the initial model pτ r0s does not have a first-order impact on the
calibrated predictions.
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4.3.3. Local Learning. Importantly, when data are protected by LDP, the proxy CATE (qτj)

generally does not serve as a high-quality proxy due to the noise injection (Challenge 2). To

overcome this challenge, we design the algorithm in a way that the calibrator is trained using only

observations that provide the most significant information for error correction. We achieve this

goal through a two-step process: First, we divide the calibration data into subgroups of individuals

who are more (and less) likely to exhibit significant true errors. Then, we select the subgroup that

most substantially enhances the predictive accuracy. The latter step is straightforward as it can be

calculated via cross-validation. However, its effectiveness relies on the identified subgroups in the

initial step truly displaying significant errors, rather than minor ones.

To identify such a subgroup of individuals, we leverage the (theoretical) finding that individuals

with extreme CATE predictions (either large positive or large negative values) are more likely to

experience significant prediction errors due to the noise injected into the training set. The following

proposition formally characterizes this phenomenon for both cases: when covariates or outcomes

are protected by LDP.

Proposition 1. (Relationship between Predicted CATE and Injected Noise)

1. (Protected Covariates) In the scenario described in Theorem 1, the initial CATE prediction

for an unseen individual, pτ r0spxnewq, is more extreme (i.e., has either large positive or large

negative values) if the new individual and its influential peers in Io (i.e., those with non-zero

weights pℓwi pxnew|Dℓq) have large injected noise. The magnitude of the prediction is amplified if

the weight function at xnew is highly sensitive to the noise.

2. (Protected outcome) In the scenario described in Theorem 3, the initial CATE prediction for

an unseen individual, pτ r0spxnewq, is more extreme if the influential peers in Io have significant

injected noise. The magnitude and direction of the CATE prediction depends on several factors,

including (i) the treatment condition of those peers, (ii) the sign of the injected noise, and

(iii) the sign of their weights.

Proof: See Electronic Companion EC.1.5.

Proposition 1 suggests that the CATE predictions from the initial model —particularly those

with extreme prediction values—can be valuable in identifying subgroups of individuals for whom

the prediction error, driven by LDP noise, is significant. Therefore, by categorizing individuals

based on their initial predicted CATEs, we anticipate that those in groups with notably small

or large predicted CATEs are likely to have the most significant prediction errors. Nonetheless,

after addressing the prediction errors for these groups, other individuals may emerge as crucial

for further error correction. As a result, our local learning approach employs an iterative error

adjustment process with the following three steps:
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(i) Group individuals in the calibration set (Dcal) into Q groups (G1,G2, . . . ,GQ) based on their

predicted CATEs from the initial CATE model (pτ r0s).

(ii) For each step r, construct a calibrator pcrrs
q pXiq for each subgroup Gq, and determine the step

size ρrrs
q for each subgroup (Section 4.3.4 describes how the step size is determined).

(iii) Select the calibrator from the subgroup Gq‹ that yields the greatest improvement in the R-loss

for all individuals in the validation set Dval, i.e.,

q‹ “ argmin
qPt1,¨¨¨ ,Qu

ÿ

iPDval

“

pτ rr´1spXiq ` ρrrs
q pcrrs

q pXiq ´ qτi
‰2
.

(iv) Finally, update the CATE model using the following formula:

pτ rrspXiq “ pτ rr´1spXiq ` ρ
rrs

q‹ pc
rrs

q‹ pXiq.

It is important to note that we use a separate validation set, distinct from the data used for

constructing the calibrator and determining the step size, for subgroup selection. This approach

helps protect against potential overfitting of the calibration data and allows us to identify the

subgroups that contribute to a reduction in true prediction error.

4.3.4. Global Optimization. While selecting individuals who contribute the most to error

reduction through local learning enables more effective model adjustments, the highly adaptive

nature of this algorithm can inadvertently lead to significant over-correction and introduce over-

fitting bias (Challenge 3). To alleviate this issue, we adopt a global optimization approach for

determining the step size, rather than solely depending on Gq‹ . Formally, we determine the step

size as follows:

ρrrs
q “ argmin

ρ

ÿ

iPDcal

“

pτ rr´1spXiq ` ρpcrrs
q pXiq ´ qτi

‰2
. (3)

Through the inclusion of this global optimization step, we ensure that the update minimizes the

R-loss across all individuals in the calibration set, not just those that contributed most to the

error reduction on the validation set. As a result, we mitigate the risk of overcorrection for any

specific subgroup, effectively striking a better balance between subgroup correction and overall

model performance.7

4.3.5. Early Stopping. Finally, it is widely recognized that indefinitely continuing the boost-

ing process can lead to overfitting of the data and inconsistent predictions (e.g. Grove and Schu-

urmans 1998, Jiang 2004, Zhang and Yu 2005). Hence, it is crucial to appropriately time the

7 In Section 5, we empirically demonstrate that this adjustment to the algorithm can significantly reduce the overfitting
bias.
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termination of the boosting process— late enough to avoid underfitting (i.e., large enough R), yet

early enough to avoid overfitting.

In Algorithm 1, we employ a commonly-used method for early stopping, which is to stop when

there is no improvement in predictive accuracy on a validation set. This forms our early stop

criterion:
ÿ

iPDval

”

pτ rr´1spXiq ` ρ
rrs

q‹ pc
rrs

q‹ pXiq ´ qτi

ı2

´
ÿ

iPDval

“

pτ rr´1spXiq ´ qτi
‰2

ă 0,

which means that we truncate the procedure when there is no improvement of R-loss on Dval.
8

Figure 1 Data Partitions and Usage in the Proposed Solution

4.3.6. Summary. Figure 1 offers a concise overview of the proposed algorithm, which encom-

passes three principal stages. The first stage, sample splitting, partitions the data into three sets:

the training set is used to fit the initial CATE model, the calibration set is used to fine-tune the

initial model, and the validation set is used for model selection and performance evaluation. The

second stage, initialization, constructs the necessary models, including the initial CATE model and

8 Note that the threshold of improvement can also be set as a tuning parameter in the post-processing algorithm. A
larger threshold implies fewer updates being performed, acting as a form of regularization for the boosting process.
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the nuisance models for Robinson’s transformation. The final stage, model auditing and calibra-

tion, involves an iterative process of fine-tuning the model. The algorithm is elatively simple to

implement and can be used with a variety of CATE models and data sets.

4.4. Model Selection and Hyperparameter Tuning

Our proposed solution offers high flexibility in the use of different models and hyperparameters,

allowing several degrees of freedom for model implementation. We now provide guidelines for model

selection and hyperparameter tuning.

• Select Nuisance Models in Robinson’s Transformation: Two nuisance models are

involved in this process, pm for the conditional mean outcome and pe for the propensity score.

As suggested by Nie and Wager (2021), one should choose pm and pe that yield the highest

accuracy as determined by cross-validation.

• Select the Initial CATE Model (pτ r0s): As we demonstrate in our empirical sections, our

proposed solution can enhance targeting performance irrespective of the initial CATE models

used for initial predictions (including Causal Forest, T-learner, and R-learner). However, in

practice, we recommend choosing the initial CATE model that delivers the best targeting

performance (before model calibration) as our analyses consistently show that such a model

typically maintains the best performance after post-processing. This initial selection can be

easily implemented through the bootstrap validation procedure described in Section 6.3.

• Select the Class of Calibrators
␣

pcrrs
(

r
: In theory, any type of model (e.g., linear regression,

deep neural network) can be used to construct the calibrators. Based on our investigations

on both simulated and real-world data, we find that simpler models (like linear regression)

usually outperform more complex ones (like regression forest) in terms of both training speed

and accuracy. Therefore, we suggest to use simpler models when fitting the calibrators. This

recommendation also aligns with the philosophy of boosting, which seeks to enhance predictive

performance by ensembling many weak models.

• Hyperparameter Tuning: Our algorithm primarily has two hyperparameters: the number

of subgroups Q and the number of iterations R.

—Number of Subgroups (Q): The choice for the number of subgroups presents an inher-

ent bias-variance trade-off. If Q is too small, the algorithm may not effectively identify

those individuals most informative for model correction, resulting in a larger bias. Con-

versely, if Q is too large, the algorithm can become unstable, increasing the variance.

(This trade-off is further demonstrated using simulation in Appendix EC.2.2.) Overall,

we recommend that each subgroup should consist of at least 100 individuals/observations

to ensure algorithm stability.
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—Number of Iterations (R): Through simulation analyses, we have found that setting R “ Q

is typically sufficient. The reason behind this recommendation is that the step size for

subgroup q often approaches zero when it has been previously used for updating the initial

model. In other words, once the algorithm has utilized a specific subgroup to update the

predictions, the value of updating based on that subgroup again diminishes considerably.

5. Empirical Performance: Simulation

We conduct simulation analyses for three main purposes. First, we validate the theoretical results

outlined in Section 3 by investigating the privacy-accuracy trade-off. Second, we showcase the

superior performance of our proposed method compared to several benchmarks when the data are

protected by LDP. Third, we emphasize the sample size efficiency of our proposed algorithm.

5.1. Simulation Setup

We generate an experimental sample with a binary treatment variable (Wi P t0,1u) where the

treatment assignment is completely random, with equal proportions for both treatment and control

groups. The outcome variable is generated according to the following process:

YipWiq “ bpXiq ` pWi ´ 0.5qτpXiq ` ϵi, ϵi „i.i.d. N p0,5q,

bpXiq “ sinpπXi,1Xi,2q ´ 2pXi,1 ´Xi,3 ´ 0.5q2 `Xi,2Xi,4 ` 2X2
i,5 `X2

i,6,

τpXiq “ 2Xi,1 ´Xi,2 ` 0.5X2
i,3 ´Xi,4 ´ logpXi,1qpXi,4 ´ 1.5q,

where each covariate Xi,p „ Uniformp0,5q is identically and independently distributed.

We examine two scenarios under the above data generating process (DGP). The first scenario

assumes that the covariates are protected by LDP. Specifically, we only observe the noisy versions

of Xi,p, denoted as rXi,p “ Xi,p `ηi,p, where ηi,p „ Laplacep0, σq are i.i.d. Laplace noises. The second

scenario assumes that the outcome is protected by LDP, implying that we can only observe the

noisy outcome rY ipWiq “ YipWiq ` ηi, where ηi „ Laplacep0, σq is the independently and identically

distributed (i.i.d.) Laplace noise. For each scenario, we vary σ in the simulation to investigate the

privacy-accuracy trade-off and manipulate number of individuals in the experiment set to explore

the sample size efficiency.

5.2. Methods for Comparison

We evaluate the proposed algorithm against three alternative methods:

1. (Default) This method constructs a CATE model on the entire experiment data without any

post-processing.
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2. (Global) This method performs global learning and global optimization during the boosting

procedure. Specifically, it constructs the calibrator and determines the step size using all of

the calibration data.

3. (Local) This method performs local learning and local optimization during the boosting proce-

dure. Specifically, it constructs the calibrator and determines the step size using subgroup data.

The model is then updated based on the subgroup results that yield the greatest improvement

in validation R-loss.

For methods involving boosting, we divide the experiment data into three equal-sized folds and

perform cross-fitting accordingly. The detailed model specification can be found in Electronic Com-

panion EC.2.1.

5.3. Evaluation Procedure

We evaluate predictive accuracy through B “ 100 bootstrap replications and report the mean of

key metrics. Initially, we generate a holdout set Dholdout consisting of Nholdout “ 10,000 individuals

which will be used for evaluation across all bootstrap samples. In each replication b, we generate

an experimental set Db (of varying sample size) and use it to construct the CATE estimation using

the aforementioned methods. We then generate predictions on the holdout set and calculate the

prediction errors for each method. Specifically, when the covariates are protected by LDP, the error

of the model is calculated as xerr
b
i “ pτ bprXiq ´ τpXiq. When only the outcome is protected by LDP,

the prediction error of a model pτ b is defined as xerr
b
i “ pτ bpXiq ´ τpXiq. After executing this process

on B “ 100 bootstrap samples, we calculate the following statistical error metrics:

1. (Mean Squared Error) It evaluates the average squared error of the predicted CATEs across

individuals in the holdout set, i.e.,

pE
„

´

xerr
b
i

¯2
ȷ

“
1

Nholdout

ÿ

iPDholdout

«

1

B

B
ÿ

b“1

´

xerr
b
i

¯2
ff

.

2. (Mean Squared Bias) It quantifies the average deviation of model predictions from the actual

CATEs across individuals in the holdout set, i.e.,

pE2
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p xerr
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iq

ı

“
1

Nholdout

ÿ

iPDholdout

«

1

B

B
ÿ

b“1
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3. (Mean Variance) It quantifies the average variability in the model’s predictions across indi-

viduals in the holdout set when the model is trained with different data sets, i.e.,

yVar
“

pτ bpXiq
‰

“
1

Nholdout

ÿ

iPDholdout

#

1
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´
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.
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In addition to statistical accuracy metrics, we also measure how much our proposed method

improves targeting performance when organizations use CATE models estimated on LDP-protected

data for their targeting decisions. We assess this improvement using the Area Under the Targeting

Operating Characteristic curve (AUTOC) (Yadlowsky et al. 2021), a widely-used metric that gauges

a model’s ability to correctly rank individuals based on their treatment effects. Specifically, given

the predicted CATEs pτpXiq for i in the holdout set, the Targeting Operating Characteristic (TOC) is

defined as the difference in treatment effects between individuals within the top ϕˆ100% predicted

CATE tier and all individuals. That is,

TOCpϕ;pτq “ E rYip1q ´Yip0q|F
pτ ppτiq ě 1´ϕs ´E rYip1q ´Yip0qs , (4)

where F
pτ is the cumulative distribution function of the predicted CATEs, and pτi is defined as pτprXiq

when the covariates are protected by LDP and as pτpXiq when the outcome is protected by LDP.

Then, the AUTOC is defined as

AUTOCppτq “

ż 1

0

TOCpϕ;pτqdϕ. (5)

Note that a model pτ outperforms another model pτ 1 in identifying individuals in the top ϕˆ 100%

CATE group if TOCpϕ;pτq ą TOCpϕ;pτ 1q. Therefore, a higher AUTOC value suggests that the

CATE model is more successful at identifying individuals who demonstrate the strongest sensitivity

toward the intervention, leading to more effective targeting policies.

5.4. Results

Figure 2 illustrates the MSE, squared bias, and variance of different methods across a range of

privacy levels (σ P t0.1,0.2,0.3,0.4,0.5u for the covariates and σ P t2,4,6,8,10u for the outcome

variable). Specifically, Figure 2a presents the results when the covariates are protected by LDP, and

Figure 2b depicts the results when the outcome is protected by LDP. These results are generated

using a sample of 3,000 individuals in the experimental set to estimate CATE models, and their

performances are evaluated using a holdout set of 10,000 individuals.

Firstly, the results show clear trade-offs between privacy and accuracy: as the privacy level

increases, all error metrics correspondingly increase, regardless of the method employed. Note that

Causal Forest is generally biased in a finite-sample setting (Wager and Athey 2018). Therefore, the

squared bias still increases with the privacy level in the case of LDP-protected outcomes. Secondly,

the proposed method consistently outperforms other methods, achieving the lowest MSE across

all privacy levels. Specifically, the proposed method yields the lowest bias, and the benefit of bias

reduction (compared to the default method) becomes especially pronounced when the noise level

is large. Notably, the proposed method has a lower bias than the global method, suggesting that
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Figure 2 Predictive Errors of Different Methods Across Varying Privacy Levels

(a) Scenario 1: LDP-Protected Covariates

MSE Squared Bias Variance

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.50.0

5.0

10.0

Privacy Level ( σ)

V
al

ue

Default
Local
Global
Proposed

(b) Scenario 2: LDP-Protected Outcome

MSE Squared Bias Variance

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

3.0

6.0

9.0

12.0

Privacy Level ( σ)

V
al

ue

Default
Local
Global
Proposed

Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point. The results presented here are based

on the use of Causal Forest as the initial CATE model. Results derived from different CATE models are available in Elec-

tronic Companion EC.2.3.

incorporating local learning strategies can effectively reduce bias. However, if local learning is not

balanced with global optimization, the procedure may suffer from substantial overfitting bias, as

evidenced by the local method having the highest bias irrespective of the noise level. In terms of

variance, the local method yields the lowest variance, while the proposed and global calibration

methods exhibit slightly higher variance than the default method.

Next, we present the results for the targeting performance of different methods. Table 1 compares

the mean AUTOC values achieved by different methods, along with the percentage of replications

(in parentheses) in which the AUTOC value of the focal method exceeds the AUTOC value of the

default approach. First, consistent with previous results, there are clear trade-offs between privacy

and targeting performance, as the AUTOC values decrease as the privacy level increase. Second,
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Table 1 AUTOC Values of Different Methods Across Varying Privacy Levels

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 4.44 (100%) 4.41 (85%) 4.34 (48%) 4.34 4.44 (100%) 4.41 (85%) 4.34 (48%) 4.34

Very Low 4.39 (88%) 4.36 (81%) 4.29 (45%) 4.29 4.44 (91%) 4.41 (74%) 4.33 (45%) 4.33

Low 4.28 (91%) 4.24 (77%) 4.18 (49%) 4.18 4.37 (88%) 4.31 (65%) 4.29 (55%) 4.28

Medium 4.17 (93%) 4.11 (73%) 4.09 (63%) 4.07 4.34 (89%) 4.28 (66%) 4.27 (71%) 4.23

High 4.01 (85%) 3.95 (76%) 3.95 (81%) 3.90 4.25 (87%) 4.16 (63%) 4.20 (86%) 4.13

Very High 3.84 (80%) 3.79 (68%) 3.83 (83%) 3.77 4.19 (86%) 4.11 (60%) 4.18 (88%) 4.09

Note: We report the average of AUTOC values from 100 simulation replications, along with the percentage of replications in

which the AUTOC value of the focal method is greater than the AUTOC value of the default approach (given in parentheses).

The results presented here are based on the use of Causal Forest as the initial CATE model. Results derived from different

CATE models are available in Electronic Companion EC.2.3.

the proposed method consistently outperforms all other methods across all privacy levels. This

result highlights that our proposed solution can significantly improve the targeting performance

under LDP protection. Third, we find that global calibration notably underperforms when the

privacy level is high, suggesting that calibration using all samples may be ineffective in the presence

of large injected noise. Conversely, the targeting performance of the local approach improves, and

even comparable with the proposed solution, at a very high privacy level. This indicates that the

proposed subgroup learning approach is more efficient at identifying informative individuals for

model calibration when the noise level is high.

5.5. Sample Size Efficiency

We now investigate the performance of the different methods across varying sizes of experiment

data (ranging from 3,000 to 30,000 individuals) while keeping the privacy level fixed (σ “ 0.5 for

the covariates and σ “ 10 for the outcome variable). Figure 3 presents the MSE, squared bias, and

variance of different methods estimated on different sizes of experiment data.

The results showcase several key findings. Firstly, it is no surprise that both MSE and bias

diminish as the sample size grows. Secondly, our proposed method stands out, consistently offering

the lowest MSE and bias across varying sample sizes. In particular, the error reduction benefits

of the proposed method are especially significant when the sample size is small. For example, our

proposed method trained on a 12k sample can achieve a lower MSE and bias than the default

method trained on a 30k sample (2.5 times larger). On the other hand, the proposed method and

the global-only method demonstrate comparable predictive accuracy when the sample size is large.

Finally, the local-only method significantly underperforms compared to the default approach, even



30

Figure 3 Predictive Errors of Different Methods with Varying Sample Sizes

(a) Scenario 1: LDP-Protected Covariates
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(b) Scenario 2: LDP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point. The results presented here are based

on the use of Causal Forest as the initial CATE model. Results derived from different CATE models are available in Elec-

tronic Companion EC.2.3.

when the sample size is large. This underscores the need to strike a balance between the benefits

of local learning and the risk of overfitting when improving the accuracy of CATE estimates.

Regarding targeting performance, Table 2 compares the mean AUTOC values achieved by various

methods along with the percentage of replications (in parentheses) where the AUTOC value of the

proposed method outperforms the AUTOC value of the default approach. Firstly, the proposed

method consistently achieves the highest AUTOC value across all sample sizes. This highlights

the significant advantage of our proposed solution in terms of sample size efficiency. Secondly,

consistent with the results on predictive errors, the global approach achieves similar performance

to the proposed solution when the sample size is sufficiently large. In contrast, the local approach

still performs worse than the proposed and global approaches, regardless of the sample size.
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Table 2 AUTOC Values of Different Methods Across Varying Experiment Sample Sizes

Sample

Size

Scenario 1: LDP-Protected Covariates (σ “ 0.5) Scenario 2: LDP-protected Outcome (σ “ 10)

Proposed Global Local Default Proposed Global Local Default

3,000 3.84 (80%) 3.79 (68%) 3.83 (83%) 3.77 4.19 (85%) 4.11 (60%) 4.18 (88%) 4.09

6,000 3.92 (98%) 3.87 (82%) 3.87 (88%) 3.82 4.37 (95%) 4.31 (82%) 4.31 (88%) 4.24

12,000 3.96 (100%) 3.94 (92%) 3.92 (88%) 3.89 4.44 (100%) 4.40 (93%) 4.38 (93%) 4.33

18,000 4.02 (100%) 4.02 (98%) 3.98 (80%) 3.96 4.47 (100%) 4.45 (98%) 4.42 (96%) 4.36

24,000 4.03 (100%) 4.03 (100%) 3.99 (95%) 3.97 4.49 (100%) 4.48 (100%) 4.44 (94%) 4.41

30,000 4.09 (100%) 4.09 (100%) 4.06 (90%) 4.04 4.49 (100%) 4.48 (100%) 4.44 (100%) 4.40

Note: We report the average of 100 simulation replications, along with the percentage of replications in which the AUTOC

value of the focal method is greater than the AUTOC value of the default approach (given in parentheses). The results

presented here are based on the use of Causal Forest as the initial CATE model. Results derived from different CATE models

are available in Electronic Companion EC.2.3.

In conclusion, the simulation results demonstrate that our proposed solution can significantly

reduce the prediction error and bias of existing CATE models across a wide range of privacy

levels, leading to improved targeting performance. Notably, our approach is efficient in sample

sizes and balances local learning and global optimization to achieve efficient bias reduction without

overfitting. These findings offer valuable insights for businesses seeking to implement effective

personalized interventions under the LDP protection.

6. Empirical Performance: Real-world Case Studies

We now validate the proposed solution using two real-world applications that have been used as

benchmarks for CATE models (e.g., Rößler and Schoder 2022). Each of the studies corresponds

to a randomized marketing campaign run by a firm with the aim to activate purchases among its

customers, very common practice in marketing.

6.1. Studies Overview

6.1.1. Study 1: Hillstrom E-mail Campaign. The first study leverages the Hillstrom

dataset, which originates from the MineThatData E-Mail Analytics And Data Mining Challenge

(Hillstrom 2008). This dataset comprises 64,000 customers who were randomly assigned to one of

three groups as part of an e-mail test: those who received an e-mailfor men’s merchandise, those

who received an e-mail for women’s merchandise, and the rest who received no e-mail campaign.

In line with previous research utilizing this dataset (Kane et al. 2014, Devriendt et al. 2018, Rößler

and Schoder 2022), we focus on the effectiveness of the e-mail promotion for women’s merchandise

(compared to not receiving any e-mail at all). Consequently, our final sample includes a total of

42,693 customers, evenly split between the treatment group, which contains 21,387 customers, and

the control group, which comprises 21,306 customers.
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In this study, the primary goal is to establish a targeting policy that optimizes the impact of

the intervention on website visits. To estimate the CATEs, we incorporate eight pre-treatment

covariates into the analysis, including factors such as the recency of customer purchase, historical

expenditure, and whether the customer has previously purchased women’s merchandise, among

others. The response rates for the treatment and control groups are 15.14% and 10.62% respectively,

indicating an average treatment effect of 4.52%. A more detailed summary of this dataset can be

found in Electronic Companion EC.3.

6.1.2. Study 2: Starbucks Promotional Campaign Data. The second study utilizes data

from a promotional campaign conducted through the Starbucks reward mobile app. The dataset was

made available by the Udacity Data Science Program. This experiment data involves a promotional

campaign where some customers were randomly offered a promotion (the intevention) to encourage

product purchase (the outcome variable). The dataset comprises 126,184 customers and seven

anonymous pre-treatment covariates. With 63,112 customers in the treatment group and 63,072 in

the control group, the response rates are notably low—1.68% in the treatment group and 0.73% in

the control group, resulting in an average treatment effect of 0.95%. See Electronic Companion EC.4

for more details.

6.2. Implementation of LDP

As these datasets are not protected by LDP, we simulate two scenarios where we implement the

most common LDP methods: one where the pre-treatment covariates are proteted by LDP and

another where the outcome is protected by LDP. For discrete variables, we apply the randomized

response mechanism as suggested by Dwork et al. (2014). With this mechanism, there is a probabil-

ity 1´ f of observing the true value of the variable, whereas, with probability f , we solely observe

a random draw from all possible values of the variable (each value appears with equal probability).

For the continuous variables, we infuse it with Laplacep0, σq noise. We vary the privacy level from a

“Very Low” scenario (i.e., small f and σ) to a “Very High” (i.e., large f and σ) scenario. Additional

details about the implementation can be found in Electronic Companion EC.3.3 and EC.4.3.

6.3. Performance Evaluation

Similar to Section 5, we compare the proposed approach with the default alternative (estimating

CATE directly on the noise-infused data) as well as the global-only and local-only approaches. (See

details in Electronic Companion EC.3 and EC.4). To assess the performance of each method, we

adopt a bootstrap validation scheme similar to that described by Ascarza (2018).9 Briefly, we first

generate B “ 100 splits, each comprising an experimental set (70%) and a holdout set (30%). For

9 Unlike in our simulation analyses, we cannot calculate statistical accuracy metrics as the true CATEs are not
observed in real-world data.
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each split, we estimate CATEs using each of the four approaches (proposed, default, local-only and

global-only), and predict CATEs for all individuals in the holdout set. Subsequently, we calculate

the targeting performance on the holdout set for each method using the the AUTOC metric.

It is important to note that in the scenario where the covariates are protected by LDP, we inject

noise into covariates for both the experiment and the holdout set. This approach allows us to

fully account for the impact of the injected noise on both the model construction process and the

subsequent predictions. However, in the scenario when the outcome is protected by LDP, we do

not inject noise into the outcome variable for the holdout set to reduce the variance of the AUTOC

metric. This approach still provides the true AUTOC in privacy settings since the predicted CATEs

for holdout individuals are not calculated using their own outcome values.

6.4. Results

Table 3 presents the AUTOC values (multiplied by 100) of different methods across a range of

privacy levels, from “Very Low” to “Very High”, under two specific scenarios: differentially-private

covariates and differentially-private outcome. We observe three major findings. First, as the level

of privacy protection increases, AUTOC values decline proportionally. This highlights the funda-

mental trade-off between privacy protection and targeting effectiveness. Second, all post-processing

methods outperform the default method in terms of AUTOC. This demonstrates the value of post-

processing in improving CATE estimation. Third, the proposed method consistently delivers the

highest AUTOC of all methods for both datasets, highlighting the value of the proposed local learn-

ing with global optimization technique. In conclusion, the proposed method provides a promising

approach for improving the targeting effectiveness of CATE models under differential privacy.

7. Conclusions and Future Directions

Local differential privacy has gained significant attention and adoption in recent years, particularly

among leading technology companies. Nonetheless, the implications of its implementation on the

precision of existing CATE models and firms’ targeting capabilities remain largely unexplored.

This paper takes the first step in investigating this issue, and proves—both theoretically and

empirically— that the added noise from LDP not only increases the variance of the predicted

CATEs, but can also introduce bias to existing CATE models, which significantly hinders firms’

ability to run effective targeted interventions.

In response to this challenge, we introduce a new paradigm of CATE estimation where firms are

encouraged to post-process the predicted CATEs before using them for targeting. Leveraging recent

advancements in cross-fitting for heterogeneous treatment effect estimation, gradient boosting, and

multi-calibration, our proposed model auditing and calibration approach enhances the accuracy

of CATE predictions while maintaining the existing privacy protections on the experiment data.
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Table 3 AUTOC Values (Multiplied by 100) of Different Methods for Hillstrom and Starbucks Data

(a) Study 1 : Hillstrom Data

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 1.62 (66%) 1.58 (58%) 1.57 (63%) 1.49 1.62 (66%) 1.58 (58%) 1.57 (63%) 1.49

Very Low 1.58 (78%) 1.52 (71%) 1.49 (62%) 1.36 1.58 (88%) 1.51 (82%) 1.49 (79%) 1.29

Low 1.54 (88%) 1.45 (73%) 1.4 (71%) 1.28 1.59 (90%) 1.50 (78%) 1.42 (74%) 1.27

Medium 1.44 (87%) 1.38 (81%) 1.31 (76%) 1.14 1.43 (88%) 1.35 (74%) 1.26 (67%) 1.13

High 1.29 (85%) 1.23 (78%) 1.12 (65%) 0.99 1.36 (91%) 1.23 (83%) 1.16 (65%) 0.99

Very High 1.22 (82%) 1.13 (74%) 1.03 (71%) 0.91 1.25 (85%) 1.16 (76%) 1.01 (62%) 0.89

(b) Study 2 : Starbucks Data

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 0.59 (91%) 0.58 (90%) 0.56 (76%) 0.53 0.59 (91%) 0.58 (90%) 0.56 (76%) 0.53

Very Low 0.49 (90%) 0.48 (87%) 0.44 (75%) 0.41 0.42 (98%) 0.38 (83%) 0.33 (69%) 0.29

Low 0.42 (90%) 0.4 (83%) 0.34 (58%) 0.33 0.32 (96%) 0.27 (87%) 0.23 (73%) 0.18

Medium 0.37 (97%) 0.34 (90%) 0.29 (70%) 0.26 0.26 (96%) 0.21 (86%) 0.18 (79%) 0.13

High 0.28 (84%) 0.26 (76%) 0.22 (47%) 0.22 0.22 (94%) 0.19 (88%) 0.16 (77%) 0.12

Very High 0.21 (86%) 0.18 (75%) 0.14 (60%) 0.13 0.18 (88%) 0.15 (77%) 0.13 (71%) 0.09

Note: We report the average of AUTOC values (multiplied by 100) from 100 bootstrap replications. Additionally, we provide

in parentheses the percentage of replications for each post-processing method where its AUTOC value is greater than the

AUTOC value of the default approach. The results presented here are based on the use of Causal Forest as the initial CATE

model. Results derived from different CATE models are available in Electronic Companion EC.3 and EC.4.

Specifically, we develop a gradient boosting scheme that improves model accuracy without the

need for data denoising. Therefore, this approach enhances targeting performance while ensuring

the same level of privacy guarantees in the data.

Furthermore, we propose a novel local learning with global optimization method, which signif-

icantly reduces the bias in the calibration process caused by LDP’s noise and overfitting. We

evaluate the performance of our proposed method using both simulation analyses and empirical

tests on real-world marketing data. The results demonstrate that our solution outperforms exist-

ing methods and various alternative benchmarks in terms of predictive accuracy and targeting

performance.

Our work has several limitations, which suggest promising directions for future research. Firstly,

we have characterized the impact of LDP on CATE estimation, providing key insights into how

privacy-preserving methods can affect firms’ ability to develop targeted interventions. However,

the implications of LDP are far-reaching and extend beyond targeting. Future research could
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examine the impact of LDP on other marketing problems, such as demand estimation and product

recommendations, and develop new methods that are robust to this noise.

Secondly, we focus on scenarios where firms develop targeting policies based on predicted CATEs.

However, the impact of LDP on other targeting methods is also worth exploring. For instance, the

policy learning framework (e.g., Kitagawa and Tetenov 2018, Athey and Wager 2021) generates a

proxy for the CATE and determines the individuals to be targeted by machine learning models

that classify which individuals have positive CATEs. Although our method can also be utilized to

enhance the quality of the proxy CATE, it would be interesting to investigate if we can directly

enhance policy development, possibly by utilizing more robust machine learning models, to improve

targeting ability when data is protected by LDP.

Thirdly, although we have quantified the uncertainty of the proposed algorithm in simulations

using bootstrapping, we have yet to propose a theoretically justified method for constructing con-

fidence intervals for the post-processed CATE. This challenge, largely driven by the complexity

of our highly adaptive algorithm, could potentially be addressed by leveraging recent advance-

ments in conformal inference, a statistical technique that offers valid prediction intervals under

minimal assumptions (e.g., Shafer and Vovk 2008, Lei et al. 2018, Lei and Candès 2021). This

integration could provide a measure of the uncertainty associated with these predictions, thereby

complementing our current emphasis on predictive accuracy and targeting performance.

Finally, there is potential to further enhance our proposed algorithm. For example, we currently

use the same validation set for both subgroup selection and determining the stopping time for the

algorithm, which could lead to overfitting the validation set (Varma and Simon 2006, Cawley and

Talbot 2010). Several innovative methods have been proposed to tackle this issue by improving

algorithmic stability through information theory (Russo and Zou 2016) or differential privacy

(Dwork et al. 2015). It would be useful to integrate these methods into our model auditing and

calibration approach to further improve the stability and effectiveness of our proposed solution.
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Electronic Companion

EC.1. Proofs for Theoretical Results

In the main document, we consider the class of estimators that can be written as the weighted

average outcomes (as described in Assumption 2) for simplicity. In the following theoretical proofs,

we extend our consideration to other CATE models that incorporate adjustment functions to reduce

observed heterogeneity in outcomes, such as the R-learner (Nie and Wager 2021) and DR-learner

(Kennedy 2020a). We start by describe the extended class of CATE estimators:

Assumption EC.1. (Extended Class of CATE Estimator) For a given individual with

covariates xnew, the predicted CATE pτpxnew|Do,Dℓ,Dmq can be expressed as the difference between

two (adjusted) outcome estimators, pµ0 and pµ1, in the following form:

pµwpxnewq “
ÿ

iPIo:Wi“w

pℓwi pxnew|DℓqrYi ´ pmwpXi|Dmqs,

where Io denotes the set of individuals used to impute the two outcome predictions, Dℓ “

tX ℓ,Yℓ,Wℓu represents the data used to construct the weight function pℓwi pxnew|Dℓq, and Dm “

tXm,Ym,Wmu is the data used to determine the adjustment function pmwpXi|Dmq. We also denote

Do “ tX o,Yo,Wou as the experiment data of individuals in Io, Furthermore, we assume that the

estimation process of the CATE model satisfy the following conditions:

1. (Honest Estimation) The weight function is independent of Yj, @j P Do. In other words, Dℓ is

either independent of Do or depends only on the covariate values of individuals in Io.

2. (Cross Fitting) The adjustment function is either zero or constructed from the dataset Dm

that is independent of both Do and Dℓ.

In comparison to Assumption 2, the only distinction here is the incorporation of an adjustment

function to account for the observed heterogeneity in the outcome. To arrive the theoretical results

presented in the main document, we can can simply set any terms related to pmwpX|Dmq as zero.

EC.1.1. Proof for Theorem 1.

For Theorem 1 and Theorem 2, we impose the following smoothness assumptions:

Assumption EC.2. (Smoothness Conditions)

1. (Differentiability) The weight function pℓwi pxnew,Dℓq, and the pmwpXi,Dℓq are K-th-time con-

tinuously differentiable for some K ą 1. We also assume that the true CATE function τpxnewq

is also K-th-time continuously differentiable.10

10 While the weight function is not differentiable for tree-based methods, we can use the differentiable smooth bump
function (Fry and McManus 2002) to approximate the weight function. Therefore, the Taylor approximation of the
bias is still applicable for tree-based methods.
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2. (Bounded Sensitivity) The sensitivity of the weight function towards a specific covariate of

each individual is bounded by a dominating function with a finite integral. That is, for any

customer i and covariate p, we have
ˇ

ˇ

ˇ

ˇ

ˇ

pℓwi pxi,p ` δi,p,x´pi,pqq ´ pℓwi pxi,p,x´pi,pqq

δi,p

ˇ

ˇ

ˇ

ˇ

ˇ

ă gpxi,p,x´pi,pqq

for any value of x´pi,pq and bounded δi,p, where
ş8

´8
gpxi,p,x´pi,pqqdx´pi,pq ă 8. Similarly, we

assume that the the adjustment function satisfies the bounded sensitivity assumption. This

condition ensures that the derivative and expectation operators are exchangeable.

We now present the extended version of Theorem 1 and provide the proof.

Theorem EC.1. (Extended Version of Theorem 1) Suppose that the CATE model is an

unbiased estimator of the true CATE function in the absence of LDP protection. Further, assume

that both pτ and τ satisfy the smoothness conditions detailed in Electronic Companion EC.1.1,

allowing for the use of a Taylor approximation. In the scenario as described above, the bias in the

predicted CATE can be written as

E rpτprxnewq ´ τpxnewqs « ∆τ pxnewq
loooomoooon

Bias driven by ηnew

`
ÿ

iPIo: Wi“1

∆1
i pxnewq ´

ÿ

iPIo: Wi“0

∆0
i pxnewq

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Bias driven by noises injected into the experiment set

.

Specifically, the bias resulting from noise injected into the covariates of the new individual is given

by ∆τ pxnewq “
řK

k“1
1
k!
σktrace

`

Bk
xnew

τpxnewq
˘

. The bias introduced by noises in the experimental set

can be further broken down into three components: the effects on the weight function, the effects

on the adjustment function, and the interaction between these two functions, as expressed by

∆w
i pxnewq “ ∆ℓw

i pxnewqE rYi ´ pmwpXi,Dmqs
looooooooooooooooooomooooooooooooooooooon

Impact on weight

´ E
”

pℓwi pxnew,Dℓq

ı

∆mw

i pxnewq
looooooooooooooooomooooooooooooooooon

Impact on adjustment

´ ∆ℓw

i pxnewq∆mw

i pxnewq,

where ∆ℓw

i pxnewq “
řK

k“1
1
k!
σktrace

´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

represents the product of the

noise magnitude and the average sensitivity of the weight function, and ∆mw

i pxnewq “
řK

k“1
1
k!
σktrace

`

E
“

Bk
Xi,Xm pmwpXi,Dmq

‰˘

is the product of the noise magnitude and the average

sensitivity of the adjustment function.

Proof: For all the following proofs, we denote rDℓ, rDm, rDo as the noise-injected experiment data.

First, by the unbiasedness assumption of pτ , we can write the bias as

E rpτprxnewqs ´ τpxnewq “ E
”

r

pµ1prxnewq ´ r

pµ0prxnewq

ı

´E
“

pµ1pxnewq ´ pµ0pxnewq
‰

“ E
”

r

pµ1prxnewq ´ pµ1pxnewq

ı

´E
”

r

pµ0prxnewq ´ pµ0pxnewq

ı

,
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where r

pµwprxnewq “
ř

iP rDo:Wi“w
pℓwi prxnew| rDℓqrYi ´ pmwprXi| rDmqs is the implied outcome model under

LDP protection. Therefore, to quantify the bias, our goal is to derive the bias of the implied

outcome models, i.e.,

E
”

r

pµwprxnewq ´ pµwpxnewq

ı

.

We start by considering the bias for each individual i in Do with treatment assignment w. We

can write the total impact of the injected noises on the predicted CATE can be written as

pℓwi prxnew| rDℓq

”

Yi ´ pmwprXi| rDmq

ı

´ pℓwi pxnew|Dℓq rYi ´ pmwpXi|Dmqs

“

”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı

Yi ´ pℓwi prxnew| rDℓqpmwprXi| rDmq ` pℓwi pxnew|DℓqpmwpXi|Dmq

“

”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı

rYi ´ pmwpXi|Dmqs ´ pℓwprxnew| rDℓq

”

pmwprXi| rDmq ´ pmwpXi|Dmq

ı

“

”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı

rYi ´ pmwpXi|Dmqs
looooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooon

Ai

´

”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı”

pmwprXi| rDmq ´ pmwpXi|Dmq

ı

looooooooooooooooooooooooooooooooooooooomooooooooooooooooooooooooooooooooooooooon

Bi

´

pℓwi pxnew|Dℓq

”

pmwprXi| rDmq ´ pmwpXi|Dmq

ı

looooooooooooooooooooooooooomooooooooooooooooooooooooooon

Ci

.

(EC.1)

Now, our objective is to determine the approximate discrepancies in the weight and adjustment

functions, namely, pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq and pmwprXi| rDmq ´ pmwpXi|Dmq. Using Taylor approx-

imation, the approximate deviation in weight functions due to the introduced noises in rxnew and

rX ℓ can be written as:

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq «

K
ÿ

k“1

ˆ

1

k!
Bk
xnew,X ℓ

pℓwi pxnew|Dℓq

˙

η˝k
xnew,X ℓ ,

where Bk
xnew,X ℓ

pℓwi pxnew|Dℓq is the k-th order derivative of pℓwi pxnew|Dℓq with respect to xnew and X ℓ,

ηxnew,X ℓ denotes the noises being injected to xnew and X ℓ, and Z˝k represents a vector or matrix

where each element is raised to the power k from the corresponding element in Z.

Similarly, we can write the impact of injected noises on the adjustment function as:

pmwprXi| rDmq ´ pmwpXi|Dmq «

K
ÿ

k“1

ˆ

1

k!
Bk
Xi,Xm pmwpXi|Dmq

˙

η˝k
Xi|Dm .
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Using the above Taylor approximations and the fact that Yi, i P Do, Dℓ, and Dm are independent,

we can write the expectation of Ai in Equation (EC.1) as

E rAis “ E
”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı

loooooooooooooooooomoooooooooooooooooon

«
řK

k“1

ˆ

1
k! Bk

xnew,Xℓ
pℓwi pxnew|Dℓq

˙

η˝k
xnew,Xℓ

E rYi ´ pmwpXi|Dmqs

« E rYi ´ pmwpXi|Dmqs ¨

K
ÿ

k“1

1

k!
σktrace

´

E
”

Bk
xnew,X ℓ

pℓwi pxnew|Dℓq

ı¯

.

Similarly, the expectation of Bi in Equation (EC.1) can be written as

E rBis “ E
”

pℓwi prxnew| rDℓq ´ pℓwi pxnew|Dℓq

ı

E
”

pmwprXi| rDmq ´ pmwpXi|Dmq

ı

«

˜

K
ÿ

k“1

1

k!
σktrace

´

E
”

Bk
xnew,X ℓ

pℓwi pxnew|Dℓq

ı¯

¸

ˆ

˜

K
ÿ

k“1

1

k!
σktrace

`

E
“

Bk
Xi,Xm pmwpXi|Dmq

‰˘

¸

.

Finally, the expectation of Ci in Equation (EC.1) can be written as

E rCis “ E
“

ℓwprxnew|Dℓq
‰

E
”

pmwprXi| rDmq ´ pmwpXi|Dmq

ı

« E
”

pℓwi pxnew,Dℓq

ı

¨

K
ÿ

k“1

1

k!
σktrace

`

E
“

Bk
Xi,Xm pmwpXi|Dmq

‰˘

.

Next, we try to isolate the impact of imperfect measurement of rxnew when we have access to the

oracle CATE function τprxnewq. Note that by the unbiasedness assumption of pτ , we have

τpxnewq “ E rpτpxnewqs

“
ÿ

iPIo: Wi“1

E
”

pℓ1i pxnew,Dℓq

ı

`

E
“

Yip1q ´ pm1pXi|Dmq
‰˘

´

ÿ

iPIo: Wi“0

E
”

pℓ0i pxnew,Dℓq

ı

`

E
“

Yip0q ´ pm0pXi|Dmq
‰˘

.

As a result, we have

Bk
xnew

τpxnewq “
ÿ

iPIo: Wi“1

E
”

Bk
xnew

pℓ1i pxnew|Dℓq

ı

E
“

Yip1q ´ pm1pXi|Dmq
‰

´

ÿ

iPIo: Wi“0

E
”

Bk
xnew

pℓ0i pxnew|Dℓq

ı

E
“

Yip0q ´ pm0pXi|Dmq
‰

.

Using the fact that

trace
´

E
”

Bk
xnew,X ℓ

pℓwi pxnew|Dℓq

ı¯

“ trace
´

E
”

Bk
xnew

pℓwi pxnew|Dℓq

ı¯

` trace
´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

,
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we can further write the bias caused by Ai as follows:

ÿ

iPIo: Wi“1

ErAis ´
ÿ

iPIo: Wi“0

ErAis

«

K
ÿ

k“1

1

k!
σktrace

`

Bk
xnew

τpxnewq
˘

`
ÿ

iPIo: Wi“1

E rYi ´ pmwpXi|Dmqs ¨

K
ÿ

k“1

1

k!
σktrace

´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

´

ÿ

iPIo: Wi“0

E rYi ´ pmwpXi|Dmqs ¨

K
ÿ

k“1

1

k!
σktrace

´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

.

Combining all of them together, we can write the bias of the predicted CATE as

E rpτprxnewqs ´ τpxnewqE
”

r

pµ1prxnewq ´ pµ1pxnewq

ı

´E
”

r

pµ0prxnewq ´ pµ0pxnewq

ı

“
ÿ

iPIo: Wi“1

ErAi ´Bi ´Cis ´
ÿ

iPIo: Wi“0

ErAi ´Bi ´Cis

“ ∆τ pxnewq`

ÿ

iPIo: Wi“1

E
“

Yi ´ pm1pXi|Dmq
‰

¨∆ℓ1

i pxnewq ´
ÿ

iPIo: Wi“0

E
“

Yi ´ pm0pXi|Dmq
‰

¨∆ℓ0

i pxnewq´

ÿ

iPIo: Wi“1

E
”

pℓ1i pxnew,Dℓq

ı

¨∆m1

i pxnewq ´
ÿ

iPIo: Wi“0

E
”

pℓ0i pxnew,Dℓq

ı

∆m0

i pxnewq´

ÿ

iPIo: Wi“1

∆ℓ1

i ∆m1

i ´
ÿ

iPIo: Wi“0

∆ℓ0

i ∆m0

i ,

where ∆τ pxnewq “
řK

k“1
1
k!
σktrace

`

Bk
xnew

τpxnewq
˘

, ∆ℓw

i pxnewq “

řK

k“1
1
k!
σktrace

´

E
”

Bk
X ℓ
pℓwi pxnew|Dℓq

ı¯

, and ∆mw

i pxnewq “
řK

k“1
1
k!
σktrace

`

E
“

Bk
Xi,Xm pmwpXi|Dmq

‰˘

.

EC.1.2. Proof for Theorem 2

Proof: By Law of Total Variance, we have the following variance decomposition:

Varrpτprxnew| rDo, rDℓ, rDmqs

“ EDo,Dℓ,Dm

!

Varηrpτprxnew| rDo, rDℓ, rDmq|Do,Dℓ,Dms

)

`

VarDo,Dℓ,Dm

!

Eηrpτprxnew| rDo, rDℓ, rDmq|Do,Dℓ,Dms

)

,

(EC.2)

where η denotes the noises injected into the covariates.

First, note that the Taylor approximation of pτprxnew| rDo, rDℓ, rDmq is

pτprxnew| rDo, rDℓ, rDmq « pτpxnew|Do,Dℓ,Dmq `

K
ÿ

k“1

1

k!

”

Bk
xnew,Xo,X ℓ,Xmpτpxnew|Do,Dℓ,Dmq

ı

η˝k,

For simplicity, we use Bk in the rest of the proof to denote Bk
xnew,Xo,X ℓ,Xm .
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Then, we have

Varηrpτprxnew| rDo, rDℓ, rDmq|Do,Dℓ,Dms « Varη

«

pτpxnew|Do,Dℓ,Dmq `

K
ÿ

k“1

1

k!

“

Bk
pτpxnew|Do,Dℓ,Dmq

‰

η˝k

ff

“

K
ÿ

k“1

1

k!
Var

“

ηk
i,p

‰

trace
`

Bk
pτpxnewq˝2

˘

.

Therefore, the first term in Equation EC.2 can be written as

EDo,Dℓ,Dm

!

Varηrpτprxnew| rDo, rDℓ, rDmq|Do,Dℓ,Dms

)

«

K
ÿ

k“1

1

k!
Var

“

ηk
i,p

‰

E
“

trace
`

Bk
pτpxnewq˝2

˘‰

.

Similarly, we can write the second term as

VarDo,Dℓ,Dm

␣

Eηrpτprxnew|Do,Dℓ,Dmq|Do,Dℓ,Dms
(

« VarDo,Dℓ,Dm

#

pτpxnew|Do,Dℓ,Dmq `

K
ÿ

k“1

1

k!
σk

“

Bk
pτpxnew|Do,Dℓ,Dmq

‰

q

+

“ VarDo,Dℓ,Dm

“

pτpxnew|Do,Dℓ,Dmq
‰

`VarDo,Dℓ,Dm

«

K
ÿ

k“1

1

k!
σktrace

`

Bk
pτpxnew|Do,Dℓ,Dmq

˘

ff

`

2
K
ÿ

k“1

1

k!
σkCovDo,Dℓ,Dm

␣

pτpxnew|Do,Dℓ,Dmq, trace
`

Bk
pτpxnew|Do,Dℓ,Dmq

˘(

“ VarDo,Dℓ,Dm

“

pτpxnew|Do,Dℓ,Dmq
‰

`

K
ÿ

k“1

1

pk!q2
σ2
kVar

“

trace
`

Bk
pτpxnew|Do,Dℓ,Dmq

˘‰

`

ÿ

k1‰k2

1

k1!

1

k2!
σk1σk2Ak1,k2 ` 2

K
ÿ

k“1

1

k!
σkBk,

where Ak1,k2 “ CovDo,Dℓ,Dm

“

trace
`

Bk1
pτpxnew|Do,Dℓ,Dmq

˘

, trace
`

Bk2
pτpxnew|Do,Dℓ,Dmq

˘‰

and

Bk “ CovDo,Dℓ,Dm

␣

pτpxnew|Do,Dℓ,Dmq, trace
`

Bk
pτpxnew|Do,Dℓ,Dmq

˘(

.

Combining these two terms together, we have

Var
”

pτprxnew|rxnew, rDo, rDℓ, rDmq

ı

“ VarDo,Dℓ,Dm

“

pτpxnew|Do,Dℓ,Dmq
‰

`

K
ÿ

k“1

1

k!
Var

“

ηk
i,p

‰

E
“

trace
`

Bk
pτpxnewq˝2

˘‰

`

K
ÿ

k“1

1

pk!q2
σ2
kVar

“

trace
`

Bk
pτpxnew|Do,Dℓ,Dmq

˘‰

`

ÿ

k1‰k2

1

k1!

1

k2!
σk1σk2Ak1,k2 ` 2

K
ÿ

k“1

1

k!
σkBk.



e-companion to Author: Debiasing by Model Auditing and Calibration ec7

EC.1.3. Proof for Theorem 3.1

Proof: Note that by the unbiasedness assumption of pτ , pτ
rY pxq is an unbiased estimator of

ErrYi|Xi “ x,Wi “ 1s ´ErrYi|Xi “ x,Wi “ 0s

“ ErYi ` ηi|Xi “ x,Wi “ 1s ´ErYi ` ηi|Xi “ x,Wi “ 0s

“ ErYi|Xi “ x,Wi “ 1s ´ErYi|Xi “ x,Wi “ 0s ` pErηi|Xi “ x,Wi “ 1s ´Erηi|Xi “ x,Wi “ 1sq

“ ErYi|Xi “ x,Wi “ 1s ´ErYi|Xi “ x,Wi “ 0s “ τpxq.

Therefore, pτ
rY pxq is also an unbiased estimator of τpxq.

EC.1.4. Proof for Theorem 3.2

To prove Theorem 3.2 in the presence of adjustment functions, we need to impose the following

assumption on the class of them to bound their variance.

Assumption EC.3. The adjustment function, pmwpx|Dmq, can be written as pmwpXi|Dmq “
ř

jPDm SjpxqYj, where Sj is (i) independent of any outcome information or (ii) can be represented

as a potentially n-nearest-neighbors estimator as described in Wager and Athey (2018).

Note that (i) includes methods such as kernel regression and nearest neighbor models, while (ii) is

specifically designed for tree-based methods.

Proof for Theorem 3.2 Since the experiment data are i.i.d. samples, the variance of the pre-

dicted CATEs can be written as

Varrpτ
rY pxnewqs

“
ÿ

iPIo:Wi“1

Var
!

pℓ1i pxnew| rDℓqrYi ` ηi ´ pm1pXi| rDmqs

)

`

ÿ

iPIo:Wi“0

Var
!

pℓ0i pxnew| rDℓqrYi ` ηi ´ pm0pXi| rDmqs

)

.

Note that for each individual i, we can write its variance as

Vartpℓwi pxnew| rDℓqrYi ` ηi ´ pmwpXi|Dmqsu

“ E
!

rpℓwi pxnew| rDℓqs2
)

VarrYi ` ηi ´ pmwpXi| rDmqs`

Varrpℓwi pxnew| rDℓqsE2
”

Yi ` ηi ´ pmwpXi| rDmq

ı

(EC.3)

Now, our goal is to bound the variance by showing (a) the variance of pmwpXi|Dmqs scale with

Varrηis, (b) the expectation of the adjustment function do not scale with Varrηis, and (iii) terms

related to pℓwi pxnew| rDℓq do not scale with Varrηis.
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To show (a), note that the variance of the adjustment function can be written as:

VarrpmwpXi| rDmqs “
ÿ

jPDm

VarrSjpXiqpYj ` ηjqs “

ÿ

jPDm

VarrSjpXiqYjs `
ÿ

jPDm

VarrSjpXiqsVarrηjs

ÿ

jPDm

VarrSjpXiqYjs `

$

’

&

’

%

VarrSjpXiqs Erη2
j s

loomoon

“Varrηj s

`E2rSjpXiqsVarrηjs

,

/

.

/

-

“ ΘpVarrηjsq.

For Assumption EC.3 (i), since SjpXiq is independent of the outcome (and therefore ηj), all the

terms with respect to SjpXiq in constant in Varrηjs. Therefore, Varrpm
wpXi| rDmqs “ ΘpVarrηjsq. For

Assumption EC.3 (ii), by the fact from Wager and Athey (2018) that 1
2pn´1q|Dm|

À VarrSjpXiq À

1
pn´1q|Dm and ErSjpXiqs ď 1

n
, we can see that VarrpmwpXi| rDmqs “ ΘpVarrηjsq.

To show (b), note that the expectation of the adjustment function satisfying Assumption EC.3

(i) is

ErpmwpXi| rDmqs “
ÿ

jPDm

ErSjpXiqpYj ` ηjqs “
ÿ

jPDm

ErSjpXiqsErYj ` ηjs “
ÿ

jPDm

ErSjpXiqspErYjs `Erηjsq.

Therefore, ErpmwpXi| rDmqs “ ΘpErηjsq. For the adjustment function satisfying Assumption EC.3 (ii),

since 0 ď SjpXiq ď 1{|Dm|, we have

´
ÿ

jPDm

1

|Dm|
|ErYj ` ηjs|

loooooooooooooomoooooooooooooon

“´
ř

jPDm
1

|Dm|
|ErYj s|

ď ErpmwpXi| rDmqs “
ÿ

jPDm

ErSjpXiqpYj ` ηjqs ď
ÿ

jPDm

1

|Dm|
|ErYj ` ηjs|

loooooooooooomoooooooooooon

“
ř

jPDm
1

|Dm|
|ErYj s|

Therefore, it does not scale with Erηjs or Varrηjs.

Now, we consider the case when the weight function does not use the outcome information. In

this case, we have pℓwi pxnew| rDℓq “ pℓwi pxnew|Dℓq. We can write the variance as:

Vartpℓwi pxnew|DℓqrYi ` ηi ´ pmwpXi| rDmqsu

“ E
!

rpℓwi pxnew|Dℓqs2
)

looooooooooomooooooooooon

”Cw
1

´

VarrYi ´ pmwpXi| rDmqs `Varrηis
¯

`

Varrpℓwi pxnew|Dℓqs
looooooooomooooooooon

”Cw
2

ErYi ` ηi ´ pmwpXi| rDmqs.

Note that

VarrYi ´ pmwpXi| rDmqs

“ VarrYis `VarrpmwpXi| rDmqs ´ 2
a

VarrYis

b

VarrpmwpXi| rDmqsCorrYi, pm
wpXi| rDmqs

“ ΘpVarrηisq ´Θp
a

Varrηisq “ ΘpVarrηisq.
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Similarly, we have

E2rYi ` ηi ´ pmwpXi| rDmqs “ E2rYis `E2rpmwpXi| rDmqs `E2rηis`

´ 2ErYisErpmwpXi| rDmqs ´ 2ErηisErpmwpXi| rDmqs
loooooooooooomoooooooooooon

“ΘpE2rηisq

`2ErYisErηis.

Note that this term does not scale with Varrηis as Erηis “ 0 the Laplace or Gaussian mechanisms.

For response randomization, this term is ΘpVarrηisq as Erηis “ ΘpVarrηisq and E2rηis “ ΘpVarrηisq.

As a result, we have Vartpℓwi pxnew|DℓqrYi ` ηi ´ pmwpXi| rDmqsu “ ΘpVarrηisq, which implies that

Varrpτ
rY pxnewqs “ ΘpVarrηisq.

For the case when the weight depends on the outcome information, we only consider tree-based

models, such as Causal Forest as it is the most common, if not the only, case in which the weight

depends on the outcome information. Note that for this class of models, the induced outcome

models are also potentially n-nearest neighbors estimators for some n (as shown by Wager and

Athey (2018)). Therefore, we have

1

2pn´ 1q|Dℓ|
À Varrpℓwi pxnew|Dℓqs À

1

pn´ 1q|Dℓ|
and 0 ď Erpℓwi pxnew|Dℓqs ď

1

|Dℓ|
.

As a result, E
!

rpℓwi pxnew| rDℓqs2
)

and Varrpℓwi pxnew| rDℓqs in Equation (EC.3) will not scale with the

variance of the noise. On the other hand, the remaining terms in Equation (EC.3) are ΘpVarrηisq

functions based on the above analysis. Consequently, we can conclude that Varrpτ
rY pxnewqs “

ΘpVarrηisq.
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EC.1.5. Proof for Proposition 1

Proof for Proposition 1.1: By Taylor approximation, we can write

∆ℓ,w
i ” pℓwi prxnew, rDℓq ´ pℓwi pxnew|Dℓq «

K
ÿ

k“1

ˆ

1

k!
Bk
xnew,X ℓ

pℓwi pxnew|Dℓq

˙

η˝k
xnew,X ℓ ,

∆m,w
i ” pmwprXi, rDmq ´ pmwpXi,Dmq «

K
ÿ

k“1

ˆ

1

k!
Bk
Xi,Xm pmwpXi,Dmq

˙

η˝k
Xi,Xm .

Then, the predicted CATE can be written as:

pτprxnewq “ pτpxnewq`

ÿ

iPIo:Wi“1

∆ℓ,1
i rYi ´ pm1pXi|Dmqs ´

ÿ

iPIo:Wi“1

pℓ1i pxnew|Dℓq∆m,1
i ´

ÿ

iPIo:Wi“1

∆ℓ,1
i ∆m,1

i ´

ÿ

iPIo:Wi“0

∆ℓ,0
i rYi ´ pm0pXi|Dmqs `

ÿ

iPIo:Wi“0

pℓ0i pxnew|Dℓq∆m,0
i `

ÿ

iPIo:Wi“1

∆ℓ,0
i ∆m,0

i .

Therefore, the larger absolute values of η, the more extreme the predicted CATE pτprxnewq becomes.

Additionally, the greater the magnitudes of
řK

k“1

´

1
k!

Bk
pℓwi pxnew|Dℓq

¯

and
řK

k“1

`

1
k!

Bk
pmwpXi,Dmq

˘

,

the more significant the influence of the injected noise on the predicted CATE will be.

Proof for Proposition 1.2 For an unseen individual with covariates xnew, we can express the

predicted CATE as follows:

pτpxnewq “
ÿ

iPIo:Wi“1

pℓ1i pxnew|DℓqrYi ´ pm1pXi|Dmqs ´
ÿ

iPIo:Wi“0

pℓ0i pxnew|DℓqrYi ´ pm0pXi|Dmqs

“
ÿ

iPIo:Wi“1

pℓ1i pxnew|DℓqrYi ` ηi ´ pm1pXi|Dmqs´

ÿ

iPIo:Wi“0

pℓ0i pxnew|DℓqrYi ` ηi ´ pm0pXi|Dmqs.

Therefore, for i P Do:

1. For those who are treated (i.e., Wi “ 1), the injected noise ηi is positively correlated with

pτpxnewq if pℓ1i pxnew|Dℓq ą 0 and negatively correlated if pℓ1i pxnew|Dℓq ă 0.

2. For those who are untreated (i.e., Wi “ 0), the injected noise ηi is positively correlated with

pτpxnewq if pℓ0i pxnew|Dℓq ă 0 and negatively correlated if pℓ0i pxnew|Dℓq ą 0.

Therefore, when ηi is extreme, the predicted CATE will also be extremely high or low.
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EC.2. Further Details about the Simulation Analyses

In this appendix, we provide implementation details about the simulation analyses described in

Section 5 of the main document and present robustness checks.

EC.2.1. Details on Model Specifications

Constructing the CATE proxy

To construct Robinson’s transformation, we use a propensity score (pe) of 0.5 as the treatment

assignment is completely randomized. We evaluate three candidate models for the conditional mean

(pm) : linear regression, linear regression with interactions, and regression forest. We use 1,000 indi-

viduals (500 treated and 500 non-treated) as the training set and 2,000 individuals (1,000 treated

and 1,000 non-treated) as the holdout evaluation set. This is reflective of the sample size when

performing model calibration for an experiment set with 3,000 individuals. Table EC.1 presents

the mean squared error of each model in predicting Yi. Given that linear regression with interac-

tions results in the smallest prediction error, we select it as our preferred model for Robinson’s

transformation. During the calibration process, we also utilize a linear regression with interactions

to construct calibrators. Note that the model used for the conditional mean in the Robinson’s

transformation as well as the calibration process do not follow the same specification as the data

generating process. Yet, the algorithm is still able to reduce the MSE of the CATE predictions.

Table EC.1 MSE of Conditional Mean Outcome Models: Simulation Data

Scenario 1: LDP-Protected Covariates

Privacy Linear Regression Linear Regression with Interactions Random Forest

No 146.1 80.2 110.1

Very Low 161.5 82.6 117.7

Low 171.4 99.1 142.3

Medium 174.3 120.8 148.1

High 204.2 144.4 177.3

Very High 215.0 168.7 195.8

Scenario 2: LDP-Protected Outcome

Privacy Linear Regression Linear Regression with Interactions Random Forest

No 146.1 80.2 110.1

Very Low 170.9 93.1 135.8

Low 179.3 110.7 144.6

Medium 223.4 151.4 198.4

High 272.7 204.4 241.1

Very High 338.6 285.3 326.6

Constructing the initial CATE model

Regarding the initial CATE model, we consider three different types of CATE estimation meth-

ods. These include:
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1. Causal Forest (Wager and Athey 2018): which is the model used in all results presented in the

main document. We implement causal forest using the grf package with default parameters.

2. T-learner (Künzel et al. 2019): We also evaluate the results when using t-learner; these are

presented in Electronic Companion EC.2.3.1. To do so, we construct two separate regression

models to estimate ErYi|Wi, rXis, one for the treatment group and another for the control

group, and take the difference between the predicted outcomes as our predicted CATEs. (We

use random forests with default parameters as provided in the grf package when estimating

each (separate) regression model.)

3. R-learner (Nie and Wager 2021): We also evaluate the performance of our solution when

using R-learner as initial CATE; results are presented in Electronic Companion EC.2.3.1. We

implement the R-learner following Nie and Wager (2021), with two-fold cross-fitting, and build

all the models using random forest with default parameters in the grf package.

EC.2.2. Determine Number of Subgroups and Number of Iterations

In this section, we investigate the sensitivity of our solution to the pre-specified number of subgroups

(Q) and the number of iterations (R). We start by illustrating the bias-variance trade-offs for

the number of subgroups. Figure EC.1 displays the predictive error metrics when applying the

proposed solution with varying values of Q. As we increase the number of subgroups, the bias

decreases for both scenarios, while the variance correspondingly increases. This outcome showcases

a classic bias-variance trade-off commonly observed in machine learning models: increasing model

complexity may enhance precision but concurrently introduce additional variability. Notably, when

the outcome is protected by LDP, changes in Q do not significantly affect overall accuracy. On the

other hand, when the covariates are protected by LDP, using the smallest value of Q achieves the

lowest MSE.

Figure EC.2 illustrates the step size ρ
rrs

q‹ in each iteration (capped at 50 iterations) when applying

the proposed solution with varying numbers of subgroups (i.e., varying values of Q). Generally, the

step sizes approach zero before the completion of the first Q iterations, regardless of the chosen

value for Q. This observation suggests that performing R “ Q iterations is typically sufficient for

the proposed solution, thereby providing a practical guideline for setting this hyperparameter.

EC.2.3. Robustness Checks for Different Initial CATE models

As described in Section EC.2.1, we evaluate the performance of three different approaches for

the initial CATE model. The main manuscript includes the results using Causal Forest and this

appendix presents the results for the other two methods. Overall, Causal Forests result in the

highest predictive accuracy and best targeting performance. In addition, regardless of the initial

CATE models, our proposed solution yields to the smallest predictive error and best targeting

performance with varying privacy levels and experiment sample sizes.
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Figure EC.1 Predictive Errors of Proposed Method with Varying Numbers of Subgroups
(a) Scenario 1: LDP-Protected Covariates (σ “ 0.5)
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(b) Scenario 2: LDP-protected Outcome (σ “ 10)
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point. The results presented here are based

on the use of Causal Forest as the initial CATE model.

Figure EC.2 Step Size in Each Iteration
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Note: Each point is calculated by averaging the mean step size over 100 bootstrap replications. We present results from the

case when the outcome is protected by LDP with σ “ 10, but the pattern remains the same across different scenarios. We use

Causal Forest as the initial CATE model.

EC.2.3.1. T-learner. First, we present the predictive errors of various methods when using

T-learner as the initial CATE model. (The corresponding results for causal forest are presented

in Figure 2 and Table 1 of the main manuscript.) As seen in Figure EC.3, our proposed method

exhibits similar performance to the global approach when privacy levels are relatively low, and

outperforms the global approach at higher privacy levels. This observation is also reflected in

Table EC.2, which reports the AUTOC values of different approaches at varying privacy levels. In

addition, all the post-processing methods yield smaller predictive errors and higher AUTOC values

than the default approach across all privacy levels. This highlights the value of iteratively refining

the T-learner model using simpler models.
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Figure EC.3 Predictive Errors of Different Methods Across Varying Privacy Levels: T-learner

(a) Scenario 1: LDP-Protected Covariates
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(b) Scenario 2: LDP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point.

Table EC.2 AUTOC Values of Different Methods Across Varying Privacy Levels: T-learner

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 4.09 (100%) 4.14 (100%) 3.49 (90%) 3.34 4.09 (100%) 4.14 (100%) 3.49 (90%) 3.34

Very Low 4.04 (100%) 4.06 (100%) 3.46 (88%) 3.28 4.08 (100%) 4.10 (100%) 3.44 (88%) 3.30

Low 4.01 (100%) 4.01 (100%) 3.39 (85%) 3.25 3.97 (100%) 3.96 (100%) 3.39 (85%) 3.25

Medium 3.56 (100%) 3.52 (99%) 3.08 (90%) 2.91 3.90 (100%) 3.84 (99%) 3.36 (93%) 3.18

High 3.53 (100%) 3.47 (98%) 3.03 (86%) 2.89 3.78 (100%) 3.64 (98%) 3.32 (96%) 3.09

Very High 3.27 (100%) 3.12 (96%) 2.83 (88%) 2.67 3.63 (100%) 3.43 (96%) 3.18 (92%) 2.96

Note: We report the average of 100 simulation replications, along with the percentage of replications in which the AUTOC

value of the focal method is greater than the AUTOC value of the default approach (given in parentheses).
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Figure EC.4 displays the key error metrics of various approaches, constructed using different

experiment data sizes. (The corresponding results for causal forest are presented in Figure 3 and

Table 2 of the main manuscript.) When the sample size is small, our proposed solution signifi-

cantly outperforms the global method. However, the performance of both methods converges as

the sample size increases. This underscores the value of local learning as a method to identify the

most informative individuals, especially in scenarios with small sample sizes and high noise. This

observation is further corroborated by the AUTOC values in Table EC.3.

Figure EC.4 Predictive Errors of Different Methods with Varying Sample Sizes: T-learner

(a) Scenario 1: LDP-Protected Covariates

MSE Squared Bias Variance

3k 6k 12k 18k 24k 30k 3k 6k 12k 18k 24k 30k 3k 6k 12k 18k 24k 30k

5.0

10.0

15.0

20.0

Sample Size

V
al

ue

Default
Local
Global
Proposed

(b) Scenario 2: LDP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point.
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Table EC.3 AUTOC Values of Different Methods Across Varying Experiment Sample Sizes: T-learner

Sample

Size

Scenario 1: LDP-Protected Covariates (σ “ 0.5) Scenario 2: LDP-protected Outcome (σ “ 10)

Proposed Global Local Default Proposed Global Local Default

3,000 3.27 (100%) 3.12 (96%) 2.83 (88%) 2.67 3.63 (100%) 3.43 (96%) 3.18 (92%) 2.96

6,000 3.68 (100%) 3.62 (100%) 3.28 (100%) 3.08 3.95 (100%) 3.86 (100%) 3.58 (100%) 3.3

12,000 3.64 (100%) 3.62 (100%) 3.36 (100%) 3.17 4.06 (100%) 4.01 (100%) 3.69 (100%) 3.44

18,000 3.68 (100%) 3.67 (100%) 3.44 (100%) 3.26 4.10 (100%) 4.07 (100%) 3.81 (100%) 3.56

24,000 3.72 (100%) 3.72 (100%) 3.51 (100%) 3.33 4.12 (100%) 4.11 (100%) 3.86 (100%) 3.62

30,000 3.76 (100%) 3.77 (100%) 3.52 (100%) 3.34 4.12 (100%) 4.11 (100%) 3.86 (100%) 3.64

Note: We report the average of 100 simulation replications, along with the percentage of replications in which the AUTOC

value of the focal method is greater than the AUTOC value of the default approach (given in parentheses).

EC.2.3.2. R-learner. Figure EC.5 presents the MSE, squared bias, and variance of different

approaches at varying privacy levels, while Table EC.4 reports the corresponding AUTOC values.

(The corresponding results for causal forest are presented in Figure 2 and Table 1 of the main

manuscript.) The results suggest two main points: (i) our proposed solution yields the smallest

errors and best targeting performance across all privacy levels, and (ii) the effectiveness of local

learning improves as the privacy level increases.

Table EC.4 AUTOC Values of Different Methods Across Varying Privacy Levels: R-learner

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 4.41 (100%) 4.37 (95%) 4.27 (82%) 4.22 4.41 (100%) 4.37 (95%) 4.27 (82%) 4.22

Very Low 4.28 (100%) 4.25 (97%) 4.15 (81%) 4.10 4.37 (100%) 4.34 (96%) 4.22 (70%) 4.20

Low 4.26 (100%) 4.22 (98%) 4.13 (88%) 4.08 4.33 (100%) 4.28 (93%) 4.2 (92%) 4.13

Medium 4.15 (100%) 4.10 (94%) 4.05 (91%) 3.96 4.28 (100%) 4.19 (95%) 4.15 (93%) 4.05

High 4.02 (98%) 3.95 (89%) 3.93 (97%) 3.83 4.15 (98%) 4.06 (94%) 4.04 (95%) 3.90

Very High 3.73 (96%) 3.67 (94%) 3.68 (98%) 3.53 4.04 (99%) 3.96 (92%) 3.97 (99%) 3.77

Note: We report the average of 100 simulation replications, along with the percentage of replications in which the AUTOC

value of the focal method is greater than the AUTOC value of the default approach (given in parentheses).

Below we present the results when varying the sample size. (The corresponding results for causal

forest are presented in Figure 3 and Table 2 of the main manuscript.)
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Figure EC.5 Predictive Errors of Different Methods Across Varying Privacy Levels: R-learner

(a) Scenario 1: LDP-Protected Covariates
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(b) Scenario 2: LDP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point.

Table EC.5 AUTOC Values of Different Methods Across Varying Experiment Sample Sizes: R-learner

Sample

Size

Scenario 1: LDP-Protected Covariates (σ “ 0.5) Scenario 2: LDP-protected Outcome (σ “ 10)

Proposed Global Local Default Proposed Global Local Default

3,000 3.73 (96%) 3.67 (94%) 3.68 (98%) 3.53 4.01 (100%) 3.96 (90%) 3.96 (100%) 3.75

6,000 3.88 (100%) 3.81 (95%) 3.81 (100%) 3.70 4.24 (100%) 4.17 (98%) 4.15 (100%) 3.98

12,000 3.92 (100%) 3.89 (100%) 3.86 (98%) 3.77 4.40 (100%) 4.35 (100%) 4.32 (100%) 4.16

18,000 3.94 (100%) 3.92 (100%) 3.90 (100%) 3.81 4.42 (100%) 4.38 (100%) 4.35 (100%) 4.21

24,000 4.10 (100%) 4.08 (100%) 4.06 (100%) 3.98 4.45 (100%) 4.42 (100%) 4.38 (100%) 4.25

30,000 4.06 (100%) 4.04 (100%) 4.02 (100%) 3.94 4.47 (100%) 4.44 (100%) 4.41 (100%) 4.29

Note: We report the average of 100 simulation replications, along with the percentage of replications in which the AUTOC

value of the focal method is greater than the AUTOC value of the default approach (given in parentheses).
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Figure EC.6 Predictive Errors of Different Methods with Varying Sample Sizes: R-learner

(a) Scenario 1: LDP-Protected Covariates
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(b) Scenario 2: LDP-Protected Outcome
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Note: We simulate 100 replications to compute the bootstrap mean error metrics for each individual in the holdout set. We

then average the bootstrap mean over a holdout set of 10,000 individuals for each point.
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EC.3. Further Details about Hillstrom Case Study

In this section, we provide the summary statistics, implementation details, and robustness checks

for the Hillstrom case study in Section 6.3.

EC.3.1. Summary Statistics.

Table EC.6 presents the summary statistics for the Hillstrom data. The definitions of the pre-

treatment covariates are:

1. Recency: The number of months since the customer’s last purchase.

2. History: The actual dollar value the customer has spent in the past year.

3. Mens: A binary variable indicating whether the customer purchased men’s merchandise in the

past year (1 = Yes).

4. Womens: A binary variable indicating whether the customer purchased women’s merchandise

in the past year (1 = Yes).

5. Zip Code: A classification of the customer’s zip code as Urban, Suburban, or Rural

6. Newbie: A binary variable indicating whether the customer was acquired in the past twelve

months (1 = Yes).

7. Channel: The channel(s) the customer purchased from in the past year.

Table EC.6 Summary Statistics for Hillstrom Data

Discrete Variables

Variable N Unique Values Distributions

visit (Outcome) 42,693 2 0: 37,193, 1: 5,500

email (Treatment) 42,693 2 0: 21,306, 1: 21,387

mens 42,693 2 0: 19,166, 1: 23,527

womens 42,693 2 0: 19,260, 1: 23,433

newbie 42,693 2 0: 21,235, 1: 21,458

channel 42,693 3 Phone: 18,781, Website: 18,727, Multichannel: 5,185

zip code 42,693 3 Suburban: 19,275, Urban 17,098, Rural: 6,320

Continuous Variables

Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

history 42,693 241.71 254.04 29.99 65.16 158.46 326.05 3345.93

newbie 42,693 0.5 0.5 0 0 1 1 1

recency 42,693 5.76 3.5 1 2 5 9 12

EC.3.2. Covariate Balance Check

To assess covariate balance, we compare the distributions of each covariate for both treated and

non-treated customers. In particular, we use the standardized mean difference measure, which is

the mean difference between the treated and non-treated groups divided by the pooled standard

deviation. Generally, it is considered small if the value is less than 0.20 (Cohen 2013). Table EC.7
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reports the summary for the covariate balance check. Note that the standardized mean differences

are close to zero for all covariates, suggesting that the experiment is properly randomized.

Table EC.7 Covariate Balance Check for Hillstrom Data

Variable Mean Diff. Pooled St. Dev. Standardized Mean Diff.

recency 0.021 3.505 0.006

history 1.803 255.307 0.007

mens ´0.003 0.497 ´0.007

womens 0.003 0.498 0.006

newbie 0.000 0.500 0.001

channel Multichannel ´0.002 0.327 ´0.005

channel Phone 0.000 0.496 0.000

channel Web 0.001 0.496 0.003

zip code Rural 0.003 0.356 0.009

zip code Suburban ´0.003 0.498 ´0.006

zip code Urban 0.000 0.490 0.000

EC.3.3. Implementation of Local Differential Privacy

We examine two scenarios: the LDP-protected outcome and the LDP-protected covariates. In

the first scenario, we apply the randomized response mechanism described in Section 6.2, setting

p to values in the set 0.05,0.10,0.15,0.20,0.25. In the second scenario, we deploy the Laplace

mechanism for the recency variable, setting σrecency to values in the set 2,4,6,8,10, and for the

history variable, setting σrecency to values in the set 20,40,60,80,100. For all discrete variables,

we implement the randomized response mechanism, with p in the set 0.05,0.10,0.15,0.20,0.25.

EC.3.4. Model Selection and Specification

We now provide details of the specifications and computational implementations for both the

Robinson’s transformation and various calibration methods. Regarding the Robinson’s transfor-

mation, we set a constant propensity score (pe “ 0.5), considering that the experiment is completely

randomized. As for the conditional mean model (pm), we evaluate three candidate models: linear

regression, logistic regression, and regression forest. The data is split into two sets: 20% allocated

as the training set and the remaining 80% serving as the holdout set.11 The mean-squared error

(MSE) metric is reported in Table EC.8, calculated as 1
Nholdout

ř

iPholdout setrYi ´ pPpYi “ 1qs2. Linear

regression is chosen as our final model since it yields the smallest MSE.

For initial CATE estimation, we consider the following models:

(a) Causal Forest : We use the causal forest function implemented in the grf package with

200 trees and other default parameters. Note that we choose 200 trees instead the default

2,000 trees to accelerate the model training process.

11 We selected 20% customers for model training as the calibration procedure employs roughly 20% of the data to
construct the conditional mean model.
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Table EC.8 MSE of Conditional Mean Outcome Models: Hillstrom Data

Scenario 1: LDP-Protected Covariates

Privacy Linear Regression Logistic Regression Random Forest

No 0.1082 0.1084 0.1088

Very Low 0.1082 0.1084 0.1088

Low 0.1106 0.1107 0.1111

Medium 0.1080 0.1082 0.1083

High 0.1146 0.1146 0.1152

Very High 0.1101 0.1102 0.1104

Scenario 2: LDP-Protected Outcome

Privacy Linear Regression Logistic Regression Random Forest

No 0.1078 0.1080 0.1090

Very Low 0.1102 0.1102 0.1112

Low 0.1086 0.1088 0.1105

Medium 0.1157 0.1157 0.1175

High 0.1145 0.1145 0.1164

Very High 0.1160 0.1161 0.1181

(b) T-learner : We construct a single predictive model to estimate the outcome as a function

of the treatment and covariates using random forest with 200 trees and default parameters

in grf package). Then, we calculate the predicted CATE as the difference in predicted

outcomes between treated and non-treated conditions, while keeping all other covariates

constant.

(c) R-learner : We implement a ten-fold cross-fitted R-learner, constructing Robinson’s trans-

formation using a constant propensity score (0.5) and employing Xgboost as the condi-

tional outcome model. We subsequently utilize Xgboost to estimate the CATE, based on

Robinson’s score. For all the Xgboost models, configure the model by setting the max-

imum depth of each tree to 1, selecting a learning rate of 0.5, and setting the number

of iterations to 10. These parameters have been chosen because they yield the highest

cross-validated accuracy for outcome predictions.

EC.3.5. Results for T-learner and R-learner

Table EC.9 presents the AUTOC values (multiplied by 100) of different methods, utilizing T-

learner and R-learner as the initial CATE models. In line with previous findings, our proposed

solution consistently outperforms the other methods across a broad spectrum of privacy levels. It’s

worth noting that R-learner exhibits greater robustness than other CATE models at high privacy

levels. Consequently, at the Very High privacy level, the proposed method offers only a marginal

improvement in the AUTOC value when compared to the default approach.
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Table EC.9 AUTOC Values (Multiplied by 100) of Different Methods for Hillstron Data

(a) Results from T-learners

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 1.62 (62%) 1.61 (61%) 1.60 (62%) 1.51 1.62 (62%) 1.61 (61%) 1.60 (62%) 1.51

Very Low 1.55 (82%) 1.52 (86%) 1.43 (78%) 1.23 1.65 (87%) 1.63 (84%) 1.58 (85%) 1.37

Low 1.42 (87%) 1.38 (74%) 1.31 (72%) 1.20 1.46 (88%) 1.38 (78%) 1.35 (82%) 1.14

Medium 1.35 (88%) 1.28 (87%) 1.20 (73%) 1.03 1.42 (84%) 1.34 (76%) 1.27 (68%) 1.11

High 1.32 (83%) 1.28 (72%) 1.16 (68%) 1.01 1.34 (89%) 1.25 (77%) 1.22 (68%) 1.05

Very High 1.19 (78%) 1.11 (72%) 1.02 (69%) 0.86 1.29 (94%) 1.22 (84%) 1.15 (84%) 0.91

(b) Results from R-learner

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 1.71 (79%) 1.69 (75%) 1.68 (73%) 1.53 1.71 (79%) 1.69 (75%) 1.68 (73%) 1.53

Very Low 1.51 (64%) 1.44 (52%) 1.43 (52%) 1.40 1.63 (58%) 1.57 (50%) 1.59 (57%) 1.57

Low 1.45 (56%) 1.40 (50%) 1.38 (52%) 1.39 1.60 (61%) 1.57 (57%) 1.56 (57%) 1.52

Medium 1.45 (60%) 1.45 (52%) 1.39 (52%) 1.40 1.53 (56%) 1.49 (49%) 1.47 (53%) 1.51

High 1.34 (56%) 1.31 (50%) 1.30 (48%) 1.33 1.52 (55%) 1.47 (54%) 1.42 (46%) 1.47

Very High 1.30 (51%) 1.26 (44%) 1.20 (48%) 1.30 1.41 (52%) 1.35 (38%) 1.31 (46%) 1.37

Note: We report the average of AUTOC values (multiplied by 100) from 100 bootstrap replications, along with the percentage

of replications in which the AUTOC value of the focal method is greater than the AUTOC value of the default approach

(given in parentheses).
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EC.4. Further Details about Starbucks Case Study

In this section, we provide the summary statistics, implementation details, and robustness checks

for the Starbucks case study in Section 6.3.

EC.4.1. Summary Statistics

Table EC.10 provides summary statistics for the Starbucks data. Note that there are five categorical

and two continuous pre-treatment covariates.

Table EC.10 Summary Statistics for Starbucks Data

Discrete Variables

Variable N Unique Values Distribution

Purchase (Outcome) 126,184 2 0: 124,664, 1: 1,520

Promotion (Treatment) 126,184 2 0: 63,072, 1: 63,112

V1 126,184 4 0: 15,846, 1: 47,410, 2: 47,134, 3: 15,794

V4 126,184 2 1: 40,379, 2: 85,805

V5 126,184 4 1: 23,179, 2: 46,597, 3: 48,643, 4: 7,765

V6 126,184 4 1: 31,435, 2: 31,420, 3: 3,1651, 4: 31,678

V7 126,184 2 1: 37,545, 2: 88,639

Continuous Variables

Variable N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max

V2 126,184 29.98 5.00 7.10 26.596 29.98 33.354 55.108

V3 126,184 0.00 1.00 ´1.69 ´0.91 -0.04 0.83 1.69

EC.4.2. Covariate Balance Check

Table EC.11 reports the summary statistics for the covariate balance check. The result suggests that

the experiment is properly randomized as the standardized mean differences of all the covariates

are close to zero.

EC.4.3. Implementation of Local Differential Privacy

In the scenario when the outcome variable is protected by LDP, we apply the randomized response

mechanism, setting p to values in the set 0.05,0.10,0.15,0.20,0.25. In the scenario when covaraites

are protected by LDP, we deploy the Laplace mechanism for the V2 variable, setting σV2 to val-

ues in the set 5,10,15,20,25, and for the V3 variable, setting σV3 to values in the set 1,2,3,4,5.

For all discrete variables, we implement the randomized response mechanism, with p in the set

0.08,0.16,0.24,0.32,0.40.

EC.4.4. Model Selection and Specification

Similar to the Hillstrom case study, we set a constant propensity score (0.5) and select linear

regression as the conditional mean model in Robinson’s transformation. The mean-squared error

(MSE) for this model is reported in Table EC.12.

For initial CATE estimation, we consider the following models:
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Table EC.11 Covariate Balance Check for Starbucks Data

Variable Mean Diff. Pooled St. Dev. Standardized Mean Diff.

V1 “ 0 ´0.002 0.331 ´0.005

V1 “ 1 ´0.003 0.484 ´0.006

V1 “ 2 0.002 0.484 0.004

V1 “ 3 0.003 0.331 0.009

V2 ´0.011 5.001 ´0.002

V3 0.012 1.000 0.012

V4 “ 1 ´0.001 0.466 ´0.002

V4 “ 2 0.001 0.466 0.002

V5 “ 1 0.003 0.387 0.007

V5 “ 2 ´0.001 0.483 ´0.001

V5 “ 3 ´0.001 0.487 ´0.001

V5 “ 4 ´0.002 0.240 ´0.006

V6 “ 1 0.000 0.433 0.000

V6 “ 2 0.000 0.432 0.000

V6 “ 3 0.001 0.433 0.001

V6 “ 4 ´0.001 0.434 ´0.002

V7 “ 1 ´0.001 0.457 ´0.002

V7 “ 2 0.001 0.457 0.002

Table EC.12 MSE of Conditional Mean Outcome Models: Starbucks Data

Scenario 1: LDP-Protected Covariates

Privacy Linear Regression Logistic Regression Random Forest

No 0.0120 0.0120 0.0120

Very Low 0.0120 0.0120 0.0120

Low 0.0114 0.0114 0.0114

Medium 0.0123 0.0123 0.0123

High 0.0118 0.0118 0.0118

Very High 0.0117 0.0117 0.0117

Scenario 2: LDP-Protected Outcome

Privacy Linear Regression Logistic Regression Random Forest

No 0.0120 0.0120 0.0120

Very Low 0.0120 0.0120 0.0120

Low 0.0146 0.0146 0.0147

Medium 0.0172 0.0172 0.0173

High 0.0214 0.0214 0.0217

Very High 0.0264 0.0264 0.0268

1. Causal Forest : We use the causal forest function implemented in the grf package with 200

trees and other default parameters. Similarly, we choose 200 trees instead the default 2,000

trees to accelerate the model training process.

2. T-learner : We construct a single predictive model to estimate the outcome as a function of

the treatment and covariates using random forest with 200 trees and default parameters in
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grf package). Then, we calculate the predicted CATE as the difference in predicted outcomes

between treated and non-treated conditions, while keeping all other covariates constant.

3. R-learner : We implement ten-fold cross-fitted R-learner, constructing Robinson’s transfor-

mation using a constant propensity score (0.5) and employing Xgboost as the conditional

outcome model. We subsequently utilize Xgboost to estimate the CATE, based on Robinson’s

score. For all the Xgboost models, configure the model by setting the maximum depth of each

tree to 1, selecting a learning rate of 0.5, and setting the number of iterations to 10. These

parameters have been chosen as they yield the highest cross-validated accuracy for outcome

predictions.

EC.4.5. Results for T-learner and R-learner

Table EC.9 presents the AUTOC values (multiplied by 100) of different methods, utilizing T-learner

and R-learner as the initial CATE models. In line with previous findings, our proposed solution

consistently outperforms the other methods across a broad spectrum of privacy levels. The only

exception is that at the Very High level of outcome privacy, the proposed method performs the

same as the default approach, while the global-only and local-only performs worse than the default

method.
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Table EC.13 AUTOC Values (Multiplied by 100) of Different Methods for Starbucks Data

(a) Results from T-learners

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 0.66 (62%) 0.65 (62%) 0.64 (50%) 0.64 0.66 (62%) 0.65 (62%) 0.64 (50%) 0.64

Very Low 0.57 (66%) 0.57 (58%) 0.56 (56%) 0.55 0.53 (82%) 0.50 (70%) 0.47 (58%) 0.46

Low 0.52 (66%) 0.51 (62%) 0.49 (47%) 0.49 0.38 (88%) 0.34 (76%) 0.30 (64%) 0.29

Medium 0.46 (68%) 0.45 (62%) 0.43 (56%) 0.43 0.31 (86%) 0.26 (64%) 0.22 (56%) 0.21

High 0.39 (70%) 0.37 (58%) 0.36 (48%) 0.37 0.24 (92%) 0.20 (76%) 0.17 (66%) 0.14

Very High 0.32 (61%) 0.31 (58%) 0.29 (48%) 0.30 0.21 (92%) 0.18 (76%) 0.16 (74%) 0.11

(b) Results from R-learner

Privacy
Scenario 1: LDP-Protected Covariates Scenario 2: LDP-Protected Outcome

Proposed Global Local Default Proposed Global Local Default

No 0.65 (94%) 0.65 (94%) 0.63 (88%) 0.60 0.65 (94%) 0.65 (94%) 0.63 (88%) 0.60

Very Low 0.57 (84%) 0.56 (85%) 0.55 (73%) 0.53 0.58 (62%) 0.57 (54%) 0.56 (40%) 0.57

Low 0.50 (77%) 0.50 (72%) 0.49 (65%) 0.47 0.52 (56%) 0.49 (44%) 0.47 (36%) 0.50

Medium 0.44 (68%) 0.43 (61%) 0.43 (55%) 0.42 0.44 (60%) 0.41 (48%) 0.41 (46%) 0.43

High 0.37 (71%) 0.37 (65%) 0.36 (58%) 0.35 0.37 (56%) 0.36 (54%) 0.35 (54%) 0.35

Very High 0.32 (64%) 0.31 (57%) 0.30 (50%) 0.30 0.32 (50%) 0.31 (45%) 0.30 (40%) 0.32

Note: We report the average of AUTOC values (multiplied by 100) from 100 bootstrap replications, along with the percentage

of replications in which the AUTOC value of the focal method is greater than the AUTOC value of the default approach

(given in parentheses).
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